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Abstract
This paper proposes a spectral modeling technique based on ad-
ditive structure of context dependencies for HMM-based speech
synthesis. Contextual additive structure models can represent
complicated dependencies between acoustic features and con-
text labels using multiple decision trees. However, its compu-
tational complexity of the context clustering is too high for full
context labels of speech synthesis. To overcome this problem,
this paper proposes two approaches; covariance parameter tying
and a likelihood calculation algorithm using matrix inversion
lemma. Experimental results show that the proposed method
outperforms the conventional one in subjective listening tests.

Index Terms: Hidden Markov models, Spectral modeing, De-
cision trees, Context clustering, Additive structure, Distribution
convolution

1. Introduction
An HMM-based speech synthesis system has been proposed to
enable machines to speak naturally like humans [1, 2]. It is
well known that spectral features are affected by contextual fac-
tors, and extracting the context dependencies is a critical prob-
lem for acoustic modeling. One of the major difficulties in the
context dependent modeling is to find an optimum balance be-
tween model complexity and the availability of training data.
Although increasing model complexity makes it possible to ac-
curately capture variations in spectral features, the reliability
of parameter estimation is degraded due to the decrease in the
number of training data for each model. Furthermore, since it is
difficult to prepare training data covering all context dependent
models, there are numerous unseen models that are not observed
in the training data but that are required in the synthesis phase.

To avoid this problem, the decision tree based context clus-
tering has been proposed [3]. In the clustering, HMM states
of the context dependent models are grouped into• •clusters, • •
and all states belonging to the same cluster are assumed to have
the same distribution. A binary tree is constructed based on
the maximum likelihood criterion by applying a phonetic ques-
tion to each node and iteratively splitting the cluster into two
child clusters. By limiting the number of possible splits us-
ing prior knowledge, linguistic and articulatory information can
be reflected in the clustering results. Instead of the maximum
likelihood criterion, the Minimum Description Length (MDL)
criterion can also be adopted to automatically determine the op-
timal number of clusters without setting a threshold [4].

The context space in the decision tree based context cluster-
ing is divided into clusters by contextual factors and the distri-
butions of acoustic features are individually estimated for each
cluster. This means that the effects of a particular factor are
completely dependent on the other factors within clusters. On

the other hand, the linear regression model [5] is another ap-
proach to modeling spectral variations in which all the contex-
tual factors independently affect the acoustic features. Since
the combination of contextual factors determines the spectral
feature, it can efficiently represent the variety of distributions.
However, the dependence among contextual factors is ignored
and it is difficult to determine those factors that should addi-
tively affect acoustic features.

To represent more moderate dependencies between contex-
tual factors and acoustic features, an additive structure of acous-
tic feature components which have different context dependen-
cies has been proposed. This approach includes intermediate
structures of decision tree based context clustering and linear
regression models as special cases. Since the output probabil-
ity distribution is composed of the sum of the mean vectors and
covariance matrices of additive components, a number of dif-
ferent distributions can be efficiently represented by a combi-
nation of fewer distributions. It is unknown what kinds of con-
texts have additive dependencies on acoustic features. Then a
context clustering algorithm for the additive structure that auto-
matically extracts additive components by simultaneously con-
structing multiple decision trees has been proposed. Moreover,
it can automatically determine an appropriate number of addi-
tive components.

In this paper, we apply an additive structure modeling to the
spectrum parameter for HMM-based speech synthesis. Huge
computational cost is required to extract the additive structure.
For this reason, spectral modeling in the additive structure has
not been applied to HMM-based speech synthesis. Therefore,
we tried to reduce the computational complexity in the training
algorithm for estimating parameters when extracting the addi-
tive structure. The three main problems with estimating the pa-
rameters of additive structure models are as follows: 1) As mean
parameters depend on covariance parameters, the mean and co-
variance parameters should be re-estimated until convergence,
2) A gradient method is required to estimate covariance param-
eters, and 3) A matrix that depends on the number of leaves in
decision trees should be treated when estimating mean parame-
ters. The first and second problems can be solved by covariance
parameter tying. Mean parameters are relatively more impor-
tant than covariance parameters for the quality of HMM-based
speech synthesis as investigated by Oura et al [10]. By tying
covariance parameters, mean parameters become independent
of them, and the tied covariance parameter can be estimated an-
alytically. Thus, the impact on speech quality is small and com-
putational complexity is reduced. In the third problem, when
splitting the leaf cluster of a decision tree, the influence of statis-
tics in every context are limited and computational complexity
is reduced from this by using the matrix inversion lemma.

The rest of this paper is organized as follows. Section 2 de-
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scribes the additive structure models, derivation of the EM al-
gorithm for the proposed model, and the multiple decision tree
based context clustering algorithm. In Section 3, the compu-
tational complexity reduction in the training algorithm of the
additive structure models is shown. The results of experiments
are presented in Section 4. Concluding remarks and future plans
are presented in the final section.

2. Additive structure models
In the context clustering, all states in the same cluster are as-
sumed to have the same Gaussian distribution. This means that
the states have direct dependencies on phonetic contexts. In this
paper, we consider a more complex structure, i.e., the additive
structure of acoustic feature components. An acoustic feature
vector ot at time t is generated by the sum of additive compo-
nents:

ot =

NX
n=1

o
(n)
t (1)

where o
(n)
t denotes the n-th additive component. If each com-

ponent is independent and generated according to a Gaussian
distribution, the probabilistic density function of acoustic fea-
tures is represented by the convolution of the additive compo-
nents [7] so that

P (ot | ct, λ)

=

Z NY
n=1

N (o
(n)
t |μ(n)

ct
,Σ(n)

ct
)do

(1)
t · · ·o(N−1)

t

= N (ot |μct
,Σct) (2)

where μ(n)
ct

and Σ
(n)
ct are respectively the mean vector and co-

variance matrix of the n-th component o
(n)
t given a context

ct. The output probability distribution is a Gaussian distribu-
tion whose mean vector and covariance matrix are respectively
given as

μct
=

NX
n=1

μ(n)
ct

, Σct =

NX
n=1

Σ(n)
ct

(3)

Since each additive component o
(n)
t has different context de-

pendencies, we assume that each component has a different de-
cision tree that the represents tying structures of model param-
eters μct

and Σct .
Although it is unknown which kinds of contexts have addi-

tive dependencies on acoustic features in practice, we present an
example of a contextual additive structure of triphone HMMs to
explain how effective the proposed technique is. Here, we as-
sume that the left, center, and right phones are the contexts of
additive components. Figure 1 outlines the generative process
for the triphone feature. The generative process for acoustic fea-
tures is as follows: first, the component of a given monophone
(center phone) context is generated from a corresponding dis-
tribution obtained by descending the tree. Then, the additive
components of left and right contexts are also generated inde-
pendently from each distribution and then added to the mono-
phone feature.

How effective the proposed technique is depends on
whether acoustic features really have additive structures for
contexts. When acoustic features have additive structure, a
number of different distributions can be efficiently represented
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Figure 1: An example of a contexual additive structure.

by a combination of fewer distributions. Furthermore, it is also
effective to predict the acoustic features of unseen contexts.
Even though in the conventional method, unseen models are
assigned to one of the clusters in the decision tree, the pro-
posed method can construct the distribution for unseen contexts,
which are different from any distributions of observed contexts.

2.1. EM algorithm for additive structure models

The Maximum Likelihood (ML) parameters of additive compo-
nent distribution can be estimated with the EM algorithm. In the
E-step, since the convolved output probability distribution be-
comes a Gaussian distribution, the standard forward-backward
algorithm and the Viterbi algorithm can simply be applied as in
standard HMMs. However, there is difficulty in the M-step due
to the dependencies among additive component distributions.

Using the statistics obtained by the E-step, the Q-function
with respect to the output probability distribution can be written
as

L =

TX
t=1

X
c∈C

γt(c) log P (ot | ct = c, λ)

= −1

2

X
c∈C

T̃c

»
K log 2π + log |Σc|

+Tr
n
Σ−1

c

“
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
”o–

(4)

where K is the dimensionality of feature vectors and C denotes
all contexts observed in the training data. The statistics with re-

spect to context c are represented by (̃·)c and each of the statis-
tics is calculated as follows:

T̃c =

TX
t=1

γt(c), μ̃c =
1

T̃c

TX
t=1

γt(c)ot (5)

Σ̃c =
1

T̃c

TX
t=1

γt(c) (ot − μ̃c) (ot − μ̃c)
�

(6)

where γt(c) is the state occupancy probability and the state in-
dex is ignored. For simplicity of notation, Σc is the diagonal
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covariance matrix and we focus on a dimension of feature vec-
tors in this section. Then, the covariance parameter is σc and
the mean parameters of all components is μ = [μ1, ..., μM ]�,
where M is the sum of all leaf clusters of all decision trees. To
represent the tree structure, function f (n)(c) is introduced that
gives the index of the Gaussian distribution (number of leaves in
the decision tree) of the n-th additive components for c. Using
this function, the mean parameter and the covariance parameter
of the convolved distribution are given by

μc =
NX

n=1

μf(n)(c), σc =
NX

n=1

σf(n)(c) (7)

Then, Eq. (4) can be written as

L = −1

2

X
c∈C

T̃c

j
log 2π + log |σc| + σ̃c + (μc − μ̃c)

2

σc

ff
(8)

and, the terms with respect to μ can be rewritten as

L ∝ −1

2

X
c∈C

T̃c

„
μ2

c + −2μcμ̃c

σc

«

= −1

2

X
c∈C

T̃c
1

σc

8<
:
 

NX
n=1

μf(n)(c)

!2

− 2

 
NX

n=1

μf(n)(c)

!
μ̃c

9=
;

= −1

2

“
μ�Gμ − 2μ�k

”
(9)

where

G =

2
64

g1,1 . . . g1,M

...
. . .

...
gM,1 . . . gM,M

3
75, k =

2
64

k1

...
kM

3
75 (10)

gm1,m2 = gm2,m1 =
X
c,i,j

f(i)(c)=m1
f(j)(c)=m2

T̃c
1

σc
(11)

km1 =
X
c,i

f(i)(c)=m1

T̃c
1

σc
μ̃c (12)

Since G is a symmetric matrix, the first partial derivative of
Eq. (9) with respect to μ can be written as

∂L
∂μ

= −1

2

n“
G + G�

”
μ − 2k

o
= −Gμ + k (13)

By setting Eq. (13) to 0, the solution of μ is given as follows:

Gμ = k (14)

However, G is typically a singular matrix. Therefore, to solve
Eq. (14), we use a Moore-Penrose generalized inverse.

2.2. Context clustering for multiple decision trees

A context clustering algorithm for multiple decision trees has
been proposed to automatically extract the additive structure
from training data. It is easy to construct a decision tree if the
tree structures and the parameters of the other components are
fixed. However, as the tree structures of the additive compo-
nents interact with each other to compose the output probabili-
ties, the multiple decision trees for additive components should
be constructed simultaneously. The four steps in the procedure
for the proposed clustering algorithm are as follows:

Step 1. Set the number of trees N to one, and create the root
node of the first tree and compute its likelihood.

Step 2. Evaluate questions at all leaf nodes of all trees and a
root node of a new tree. The likelihood after the node is
split is calculated by estimating the ML parameters of all
leaf nodes of all trees.

Step 3. Select the pair of a node and question that gives the
maximum likelihood, and split the node into two by ap-
plying the question. The model parameters of all leaf
nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is be-
low a predefined threshold, stop the procedure. Other-
wise, go to Step 2.

There are some differences from the conventional cluster-
ing algorithm in the procedure: first, in Step 2, the ML estimates
of all parameters of all trees are required to evaluate questions
at a candidate node. In the conventional clustering, the ML pa-
rameters of the two nodes that are split can be obtained inde-
pendently of the other nodes. However, in the proposed model,
the change of likelihood before and after a node is split is cal-
culated not only with the parameters of the split nodes but also
the parameters of the other trees. For the same reason, the like-
lihood of a candidate node is affected by splitting other nodes
in the additive structure models. Therefore, all questions should
be re-evaluated at all leaf nodes after a node is split.

It can be seen that the proposed model, which is restricted
to have a single tree, is equivalent to the conventional decision
tree based context clustering. If all trees only have two node
(one question is applied), the proposed model is equivalent to a
linear regression model. Thus, the proposed model can be re-
garded as an intermediate model between decision tree based
context clustering and a linear regression model, and it includes
them as special cases. Furthermore, the derived algorithm can
extract additive components which independently affect acous-
tic features and automatically determine an appropriate number
of additive components.

3. Computational complexity reduction in
the training algorithm

In the context clustering for multiple decision trees, the ML pa-
rameters of all leaf nodes need to be simultaneously estimated.
Moreover, all questions should be re-evaluated at all leaf nodes
after a node is split. Therefore, it is necessary to use an enor-
mous amount of computational complexity when extracting the
additive structure.

3.1. Computational complexity reduction by covariance pa-
rameters tying

In the additive structure models, mean parameters can be analyt-
ically estimated. However, as it is difficult to analytically solve
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(a) Parameter tying structure built by the conventional technique
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(b) Parameter tying structure built by the proposed technique
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Figure 2: Examples of parameter tying structures built with the
conventional and the proposed technique.

the update of covariance parameters, a gradient method is ap-
plied to each covariance parameter. Furthermore, as Eqs. (11)
and (12) indicate that mean parameters depend on covariance
parameters, the mean and covariance parameters should be re-
estimated until convergence. Therefore, huge computational
cost is involved when extracting additive structures.

In this paper, the covariance parameter tying is applied to
the additive structure models. It has been reported that mean pa-
rameters are relatively more important than covariance param-
eters for the quality of HMM-based speech synthesis [10]. The
impact on speech quality in the additive structure models caused
by the covariance parameter tying would also be small. Fig-
ure 2 shows examples of parameter tying structures built with
the conventional technique (Figure 2(a)) and the proposed tech-
nique (Figure 2(b)). By tying covariance parameters, the mean
parameters can be updated independently of the covariance pa-
rameters and iterative updates are not required. Using the tied
covariance parameter Σg , the Q-function with respect to the
output probability distribution (Eq. (4)) can be rewritten as

L = −1

2

X
c∈C

T̃c

»
K log 2π + log |NΣg|

+Tr
n

(NΣg)−1
“
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
”o–

(15)

The first partial derivative of Eq. (15) with respect to Σg can be
written as

∂L
∂Σg

= −1

2

X
c∈C

T̃c

»
Σ−1

g − N−1Σ−1
g

n
Σ̃c + (μc − μ̃c) (μc − μ̃c)

�
o

Σ−1
g

–
(16)

By setting Eq. (16) to 0, Σg is analytically calculated as fol-

Component 1

Component 2
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yes
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Influence of splitting

Figure 3: Example of splitting a leaf cluster of a tree.

lows:

Σg = N−1

 X
c∈C

T̃c

!−1

·
X
c∈C

T̃c

n
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
o

(17)

the log likelihood L after the parameters are estimated can be
written as

L = −1

2

X
c∈C

T̃c {K log 2π + log |NΣg| + K} (18)

3.2. Computational complexity reduction with matrix in-
version lemma

Since the size of G depends on the sum of all leaf nodes of all
trees in Eq.(14), the computational complexity to solve the lin-
ear equations becomes enormous. However, when a leaf cluster
of a tree is split in the additive structure models, the statistics
only change in contexts related to newly created nodes by split-
ting. Figure 3 shows an example of how a leaf cluster of a tree is
split. Since G only becomes dependent on T̃c due to covariance
parameter tying, many elements of G do not change at the same
node even if a different question is applied. The computational
complexity can significantly be reduced by using this property.

Assuming that G′ is obtained with one question, and G′′

is obtained with another question at the same node, G′′ can be
represented by using G′ as follows:

G′′ = G′ + G(d)
(19)

where G(d) is a symmetric matrix and can be written as

G(d) =2
66666666664

0 g
(d)
1,m g

(d)
1,m+1 0...

...

g
(d)
m,1 . . . g

(d)
m,m g

(d)
m,m+1 . . . g

(d)
m,M

g
(d)
m+1,1 . . . g

(d)
m+1,m g

(d)
m+1,m+1 . . . g

(d)
m+1,M

0
...

... 0
g
(d)
M,m g

(d)
M,m+1

3
77777777775

(20)
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Figure 4: Relations between G′ and G′′.

where m and m + 1 are the number of leaf nodes created by
splitting. G(d) is represented by M × 4 and 4×M matrices as
follows:

G(d) = BC (21)

B =
ˆ

B1 B2 B3 B4

˜

=

2
666666666666664

g
(d)
1,m g

(d)
1,m+1 0 0

...
...

...
...

g
(d)
m−1,m g

(d)
m−1,m+1 0 0

1
2
g
(d)
m,m

1
2
g
(d)
m,m+1 1 0

1
2
g
(d)
m+1,m

1
2
g
(d)
m+1,m+1 0 1

g
(d)
m+2,m g

(d)
m+2,m+1 0 0

...
...

...
...

g
(d)
M,m g

(d)
M,m+1 0 0

3
777777777777775

(22)

C =
ˆ

B3 B4 B1 B2

˜�
(23)

Figure 4 shows relations between G′ and G′′. Assuming that
G′−1 is given, G′′−1 can be calculated as follows:

G′′−1 = (G′ + BC)−1

= G′−1 − G′−1BΨCG′−1
(24)

where Ψ = (CG′−1B + I)−1 and I is the identity matrix.
Eq. (24) is derived using the following matrix inversion lemma.

(G′−1 − G′−1BΨCG′−1)(G′ + BC)

= I + G′−1BC − G′−1BΨC − G′−1BΨCG′−1BC

= I + G′−1B
˘
C − Ψ(I + CG′−1B)C

¯
= I + G′−1B

`
C − ΨΨ−1C

´
= I (25)

The size of matrix Ψ is 4 × 4 in Eq. (24); therefore, it can sig-
nificantly reduce the computational complexity in comparison
with directly calculating the inverse of G′′.

In the context clustering, this algorithm can be applied to
the likelihood calculation of questions at the same leaf node.
The matrix G′−1 is calculated from the first question using the
Moore-Penrose inverse, and the likelihood of other questions
can then be calculated by using Eq. (24) with lower computa-
tional complexity.
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Figure 5: Mean opinion scores for synthesized speech with
95% confidence intervals otained by conventional and proposed
methods.

4. Experiment
4.1. Experimental conditions

Subjective listening tests were conducted to evaluate the effec-
tiveness of the proposed method. The 200 sentences of the pho-
netically balanced 503 sentences from the ATR Japanese speech
database B-set, uttered by male speaker MHT, were used for
training. The 53 sentences were used for evaluation. The speech
data was down-sampled from 20 to 16 kHz and windowed at a
frame rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and F0 feature
vectors. The mel-cepstral coefficients were obtained from
STRAIGHT spectra [11]. The spectrum parameter vectors con-
sisted of 39 STRAIGHT mel-cepstral coefficients including the
zero coefficient and their delta and delta-delta coefficients. The
excitation parameter vectors consisted of log F0 and its delta
and delta-delta.

A five-state, left-to-right, no-skip structure with diagonal
covariance matrix was used for the hidden semi-Markov model.
We applied additive structure modeling to only the spectrum
parameters, and the excitation parameters were modeled with
conventional multi-space probability distributions HMMs [12].
The proposed and the conventional methods has the same ty-
ing structures for the excitation parameters. The MDL criterion
was used to determine the size of the decision trees. The max-
imum number of decision trees in each state was varied from
one to three. When using one additive component, the proposed
method has only one decision tree for each HMM state the same
as the conventional method. However, it is still different from
the conventional one because of covariance parameter tying.

Ten subjects participated in these listening tests. Twenty
sentences were randomly selected from the 53 sentences for
each subject. The subjects were asked to rate the naturalness
of the synthesized speech on a scale from one (completely un-
natural) to five (natural). All experiments were carried out using
headphones in a soundproof room .

4.2. Experimental results

Figure 5 plots the experimental results. In the figure, Base-
line is the conventional method and Comp1 to Comp3 respec-
tively represent the proposed method with one to three additive
components. First, it can be seen from the figure that Base-
line and Comp1 obtained almost the same score. This indicates
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Figure 6: Number of leaf clusters for each state.

that the impact of speech quality by tying covariance parame-
ters is small for HMM-based speech synthesis. Next, it can also
be seen that Comp2 and Comp3, i.e., additive structure models,
achieved better subjective scores than the other methods Base-
line and Comp1. In addition, the scores tend to increase with an
increase in additive components. This means that the additive
structure is more appropriate than the conventional method and
it can represent complicated context dependencies.

Figure 6 is a bar chart of the number of leaf clusters for
each state. The total number of leaf nodes in all trees is shown
since the additive structure models have multiple decision trees.
When the conventional and proposed methods have the same
number of leaf clusters, the proposed method only has half the
number of parameters because of covariance parameter tying.
Figure 6 shows that Comp1 has more leaf clusters than Baseline.
This means that decision trees with respect to the mean param-
eter are constructed by tying covariance parameters. Similar
to Comp1, the number of leaf clusters increases in the additive
structure models with multiple decision trees. This is because
the MDL criterion was used to determine the size of decision
trees and decision trees ware constructed to represent variations
in acoustic features by only using mean parameters in the addi-
tive structure models. Although the size of decision trees differs
among additive components, all decision trees are split. This
suggests that there is an additive structure in the training data.

5. Conclusions
In this paper, we proposed a spectral modeling technique based
on the additive structure of context dependencies representing
complicated context dependences. Assuming that an acoustic
feature is generated by the sum of additive components, we es-
timated model parameters and extracted additive structures. It
is difficlut to apply this method to HMM-based speech synthe-
sis due to its computational complexity. Tying of covariance
parameters in each state and using the matrix inversion lemma
allowes us to reduce the amount of computational complexity.
Then, spectral modeling which has contextual additive structure
for HMM-based speech synthesis was accomplished. In the ex-
periments, the proposed method outperformed than the conven-
tional method. Experiments on larger datasets will be a future

work.
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