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Abstract
This paper proposes a speech synthesis technique integrating
training and synthesis processes based on the Bayesian frame-
work. In the Bayesian speech synthesis, all processes are de-
rived from one single predictive distribution which represents
the problem of speech synthesis directly. However, it typically
assumes that the posterior distribution of model parameters is
independent of synthesis data, and this separates the system into
training and synthesis parts. This paper removes the approxi-
mation and derives an algorithm that the posterior distributions,
decision trees and synthesis data are iteratively updated. Ex-
perimental results show that the proposed method improves the
quality of synthesized speech.

Index Terms: speech synthesis, HMM, Bayesian approach

1. Introduction
A statistical speech synthesis system based on hidden Markov
models (HMMs) was recently developed. In HMM-based
speech synthesis, the spectrum, excitation and duration of
speech are simultaneously modeled with HMMs, and speech
parameter sequences are generated from the HMMs themselves
[1]. The maximum likelihood (ML) criterion has typically been
used for training HMMs and generating speech parameters. The
ML criterion guarantees that the ML estimates approach the true
values of the parameters. Therefore, acoustic modeling based
on HMMs have been developed greatly by using the ML ap-
proach. However, since the ML criterion produces a point es-
timate of the HMM parameters, its estimation accuracy may
deteriorate when the amount of training data is insufficient.

The Bayesian approach considers the posterior distribution
of variables. That is, all variables introduced when the mod-
els are parameterized, such as the model parameters and latent
variables, are treated as random variables, and their posterior
distributions are obtained by invoking the Bayes theorem. The
difference between the Bayesian and ML approaches is that the
target of estimation is the distribution function in the Bayesian
approach whereas it is the parameter value in the ML approach.
Because of its posterior distribution estimation, the Bayesian
approach can generally construct a more robust model than the
ML approach can. However, the Bayesian approach requires
complicated integral and expectation computations to obtain
posterior distributions. It is difficult to solve these computa-
tions without approximations when the models have latent vari-
ables. To avoid complicated computations, a variational Bayes
(VB) method has been proposed in the field of learning the-
ory [4]. This method can obtain approximate posterior distribu-
tions through iterative calculations similar to the expectation-
maximization (EM) algorithm used in the ML approach.

Recently, a Bayesian framework to HMM-based speech

synthesis has been proposed [2, 3]. We call this framework
Bayesian speech synthesis. In Bayesian speech synthesis, all
processes for constructing the system can be derived from one
single predictive distribution that directly represents the prob-
lem of speech synthesis. The estimation of the posterior distri-
butions, model selection, and speech parameter generation are
consistently performed by maximizing the log marginal likeli-
hood. The posterior distributions of all variables are obtained
by using the VB method. Then, the obtained posterior distribu-
tion of the model parameters depends on not only the training
data, but also the synthesis data. In a basic speech synthesis sit-
uation, the observed data for the synthesis sentences is not given
beforehand. Therefore, the posterior distributions cannot be ob-
tained. To overcome this problem, it typically assumes that the
posterior distribution of the model parameters is independent of
the synthesis data [2, 3]. As a result of this approximation, the
Bayesian speech synthesis system is separated into training and
synthesis parts, as the conventional ML-based system, and the
posterior distribution of the model parameters and decision trees
can be obtained from only the training data. However, although
the posterior distributions can be estimated, they don’t consider
synthesis data, and the system doesn’t represent the Bayesian
speech synthesis exactly. This paper proposes a speech synthe-
sis technique integrating training and synthesis processes based
on the Bayesian framework. This method removes the approxi-
mation and leads to an algorithm that the posterior distributions,
decision trees and synthesis data are iteratively updated.

The rest of this paper is organized as follows. Section 2
describes Bayesian speech synthesis. Section 3 proposes the
Bayesian speech synthesis framework integrating the training
and synthesis processes. Subjective listening test results are
presented in Section 4. Concluding remarks and future work
are presented in the final section.

2. Bayesian speech synthesis
2.1. Bayesian approach

The output distribution is obtained from the left-to-right HMM
that has been widely used to represent acoustic models for
speech synthesis. Let O = (O1, O2, . . . , OT ) be a set of train-
ing data of D dimensional feature vectors, and let T denote the
frame number. The output distribution is represented by

log P (O, Z | Λ)

=
NX

i=1

Zi
1 log πi +

T−1X
t=1

NX
i=1

NX
j=1

Zi
tZ

j
t+1 log aij

+

TX
t=1

NX
i=1

Zi
t logN (Ot | μi, S

−1
i ) (1)
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where Z = (Z1, Z2, . . . , ZT ) is a sequence of latent variables
which represent HMM states, Zt ∈ {1, . . . , N} denotes a state
at frame t, and N is the number of states in an HMM.

Zi
t = δ(Zt, i) =

(
1 if Zt = i

0 otherwise
(2)

The set of model parameters Λ = {πi, aij , μi, Si}N
i,j=1 con-

sists of the initial state probability πi of state i, the state tran-
sition probability aij from state i to state j, the mean vector
μi, and the covariance matrix S−1

i of a Gaussian distribution
N (· | μi, S

−1
i ).

In HMM-based speech synthesis, the ML criterion has typi-
cally been used to train HMMs and generate speech parameters.
The optimal model parameters can be obtained by maximizing
the likelihood for given training data.

ΛML = arg max
Λ

P (O | S,Λ) (3)

where S is a label sequence of training data. Since it is difficult
to obtain the model parameter ΛML analytically, the model pa-
rameters are estimated by using an iterative procedure such as
the EM algorithm. In the synthesis part, the speech parameter
generation algorithm generates sequences of speech parameter
vectors that maximize their output probabilities by using the
model parameters ΛML.

ôML = arg max
o

P (o | s,ΛML) (4)

where o =
ˆ
o�

1 , o�
2 , . . . , o�

T

˜�
is a speech parameter se-

quence, and s is a label sequence to be synthesized. The ML
criterion guarantees that the ML estimates approach the true
values of the parameters. However, since the ML criterion pro-
duces a point estimate of the HMM parameters, the estimation
accuracy may deteriorate when the amount of training data is
insufficient.

The Bayesian approach assumes that a set of model pa-
rameters Λ is a random variable, while the ML approach es-
timates constant model parameters. In the Bayesian approach,
the speech parameter is generated from a predictive distribution
as follows.

ôBayes = arg max
o

P (o | s, O, S)

= arg max
o

P (o, O | s, S) (5)

It can be seen that Eq. (5) directly represents the problem of
speech synthesis; that is, the speech feature sequence o is gen-
erated from given training feature sequences O with labels S
and labels to be synthesized s. The marginal likelihood of o
and O is defined by

P (o, O | s, S)

=
X

z

X
Z

Z
P (o, z, O, Z ,Λ | s, S)dΛ

=
X

z

X
Z

Z
P (o, z | s,Λ)P (O, Z | S,Λ)P (Λ)dΛ (6)

where z is a sequence of HMM states for a speech parameter
sequence o, P (Λ) is the prior distribution for model param-
eter Λ, P (o, z | s,Λ) is the likelihood of synthesis data o,
and P (O, Z | S,Λ) is the likelihood of training data O. The
model parameters are integrated out in Eq. (6) so that the effect

of over-fitting is mitigated. However, it is difficult to solve the
integral and expectation calculations. The calculations become
more complicated when a model includes latent variables. The
variational Bayesian method has been proposed as a tractable
approximation to overcome this problem, and it has good gen-
eralization performance in many applications [4].

2.2. Variational Bayesian method

The variational Bayesian method maximizes the lower bound
of the log marginal likelihood F instead of the true marginal
likelihood. The lower bound F is defined by using Jensen’s
inequality:

logP (o, O | s, S)

= log
X

z

X
Z

Z
P (o, z, O, Z ,Λ | s, S)dΛ

= log
X

z

X
Z

Z
Q(z, Z ,Λ)

P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)
dΛ
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Z
Q(z, Z ,Λ) log

P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)
dΛ

=

fi
log

P (o, z, O, Z ,Λ | s, S)

Q(z, Z ,Λ)

fl
Q(z,Z ,Λ)

= F (7)

where 〈·〉Q denotes a calculation of the expectation with respect
to Q, and Q(z, Z ,Λ) is an approximate distribution of the true
posterior distribution P (z, Z ,Λ | o, O, s, S). The VB method
assumes that the probabilistic variables associated with z, Z ,Λ
are statistically independent of the other variables.

Q(z, Z ,Λ) = Q(z) Q(Z) Q(Λ) (8)

In the VB method, posterior distributions Q(z), Q(Z) and
Q(Λ) are introduced to approximate the true posterior distri-
butions. The optimal posterior distributions can be obtained
by maximizing the objective function F with the variational
method.

Q(z) = Cz exp 〈log P (o, z | s,Λ)〉Q(Λ) (9)

Q(Z) = CZ exp 〈log P (O, Z | S,Λ)〉Q(Λ) (10)

Q(Λ) = CΛP (Λ) exp 〈log P (o, z | s,Λ)〉Q(z)

× exp 〈log P (O, Z | S,Λ)〉Q(Z) (11)

where Cz , CZ and CΛ are normalization terms of Q(z), Q(Z)
and Q(Λ), respectively. These posterior distributions can be
updated by using iterative calculations similar to those of the
EM algorithm in the ML approach.

2.3. Bayesian model selection

According to the Bayes theorem, the posterior distribution of a
model structure can be represented by

P (m | o, O) =
P (o, O | m)P (m)

P (o, O)
(12)

If the optimal model structure m̂ is selected by maximizing the
posterior probability, the optimal model structure can be ob-
tained from Eq. (12).

m̂ = arg max
m

P (o, O | m)P (m)

P (o, O)

= arg max
m

P (o, O | m)P (m) (13)
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By applying the VB method and using the assumption that the
prior distribution P (m) is a uniform distribution, the optimal
model structure m̂ can be determined as follows:

m̂ = arg max
m

log P (o, O | m)

≈ arg max
m

F (14)

Consequently, an optimal model structure can be selected by
maximizing the objective function F [5, 6].

2.3.1. Bayesian context clustering

The decision tree based context clustering [7, 8] is a top-down
clustering method to optimize the state tying structure for a ro-
bust model parameter estimation. A leaf of the decision tree
corresponds to a set of HMM states to be tied. The decision tree
growing process begins with the root node, which has all HMM
states to be tied. Then, a question which divides the set of states
into two subsets assigned respectively to two child nodes, the
“Yes” node and the “No” node, is chosen so as to maximize
the value of an objective function. The decision tree is grown
in greedy fashion by splitting node that maximizes the gain of
the objective function at each step. In the HMM-based speech
synthesis, model parameters of the spectrum, excitation, and
duration are separately clustered because they have their own
contextual factors.

When a node is split into a “Yes” node and a “No” node
by question q, the gain ΔFq is defined as the difference of F
before and after splitting:

ΔFq = Fy
q + Fn

q −Fp
q (15)

where Fy
q and Fn

q are the values of the objective function F of
the nodes split by question q, and Fp

q is the value before split-
ting. The question q̂ is chosen from the question set as follows:

q̂ = arg max
q

ΔFq (16)

The decision tree that maximizes the objective function F is
obtained by splitting nodes until ΔFq̂ ≤ 0.

2.3.2. Bayesian context clustering using cross validation

The prior distributions are heuristically determined in many
cases, because the prior data is not usually given in HMM-
based speech synthesis. However, hyper-parameters (the pa-
rameters of the prior distributions) affect the model selection
as tuning parameters. Therefore, a determination technique of
prior distribution is required to automatically select an appropri-
ate model structure. One possible approach is to optimize the
hyper-parameters by using training data so as to maximize the
marginal likelihood. However, this approach still needs tuning
parameters to control the influences of prior distributions, and it
often leads to the over-fitting problem as in the case of the ML
criterion. To overcome this problem, the prior distribution de-
termination technique using cross validation has been proposed
[9]. Here, we apply it to context clustering.

Let O = {O(1), O(2), . . . , O(k), . . . , O(K)} be the set of

training data and O(k) be a partition for K-fold cross valida-

tion. For the k-th evaluation, O(k̄) = {O(j) | j 	= k} is

used to determine the prior distributions and O(k) is used to
estimate the posterior distributions. Accordingly, the Bayesian
approach using cross validation calculates the log marginal like-

lihood log P (O(k) | O(k̄), S). Using Jensen’s inequality, the

lower bound of log marginal likelihood F (k) can be defined as
Eq. (7):

log P (O(k) | O(k̄), s, S) ≥ F (k)
(17)

For the k-th evaluation, the optimal VB posterior distributions
of the model parameters can be obtained by using the variational
method to maximize F (k) with respect to Q(Λ(k)):

Q(Λ(k)) =CΛ(k)P (Λ(k) | O(k̄))

×
D
log P (O(k), Q(k) | Λ(k))

E
Q(Q(k))

(18)

where P (Λ(k) | O(k̄)) is a prior distribution that represents the

prior information O(k̄) and CΛ(k) is a normalization term.
The objective function of the Bayesian approach using

cross validation F (CV ) is obtained by summing F (k) for each
fold:

F (CV ) =

KX
k=1

F (k)
(19)

An optimal model structure can be selected by maximizing the
objective function F (CV ) instead of F . The question which

maximizes the gain of the objective function ΔF (CV )
q is se-

lected as in Eq. (16). The decision tree that maximizes the
objective function F (CV ) is obtained by splitting nodes until

ΔF (CV )
q̂ ≤ 0.

3. Bayesian speech synthesis integrating
training and synthesis processes

3.1. Speech parameter generation

In the synthesis part of HMM-based speech synthesis, first,
an arbitrarily given text to be synthesized is converted into a
context-dependent label sequence and a sentence HMM is con-
structed by concatenating context-dependent HMMs according
to the label sequence. Second, the optimal state sequence of
the sentence HMM is determined. Third, a speech parameter
sequence is generated for a given state sequence. From Eq. (5),
the optimal speech parameter sequence for Bayesian speech
synthesis can be generated by maximizing the marginal like-
lihood. Thus, the optimal speech parameter sequence ô can be
generated by maximizing the lower bound F in Eq. (7) because
the VB method guarantees that the log marginal likelihood is
approximately the lower bound F .

ôBayes = arg max
o

log P (o, O | s, S)

≈ arg max
o

F (20)

We assume that a speech parameter vector ot consists of a static
feature vector ct and its first and second order dynamic feature
vectors.

o = Wc

=
h
(Wc)�1 , (Wc)�2 , . . . , (Wc)�T

i�
(21)

(Wc)t =
h
c�

t , Δc�
t , Δ2c�

t

i�
(22)

where W is a window matrix to calculate dynamic features
from static features [10]. The dynamic feature vectors are auto-
matically determined from the window matrix W and the static
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feature sequence. Consequently, only a static feature vector se-
quence c is estimated in the synthesis part. From Eq. (20), the
optimal static feature sequence ĉ is generated by maximizing
the lower bound F . Moreover, under the condition of Eq. (21),
the optimal static feature sequence ĉ can be determined by solv-
ing the following equation:

∂F
∂c

=
∂

∂c

fi
log

P (Wc, z, O, Z ,Λ | s, S)

Q(z)Q(Z)Q(Λ)

fl
Q(z)Q(Z)Q(Λ)

= 0 (23)

In the Bayesian speech synthesis framework, the estimation of
the posterior distributions, model selection, and speech param-
eter generation consistently maximize the lower bound F .

3.2. Approximation for estimating posterior distributions

The obtained posterior distribution of model parameters Q(Λ)
in Eq. (11) depend on not only the training data O , but also
the synthesis data o . However, in a basic speech synthesis sit-
uation, the observed data of synthesis sentences is not given
previously. Therefore, the posterior distributions represented in
Eq. (11) cannot be estimated. To overcome this problem, one
typically assumes that the posterior distribution of the model pa-
rameters is independent of the synthesis data [2, 3]. The lower
bound of the log marginal likelihood with respect to only the
training data O can be represented as follows.

log P (O | S) = log
X
Z

Z
P (O, Z ,Λ | S)dΛ

≥
fi

log
P (O, Z ,Λ | S)

Q̄(Z)Q̄(Λ)

fl
Q̄(Z)Q̄(Λ)

= F̄ (24)

The posterior distributions Q̄(Z) and Q̄(Λ) can be estimated
by maximizing the lower bound F̄ . The posterior distribution
of the model parameters Q̄(Λ) is represented as follows.

Q̄(Λ) = C̄ΛP (Λ) exp 〈log P (O, Z | S,Λ)〉Q̄(Z) (25)

Equation (25) indicates that the posterior distribution Q̄(Λ) is
independent of the synthesis data and that it can be estimated by
using only the training data. Since the same approximation is
used in the Bayesian model selection, the optimal decision trees
are selected by maximizing the lower bound F̄ instead of F .

m̂ = arg max
m

F̄ (26)

Consequently, the decision trees are selected independently of
the synthesis data. Additionally, Eq. (23) can be represented by
the estimated posterior distribution Q̄(Λ) and the determined
state sequence as follows.fi

∂

∂c
log P (Wc | z,Λ)

fl
Q̄(Λ)

= 0 (27)

Equation (27) can be solved efficiently by using the Cholesky
or QR decomposition [10]. Therefore, the computational cost is
almost the same as the ML criterion.

The approximation that the posterior distribution of the
model parameters is independent of the synthesis data o en-
ables the Bayesian speech synthesis system to be separated into
training and synthesis parts as the conventional ML-based sys-
tem and to obtain the posterior distribution of model parameters

and decision trees from only the training data. However, al-
though the posterior distributions can be estimated, they don’t
take into account synthesis data, and the system doesn’t repre-
sent the Bayesian speech synthesis exactly. To overcome this
problem, this paper proposes a speech synthesis technique inte-
grating training and synthesis processes based on the Bayesian
framework.

3.3. Integration of training and synthesis processes

The proposed method removes the approximation and derives
an algorithm that the posterior distributions, decision trees, and
synthesis data are iteratively updated. In the proposed frame-
work, the generated speech parameters of the synthesis sen-
tences are used instead of the observed data. That is, the poste-
rior distributions and decision trees are estimated from the train-
ing data and the generated speech parameters, and the speech
parameters are generated from the estimated posterior distri-
butions. Since the posterior distributions, decision trees, and
generated speech parameters depend on each other, they are it-
eratively updated as the EM algorithm. Initial synthesis data
are generated by using the framework described in the preced-
ing section 3.2. Once the generated speech parameters are ob-
tained, they can be used for estimating the posterior distribution.
The new lower bound with the generated speech parameters is
defined as follows.

logP (õ, O | s, S)

= log
X

z̃

X
Z

Z
P (õ, z̃, O, Z ,Λ | s, S)dΛ

≥
fi

log
P (õ, z̃, O, Z ,Λ | s, S)

Q̃(z̃)Q̃(Z)Q̃(Λ)

fl
Q̃(z̃)Q̃(Z)Q̃(Λ)

= F̃ (28)

where õ is the generated speech parameter sequence. By max-
imizing the lower bound F̃ , the posterior distribution can be
estimated in the same fashion as Eq. (11).

Q̃(Λ) = C̃ΛP (Λ) exp 〈log P (õ, z̃ | s,Λ)〉Q̃(z̃)

× exp 〈log P (O, Z | S,Λ)〉Q̃(Z) (29)

The posterior distributions are estimated from the training data
and the generated speech parameters instead of the observed
speech parameters. Additionally, the decision trees are selected
by maximizing the lower bound F̃ .

m̂ = arg max
m

F̃ (30)

Equation (23) can be represented by the estimated posterior dis-
tribution Q̃(Λ) and the determined state sequence.fi

∂

∂c
log P (Wc | z,Λ)

fl
Q̃(Λ)

= 0 (31)

In the proposed framework, the estimation of posterior distri-
butions, model selection and speech parameter generation con-
sistently maximize the lower bound F̃ . The posterior distribu-
tions, decision trees, and synthesis data are iteratively updated.
The iterative process is as follows.

1. Initial speech parameters of synthesis sentences are gen-
erated with in the represented framework (Eq. (27)).

2. The posterior distributions Q̃(z̃)Q̃(Z)Q̃(Λ) and deci-
sion trees are re-estimated by maximizing the lower
bound F̃ (Eqs. (29) and (30)).
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3. Speech parameters of synthesis sentences are re-
generated by using the estimated posterior distribution
(Eq. (31)).

4. Steps 2 and 3 are iterated until the value of F̃ converge.

Although the iterative process increase the computational cost,
the final posterior distributions is more appropriate than one
used in the previous method for synthesis sentences.

The key question is how many synthesis sentences should
be used for estimating the posterior distributions? Here, we dis-
cuss two approaches about the number of synthesis sentences.

• Sentence: The generated speech parameters of one syn-
thesis sentence are used as õ.

• Batch: The generated speech parameters of all synthesis
sentences are used as õ.

Sentence estimates different posterior distributions and model
structures for each synthesis sentence. On the other hand, Batch
estimates the same posterior distributions and model structures
for all synthesis sentences. Therefore, Sentence needs the
larger computational cost than Batch.

4. Experiments
4.1. Experimental conditions

The experiments used the ATR Japanese speech database [11]
B-set, which consists of 503 phonetically balanced sentences.
The first 450 of the 503 sentences, uttered by one male speaker
(MHT), were used for training. The remaining 53 sentences
were used for the evaluations. Speech signals were sampled at
a rate of 16 kHz and windowed at a 5-ms frame rate using a 25-
ms Blackman window. Feature vectors consisted of spectrum
and F0 parameter vectors. The spectrum parameter vectors con-
sisted of 24 mel-cepstral coefficients, and their delta and delta-
delta coefficients. The F0 parameter vectors consisted of log
F0 and its delta and delta-delta. A five-state, left-to-right MSD-
HSMM [12, 13] without skip transitions was used. Each state
output PDF was composed of spectrum and F0 streams. The
spectrum stream was modeled by single multi-variate Gaussian
distributions with diagonal covariance matrices. The F0 stream
was modeled by a multi-space probability distribution consist-
ing of a Gaussian distribution for voiced frames and a discrete
distribution for unvoiced frames. Each state duration PDF was
modeled by a one-dimensional Gaussian distribution. The deci-
sion tree-based context clustering technique was separately ap-
plied to distributions of spectrum, F0, and state duration.

A subjective listening test was conducted to evaluate the
quality of the synthesized speech. The test assessed the natural-
ness of the converted speech by the mean opinion score (MOS)
test method. The subjects were 10 Japanese students belonging
to our research group. Twenty sentences were chosen at random
from the evaluation sentences. Samples were presented in ran-
dom order for each synthesis sentence. In the MOS test, after
listening to each test sample, the subjects were asked to assign
the sample a five-point naturalness score (5: natural – 1: poor).

4.2. Comparing the number of updates

This experiment evaluated the effectiveness of the proposed it-
erative updates by comparing the following four systems.

• Iteration0 : The posterior distributions were trained
from only the training data.
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Figure 1: Mean opinion scores of speech synthesized by the
baseline and proposed methods. Error bars show 95% confi-
dence intervals.

• Iteration1 : The posterior distributions were trained
from the training data and the speech parameters gen-
erated by Iteration0.

• Iteration2 : The posterior distributions were trained
from the training data and the speech parameters gen-
erated by Iteration1.

• Iteration3 : The posterior distributions were trained
from the training data and the speech parameters gen-
erated by Iteration2.

Iteration0 was the baseline Bayesian speech synthesis system
described in Section 3.2. Iteration1, Iteration2, and Itera-
tion3 were the proposed system integrating training and synthe-
sis processes described in Section 3.3, and they were based on
sentence-form integration. In each iteration, the posterior distri-
butions were updated five times. Therefore, in this experiment,
the number of updates was different for each system.

Figure 1 plots the experimental results. Although there
were not confidence intervals, it is clear that the subjective score
increased as the number of training iterations increased. These
results clearly show the effectiveness of the training and syn-
thesis iterations. The decision trees constructed in the context
clustering varied between the four systems. This shows that the
posterior distributions were optimized as a result of integrating
the training and synthesis processes.

4.3. Comparing systems

This experiment compared the following four systems.

• ML : The conventional ML-based speech synthesis sys-
tem. The HMMs were trained by using the ML criterion.
The decision trees were selected by the MDL criterion
[14].

• Baseline : The baseline Bayesian speech synthesis sys-
tem described in Section 3.2.

• Batch : The proposed Bayesian speech synthesis system
based on the batch-form integration described in Sec-
tion 3.3.

• Sentence : The proposed Bayesian speech synthesis sys-
tem based on the sentence-form integration described in
Section 3.3. This system was the same as Iteration3 of
the previous experiment.
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Figure 2: Mean opinion scores of speech synthesized by the
baseline and proposed methods. Error bars show 95% confi-
dence intervals.

The computational costs of ML, Baseline, and Batch were al-
most same because the number of updates was same in this ex-
periment. However, since Sentence estimated different poste-
rior distributions and model structures for each synthesis sen-
tence, the computational cost was 53 times as large as Batch.

Figure 2 shows the results of the subjective listening test.
Baseline was better than ML, although the gain was not signif-
icant. In addition, Batch and Sentence outperformed Baseline.
These performance gains illustrate the effectiveness of the pro-
posed Bayesian speech synthesis framework integrating train-
ing and synthesis processes. The figure also shows that Sen-
tence performed better than Batch. Although Batch used all
generated synthesis data to estimate the posterior distributions,
the posterior distributions and model structures of Batch were
common for all synthesis sentences. In contrast, Sentence esti-
mated different posterior distributions and model structures for
each synthesis sentence. The experimental results illustrate that
the quality of the synthesized speech improved when the poste-
rior distributions were optimized for each synthesis sentence.

5. Conclusions
This paper proposes a speech synthesis technique integrating
training and synthesis processes based on the Bayesian frame-
work. The proposed method removes the approximation that
the posterior distribution of the model parameters is indepen-
dent of the synthesis data and derives an algorithm that the pos-
terior distributions, decision trees and synthesis data are itera-
tively updated. Both sentence-form and batch-form integrations
were tested. The sentence-form integration estimates different
posterior distributions and decision trees for each synthesis sen-
tence, whereas the batch-form integration estimates the same
ones for all synthesis sentences. The results of MOS synthesis
demonstrated that the proposed method outperforms the base-
line method and the sentence-form integration performed better
than the batch-form integration.

Our future work will include investigation of the relation
between the amount of training data and the quality of speech
synthesized by the proposed method.
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