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Abstract—This paper proposes an improved cross-lingual
speaker adaptation technique with considering the differences
between language-dependent average voices in a Speech-to-
Speech Translation system. A state mapping based method had
been introduced for cross-lingual speaker adaptation in HMM-
based speech synthesis. In this method, the transforms estimated
from the input language are applied to average voice models of
the output language according to the state mapping information.
However, the differences between average voices in the input
and output language may degrade the adaptation performance.
To reduce the differences, we apply a global linear transform
to output average voice models, which minimizes the symmetric
Kullback-Leibler divergence between two average voice models.
From the experimental results, our approach could not obtain
a better result than the original state mapping based method.
This is because the global transform affects not only speaker
characteristics but also language identity in acoustic features, and
this degrades the synthetic speech quality. Therefore, it becomes
clear that a technique which separate speaker and language
identities is required.

Index Terms—HMM, speech synthesis, cross-lingual speaker
adaptation, average voice

I. Introduction

Researches on cross-lingual speaker adaptation [1-6] for
Speech-to-Speech Translation (S2ST) system have been con-
ducted to enable the output speech sounds like the target
speaker (input speaker). To realize such a S2ST systems, the
HMM-based speech synthesis technique [7-8] is suitable for
cross-lingual speaker adaptation, because it provides flexible
speaker adaptation, and a small amount of adaptation data is
required. Figure 1 shows an overview of the S2ST system
and cross-lingual speaker adaptation. A state mapping based
method [1] had been proposed for cross-lingual speaker adap-
tation in the S2ST system using HMM-based speech synthesis.
The system is based on Constrained Maximum Likelihood
Linear Regression (CMLLR) [9-10], and the transforms es-
timated from the input language are applied to average voice
models of the output language according to the state mapping
information. However the difference between average voices
of input and output language are not considered. Consequently,
this may degrade adaptation performance.

In order to alleviate this issue, we propose an approach
for cross-lingual speaker adaptation considering differences
between language-dependent average voices. In this approach,
a global linear transform from average voice models of the
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Fig. 1. Overview of the system.

input and output language was estimated and applied to
average voice model of the output language.

This paper is organized as follows. In section II, the state
mapping based method is briefly reviewed. The details of
cross-lingual speaker adaptation considering differences be-
tween language-dependent average voices are presented in
section III. The experiments were conducted to evaluate the
performance of the proposed approach, and the experimental
conditions and results are shown in section IV. Finally, conclu-
sions and suggestions for future work are presented in section
V.

II. State mapping based method

The basic idea of the state mapping based method [1-2] for
cross-lingual speaker adaptation is shown in Fig. 2. First, two
average voice models of both the input and output language
are constructed. The average voice models are trained using
multiple speaker’s data and speaker adaptive training (SAT)
[11] is applied. Then the state mapping between these two
average voice models is established by finding the state in
the input language which minimizes the symmetric Kullback-
Leibler divergence (KLD) for each state in the output lan-
guage.

The symmetric KLD between two states is calculated as
follows
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Fig. 2. Outline of state mapping based method.
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Based on the above KLD measurement, the nearest state
G(I)

f (i) in the input language for each state G(O)
i in the output

language is found as
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Next, the transforms for average voice models λ(I) of the
input language is estimated using the adaptation data in the

following way. A set of linear transforms Λ̂ for the input
language models λ(I) is calculated as

Λ̂ =
(
V̂1, . . . , V̂N(I)

)
= arg max

Λ
P
(
O | λ(I),Λ

)
P (Λ) , (4)

where V j denotes a linear transform for state G(I)
j , and O de-

notes the adaptation data. P (Λ) denotes the prior distribution
of the linear transforms, which is a uniform distribution for
MLLR [9] and CMLLR [10].

Finally, cross-lingual speaker adaptation is achieved by ap-
plying these transforms estimated in the average voice models
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Fig. 3. Cross-lingual speaker adaptation using a transform for correcting
average voice model.

of the input language to the average voice models of the output
language according to the state mapping information.

III. Cross-lingual speaker adaptation considering differences
between language-dependent average voices

The underlying assumption of the state mapping based
method is that speaker characteristics of acoustic features in
the output language appear similarly in the input language.
Therefore, the speaker characteristics of average voice models
in the input and output language should be the same prior to
adaptation. If average voice models of both the input and out-
put language are constructed from a bilingual speech database
uttered by bilingual speakers, it satisfies this assumption.
However, it is usually difficult to obtain such a database with a
large amount fo data in practice. Consequently, the differences
of speaker characteristics are included in two average voice
models.

Since these differences between the input and output lan-
guage average voices are not considered in the state mapping
based method, this may degrade the adaptation performance.
To reduce the differences between average voice models, we
propose a new approach for cross-lingual speaker adaptation.
In the proposed method, a global linear transform is applied to
reduce the differences of speaker characteristic between two
average voices as shown in Fig. 3.

The linear transform is applied to each mean vector μ(O)
i of

the output average voice models λ(O) as
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i = Aμ(O)
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i , (5)

where μ̂(O)
i is the transformed mean vector, and
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W = [A b]. (7)

The differences between two average voice models can be
diminished by estimating the transform W appropriately. In
the proposed method, the transform W is estimated based on
KLD, which is similar to the state mapping based method.
The symmetric KLD between two average voice models is
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where Ĝ(O)
i represents transformed state G(O)

i . The optimal
transform can be given by
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Here, we present Wd as the elemental vector of the transform
W in the d-th row. The partial derivative of Wd can be derived
as
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By setting Eq. (10) to 0, Wd can be estimated as

Wd =

⎛⎜⎜⎜⎜⎜⎝∑
i

Zidμ
(I)
f (i)dμ̄

(O)�
i

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝∑

i

Zidμ̄
(O)
i μ̄

(O)�
i

⎞⎟⎟⎟⎟⎟⎠
−1

. (12)

The speaker characteristic in the output language can be
modified to that in the input language by applying the global
transform W to average voice models of the output language.
Moreover, a new state mapping can be estimated after applying
the transform W practically so that we can obtain a more
accurate state mapping.

IV. Experiments

A. Experimental conditions
We performed experiments on cross-lingual speaker adap-

tation for HMM-based speech synthesis, in which the input
and output languages are English and Japanese respectively.
Although, unsupervised cross-lingual speaker adaptation [2-
4] has been investigated in recent work, we used supervised
cross-lingual speaker adaptation in our experiments. For text-
to-speech (TTS), we adopted the WSJ0 database (15 hours
of speech, 7.2k sentences uttered by 42 male and 42 female
speakers) for English and JNAS database (19 hours of speech,
10k sentences uttered by 43 male and 43 female speakers) for
Japanese as the training data. Speech signals were sampled at
16kHz and windowed by a 25ms Hamming window with a
5-ms shift, and 5-state left-to-right context-dependent multi-
stream MSD-HSMMs were used. TTS feature vectors are
comprised of 138-dimensions: 39-dimension STRAIGHT [12]
mel-Cepstral coefficients, log F0, 5 band-filtered aperiodicity
measures, and their dynamic and acceleration coefficients. One
male and one female American English speaker were chosen
from the “long term” subset of the WSJ0 database as target
speakers. The adaptation data comprised 50 sentences were

selected arbitrarily from the 2.3k sentences available for each
target speaker.

B. Experimental results
In the experiments, we investigated the performance of the

following approaches for cross-lingual speaker adaptation:

• No-adaptation: average voice models in the target lan-
guage

• Baseline: speaker adaptation based on the state mapping
without global transform

• Proposed-1: the global transform estimated from the
initial state mapping

• Proposed-2: the global transform iteratively updated with
the state mapping

Firstly, we performed an experiment with adaptation data of
a male target speaker. We conducted a subjective listening test
to evaluate the speaker similarity between the target speech
and the synthesized speech using DMOS score at a 5 point
psychometric response scale. The subjects were 12 Japanese
native listeners. Each subject was presented with 12 sets
of synthetic speech samples selected randomly from the 50
Japanese translated sentences: the first sample in each set was
a reference English utterance of the target speaker and the
others were synthetic Japanese speech utterances generated
using four cross-lingual speaker adaptation approaches.

Figure 4 shows the sum of KLD in iterative updates of the
global transform in the proposed method. It can be seen that
the sum of KLD is significantly reduced in Proposed-1 com-
pared with Baseline. It can also be confirmed that the sum of
KLD monotonically decreases by iterative updates of the state
mapping and global transform. Figure 5 shows the average
DMOS and their 95% confidence intervals. From the result,
we can see that Proposed-1 and Proposed-2 outperformed
No-adaptation. However they underperformed Baseline, and
the Proposed-2 has a tendency to degrade compared with
Proposed-1. Listening to the speech samples, background
noise in Proposed-1 was louder than that in Baseline. We
guess this occurred because of the difference of recording
environments between two speech databases.

To confirm the effectiveness of the proposed method, we
performed an experiment on a special condition: a new
Japanese average voice model was trained with only 43 male
speaker’s data in JNAS database, and a female speaker’s data
was used as the adaptation data. This is an extreme case that
the difference of the average voice models was large, and the
spectral features of adaptation data were also very different
from the average voice models in the output language. Figure 6
shows the results of a DMOS test, and it can be seen that
the proposed approach obtained a similar performance with
Baseline and the degradation of Proposed-2 was not seen in
this case.

The state mapping was obtained by minimizing the KLD
in the proposed approach. However, the acoustical differences
between the states may include not only the differences of the
speaker characteristics but also the phonological differences
between two languages. Therefore, the phonological differ-
ences were also contained in the transform which is expected
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to represent the differences in the speaker characteristic only.
Consequently, we guess this degrades the phonological infor-
mation of the average voice models in the output language.
This coincides with the result of the second experiment. From
the second experimental result, it can be considered that
larger improvements in speaker characteristics was obtained
by the proposed method than the first experiment, because
the average voice models extremely differ from each other.
However, while improving speaker characteristics, the phono-
logical structure was also collapsed as Japanese language. This
is the reason that the proposed method could not achieved a
better result than the original state mapping based method.
Accordingly, the phonological differences based on language
need to be separated from the speaker characteristic in average
voice models before estimating the transform.

V. Conclusions

In this paper, we proposed an approach to reduce the differ-
ences between language-dependent average voices by applying
a global linear transform to average voice model in cross-
lingual speaker adaptation. From the experimental results, we
cannot validate the effectiveness of our approach compared
with the original state mapping based method. This is because
the transform affects not only speaker characteristics but also
language identity in acoustic features. Therefore, if we can
separate the language identity from the speaker characteristic
in average voice models, the speaker characteristic can be
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adapted without influences of the phonological differences
which are dependent on languages. Future work is to inves-
tigate a method to separate speaker and language identities.
We will also introduce a cross-lingual speaker adaptation
technique using bilingual speech databases.
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