
Space Complexity of Self-Stabilizing Leader Election in
Passively-Mobile Anonymous Agents

Shukai Cai Taisuke Izumi Koichi Wada

Nagoya Institute of Technology
February 11, 2009

Abstract

A population protocol is one of distributed computing models for passively-mobile sys-
tems, where a number of agents change their states by pairwise interactions between two
agents. In this paper, we investigate the solvability of the self-stabilizing leader election in
population protocols without any kind of oracles. We identify the necessary and sufficient
condition to solve the self-stabilizing leader election in population protocols from the aspects
of local memory complexity and fairness assumptions. This paper shows that under the as-
sumption of global fairness, no protocol using only n− 1 states can solve the self-stabilizing
leader election in complete interaction graphs, where n is the number of agents in the system.
To prove this impossibility, we introduce a novel proof technique, called closed-set argument.
In addition, we propose a self-stabilizing leader election protocol using n states that works
even under the unfairness assumption. This protocol requires the exact knowledge about the
number of agents in the system. We also show that such knowledge is necessary to construct
any self-stabilizing leader election protocol.

1 Introduction

A passively-mobile system is a collection of agents that move in a certain region but have no
control over how they move. Since the communication range of each agent is quite small com-
pared to the size of the region, two agents can communicate only when they are sufficiently
close to each other. Passive mobility appears in many real systems. A representative example
is a network of smart sensors attached to cars or animals. In addition, a certain kind of natural
computing, such as synthesis of chemical materials and complex biosystems, can be included
in passively-mobile systems by regarding chemical interactions as communications. While these
systems are different in the view of applications, all of them aim to a common goal, that is, how
to organize and manipulate computing entities that are uncontrollable in the sense of mobil-
ity. Then, it is reasonable to think about some common principles underlying them. Revealing
such principles from the aspect of theoretical computer science is an interesting and worthwhile
challenge.

Recently, as a model for such passively-mobile systems, population protocols are introduced [1,
2, 7]. A population protocol consists of a number of agents, to which some program (protocol) is
deployed. Following the deployed protocol, each agent changes its state by pairwise interactions
to other agents (that is, two agents come closer to each other in the region and update their
states by exchanging information). Typically, the capability of each agent is limited. It is
often assumed that each agent has only constant-space memory and no identifier. A population
protocol is a good abstraction that captures the feature of passively-mobile systems in spite
of its mathematical simplicity. Therefore, in the last few years, it is receiving much attention
among the community of the distributed computing [3, 4, 5, 6, 8, 10].

Population protocols are originated by Angluin et al. [1], which investigates a class of pred-
icates that can be computed autonomously over population protocols. Its primary result is

1

that any predicate in semilinear class (which includes the comparison, modulo and threshold
predicates) can be computed on population protocols by proposing a protocol that stably com-
putes any semilinear predicate. In the following paper [4], it is also shown that any computable
predicate by population protocols belongs to semilinear, that is, semilinear is the necessary
and sufficient class of the predicates that can be computed on population protocols of all-pairs
interaction graphs (complete interaction graphs).

The protocols proposed in the above paper are assumed to start from a properly-formed
system configuration. In this sense, it is not a self-stabilizing protocol: Self-stabilization is one
of the desirable properties of distributed computations, which ensures that the system necessar-
ily converges to the desired behavior regardless of its initial configuration. Self-stabilization on
population protocols is considered in a number of previous papers [2, 9, 11], which have inves-
tigated the solvability of the self-stabilizing leader election (SS-LE) problems under some kinds
of assumptions. The general model of population protocols introduces an interaction graph,
which specifies the possibility of communication between two agents. The above papers show
the solvability and unsolvability of SS-LE for specific classes of interaction graphs such as com-
plete graphs, rings, rooted trees, directed acyclic graphs, and so on. Unfortunately, it is easily
shown that SS-LE is almost impossible in general. Thus, the above papers also consider some
additional (but reasonable) assumptions to make SS-LE solvable by introducing several notions
extending the computational power of population protocols: global fairness and leader detector
oracle Ω?. Intuitively, global fairness guarantees the occurrence of any possible transition and
thus it prevents livelock caused by some looped execution. The leader detector oracle is an
abstracted virtual device that informs the existence and inexistence of a leader to all the agents
in the system. Both of the assumptions give some additional computational power to population
protocols, which is sufficient to solve SS-LE in some cases, but insufficient in some other cases.
However, the complete characterization of system assumptions making SS-LE solvable is un-
known. Currently, only a few results about the solvability of SS-LE on the complete interaction
graphs are known:

1. Assuming global fairness and the oracle Ω?, there exists an SS-LE protocol where each
agent uses only one bit of memory [11].

2. Under the assumption of unfairness and no oracle, no uniform protocol can solve SS-LE,
where ”uniform protocol” means the one that works correctly on the system with arbitrary
number of agents (that is, uniform protocols do not use any information about the total
number of agents) [2].

3. Without Ω?, any protocol using only one bit of memory cannot solve SS-LE even if we
assume global fairness [9].

In this paper, we also investigate the solvability of SS-LE on population protocols. In
particular, we are interested in self-stabilizing leader election protocols in complete interaction
graphs without oracles. The primary contribution of our work is to identify the necessary and
sufficient conditions such that SS-LE becomes solvable from the aspects of local memory space
and fairness assumptions. More precisely, this paper shows the following three results:

1. Without oracles, there is no deterministic or probabilistic SS-LE protocol using only n−1
states of memory even if we assume global fairness, where n is the number of agents in the
system.

2. There exists an SS-LE protocol that uses n states (dlog2 ne bits) of memory and correctly
works under the unfairness assumption.

3. Even if we assume global fairness, without oracles, there is no uniform SS-LE protocol in
the strong sense. That is, any SS-LE protocol working correctly on the population of n
agents does not work on the population of n − 1 agents.

2

The third result implies that the upper bound for the number of agents is not sufficient
knowledge to design SS-LE protocols, and thus it justifies the fact that the exact value of n is
necessary to construct the protocol shown in the second possibility result. It should be also noted
that the first impossibility result is quite nontrivial and interesting. Global fairness is reasonable
but sufficiently strong so that it can break essential ideas leading previous impossibility results.
Actually, under the global fairness assumption, we cannot apply many of existing techniques to
prove the impossibility. In this paper, we resolve such difficulty by introducing a novel proof
technique based on closed sets. Our key idea is to identify the set of states that never creates
the leader state. While this paper utilizes this technique to show the impossibility of SS-LE,
we believe that it can be applied to more broader cases, including other problems and other
graph classes, to prove the impossibility under the global fairness assumption. Moreover, we
can show that the three results are all correct for both the traditional two-way protocol and the
one-way protocol (the two-way protocol allows that two agents can change both of their states
in the interaction, but the one-way one does not). That is, the impossibility result holds in the
stronger two-way protocol and the possibility result even holds in the weaker one-way protocol.

1.1 Related Work

Leader election on population protocols are first introduced in [3]. In [2], a non-uniform popula-
tion protocol is given to solve the self-stabilizing leader election problem in directed rings of odd
size under the assumption of global fairness. The authors also show that there is no uniform
self-stabilizing leader election protocol for any non-simple class of interaction graphs, where a
class C is non-simple if any graph in C can be partitioned into two subgraphs belonging to C.

In [11], Fischer and Jiang introduce eventual leader detector Ω? to realize uniform self-
stabilizing leader election protocols. They give a uniform SS-LE protocol for complete graphs
under the weaker fairness assumption than global one (it is called local fairness and the most
usual assumption of fairness) using only 1 bit of memory, and a uniform self-stabilizing leader
election protocol for directed rings under the assumption of global fairness. It is also shown that
there exists no uniform self-stabilizing leader election protocol for directed rings under the local
fairness assumption. All the above results are obtained with the help of Ω?.

Canepa and Gradinariu [9] investigates the feasibility of one-bit protocols: They give a
uniform one-bit SS-LE protocol for rooted trees and acyclic graphs with only one sink-node.
Also they give a probabilistic protocol for arbitrary graphs under local fairness. Moreover, they
prove Ω? is necessary to realize uniform one-bit SS-LE protocols for any class of interaction
graphs. All the results in the paper are under the assumption of using 1 bit of memory and with
the help of Ω?.

2 Model and Definitions

We introduce the formal definitions of population-protocol considered in this paper.
A population consists of n agents, which can change their own states by interacting with

each other. In the general model of population protocols, all pairs of agents do not necessarily
have direct interactions. The possibility of direct interactions between two agents is specified
by interaction graphs: An interaction graph G=(V, E) is a simple directed graph where each
vertex, labeled by v1, v2, v3, · · ·, corresponds to each agent. The edge from vi to vj implies that
the agent corresponding to vi can interact to the agent for vj , where vi is the initiator and vj is
the responder. Throughout this paper, we assume that the interaction graph is complete. That
is, any pair of agents is possible to interact with each other. For convenience, we use undirected
complete graphs for the bidirectional completed graphs in what follows.

A protocol P = (Q, δ) is a pair of a finite set Q of states and a transition function δ that
maps each pair of states Q × Q to a nonempty subset of Q × Q. The transition function,
and the protocol, is deterministic if δ(p, q) always contains just one pair of states. Otherwise

3

the protocol is called a probabilistic protocol. For convenience, in this paper, we only consider
deterministic protocols, and thus we simplify the definition of a transition function to a mapping
δ : Q×Q → Q×Q (i.e., the states after each transition is uniquely determined). If the two agents
involved in an interaction can learn the states of each other and change their states depending
on the state of the other, we call the protocol a two-way one. By contrast, if the initiator has no
chance to change its state and only the responder can change its state after an interaction, we
call the protocol a one-way one. In the one-way protocol, for any transition r : (p, q) → (p′, q′),
p′ = p for any p ∈ Q. Notice that a transition does not necessarily cause either of the nodes to
change its state. That is, a transition (p, q) → (p, q) is possible. We define silent transitions as
ones that do not change any state. The transition that is not silent is said to be active.

From the definition of the two-way and the one-way protocols, it is obviously that the one-
way protocol is a special case of the two-way one. Thus the computational power of the one-way
protocol is not stronger than the computational power of the two-way one. More precisely, the
one-way protocol is also correct for the two-way one, and an unsolvable problem for the two-way
protocol is still unsolvable for the one-way protocol.

Formally, a configuration C is an n-tuple (q1, q2, q3, · · · , qn) of states where each entry qk

corresponds to the state of the agent vk. The state of an agent vk at the configuration C is
denoted by C(vk). Letting C be a configuration, and r be a transition that maps (p, q) to (p′, q′),
we say that r is enabled in C if there exists an edge (vi, vj) such that C(vi) = p and C(vj) = q.
Then, we say that C can go to C ′ via r, denoted by C

r→ C ′, if C ′ is the configuration that is
obtained by changing the states of vi and vj to p′ and q′, respectively. We simply say that C

can go to C ′, denoted C → C ′, if C
r→ C ′ holds for some transition r. We define executions in

population protocols as follows:

Definition 1 (Execution) Letting P = (Q, δ) be a protocol, an execution of P is an infinite
sequence of configurations and transitions C0, r0, C1, r1, · · · satisfying

1. for each i, ri is a transition of δ and Ci
ri→ Ci+1, i = 0, 1, · · · holds , and

2. ri is active for infinitely many i unless all the enabled transitions are silent.

Notice that the second condition ensures the progress of protocols (i.e., it excludes the
meaningless executions such that only silent transitions appear).

2.1 Fairness Assumption

Fairness is an assumption that restricts the behavior of systems. Formally, it is defined as a
constraint for executions. In this paper, we introduce the following fairness assumptions [11]:

Definition 2 (Global fairness assumption G) An execution E = C0, r0, C1, r1, · · · is glob-
ally fair: for every C and C ′ such that C → C ′, if C = Ci for infinitely many i, then Ci = C
and Ci+1 = C ′ for infinitely many i.

Intuitively, global fairness guarantees the possibility of the occurrence of any possible exe-
cution and thus it prevents the occurrence of livelock caused by some looped execution.

By contrast to global fairness, the assumption called local fairness is usually used. The
local fairness only guarantees that each transition can be taken infinitely often is actually taken
infinitely often.

In addition to the above, we also define unfairness assumption U, which requires no assump-
tion to executions. Given a protocol P and a fairness assumption X ∈ {G, U}, we define EX(P)
be the set of all executions of P satisfying the fairness assumption X.

4

2.2 Self-stabilization, Legitimate Configurations

Self-Stabilizing protocols guarantee the convergence to their desired behavior starting from any
initial configuration. In this paper, we consider the self-stabilizing leader election over popula-
tions, which requires that the system eventually reach a legitimate configuration, where exactly
one process keeps a special state, called leader state, and no other leader state is generated in any
following execution. Formally, the self-stabilizing leader election problem is defined as follows:

Definition 3 (Self-stabilizing leader election) A protocol P solves the self-
stabilizing leader election under the fairness assumption X if there is one special state s and
any execution E in EX(P) satisfies that there exist some i and vk such that for any j ≥ i and
h 6= k , Cj(vk) = s and Cj(vh) 6= s hold.

3 Impossibility of Self-Stabilizing Leader Election Using n − 1
States

In this section, we will show that without the help of Ω?, any self-stabilizing leader election
two-way protocol is impossible in a complete network graph under global fairness using only
distinct n − 1 states.

3.1 Difficulty of Proving Impossibility under Global Fairness

In this subsection, we explain why it is a quite nontrivial and difficult task to prove impossibility
under global fairness. We show that existing techniques used to prove the impossibility do not
work under the global fairness assumption.

Roughly speaking, most of existing impossibility proofs for SS-LE are roughly divided into
two types: One is the argument by illegal loop, and the other one is that by partition. We
explain the details for both of them:

Illegal loop argument: The key idea of the illegal loop argument is to find a looped execu-
tion including a non-legitimate configuration. The infinite execution repeating the loop never
converges to legitimate configurations, which contradicts the self-stabilization property. This
kind of arguments is widely used in almost all areas of distributed computation. However, it
cannot be applied to prove the impossibility under global fairness because the global fairness as-
sumption does not allow the system to periodically repeat the same behavior: If the system does
such looped behavior, any configuration in the loop appears infinitely often. Then, under global
fairness, it is necessarily guaranteed that the system could escape from the looped execution if
there exists a transition which can lead the system to exit from the looped execution.

Partition argument: Partition argument is the technique using the fact that it is difficult
to break a certain kind of symmetry. The basic idea of the partition argument is to divide
a given n-node interaction graph into two same subgraphs with size n/2 (in general, division
to three or more subgraphs can be considered). By their symmetry, it is possible to show
the existence of the execution that converges to the configuration where the two subgraphs
independently and separately elect a leader respectively. Thus, it contradicts the uniqueness of
leaders. However, this argument can be applied only to the case of uniform protocols because
non-uniform protocols do not guarantee to elect one leader in the divided subgraph (that is,
it is not guaranteed that the protocol works correctly on n/2 agents). Moreover, to make an
execution where two subgraphs independently elect a leader respectively, we have to prohibit the
interactions between the two subgraphs. However, if some interaction is enabled on an edge that
joints two subgraphs infinitely often, it must occur necessarily under global fairness. We cannot

5

eliminate the possibility that such interaction breaks the symmetry, and the system converges
to the legitimate configuration.

To circumvent the problems which the above two arguments hold, in the following subsection,
we newly introduce a proof technique based on closed sets. Intuitively, the closed set argument
finds a set of states such that the interactions between any pair of two states in the set create
no state out of the set. The key of our proof is to find a closed set excluding the leader state
and obtain a contradiction.

3.2 Impossibility Using n − 1 States

First, we introduce several notions necessary for the following proofs.
For convenience of the proof for the impossibility, we extend the definition of a configuration.

A configuration C is an n-tuple of states of agents or ⊥, where ⊥ is a special value that masks
the state of the corresponding agent. For example, C = (⊥, q2, q3, · · · , qn) is also a configuration.
The size of a configuration C is the number of non-⊥ values appearing in C, and it is denoted
by |C|. A subconfiguration C ′ of a configuration C is an n-tuple obtained by replacing several
entries in C by ⊥. For example, letting C = (a, b, d, e) be a configuration, C ′

1 = (a,⊥, d, e),
C ′

2 = (⊥,⊥, d,⊥), and C ′
3 = (⊥, b, d,⊥) are subconfigurations of C whose sizes are 3, 1, and

2, respectively. In addition, C ′
2 is also a subconfiguration of C ′

1 and C ′
2 itself, but C ′

3 is not a
subconfiguration of C ′

1.
A trace is a sequence of transitions. We say a trace T = r1, r2, · · · , ri is applicable to a

configuration C0 if there exists a sequence of configurations C0, C1, · · · , Ci such that C0
r1→ C1

r2→
C2

r3→ · · · ri→ Ci. We define the length of a trace T as the number i of transitions appearing in
T . For a configuration C and a trace T applicable to C, we define σT (C) as the configuration
resulted by applying T to C. If C ′ = σT (C) holds, we often use the notation C

T→ C ′.
A configuration C ′ is reachable from a configuration C, denoted by C

∗→ C ′, if there exists
a trace T such that C

T→ C ′. We say a configuration C can generate state p, if there is a
configuration C ′ that is reachable from C and contains p. See Figure 1. For a set G of states,

Figure 1: A configuration C can generate state p

if a configuration C cannot generate any state in G, we say C cannot generate G. Letting
P = (Q, δ) be a population protocol, a subset G of Q is called a closed set of P if for any
transition r : (p, q) → (p′, q′) in δ, p, q ∈ G implies p′, q′ ∈ G.

We first show three fundamental lemmas obtained from the above definitions. These proofs
are omitted due to lack of space.

Lemma 1 Let C ′ be a subconfiguration of C. If a trace T is applicable to C ′, it is also applicable
to C, and σT (C ′) is a subconfiguration of σT (C).

Lemma 2 If a configuration C cannot generate a set of states G, then for any configuration C ′

such that C
∗→ C ′, C ′ cannot generate G.

6

Lemma 3 If a configuration C cannot generate a set of states G, any subconfiguration of C
cannot generate G.

The following lemmas are the keys of our impossibility result.

Lemma 4 Let G (|G| < n − 1) be a set of states, and C (|C| > 0) be a configuration that
cannot generate G. Then, either of the following conditions holds:

1: The complement of G (denoted by Ḡ) is closed.

2: There exist a configuration C ′ and a superset G′ of G such that |C| − 1 ≤ |C ′| and
|G| + 1 = |G′| hold, and C ′ cannot generate G′.

Proof We prove this lemma by showing that the condition 2 necessarily holds if the complement
of G is not closed. Assuming that Ḡ is not closed, there exists a transition r : (p, q) → (p′, q′)
such that p, q 6∈ G and at least one of p′ and q′ ∈ G (because if such a transition does not exist,
any interaction of two states in Ḡ results in two states in Ḡ, which implies that Ḡ is closed).
Then we consider the following two cases:

1. One of p and q cannot be generated by C: Without loss of generality, we assume that C
cannot generate p. Then, C cannot generate {p} ∪ G. Therefore, we obtain C ′ = C and
G′ = G ∪ {p} satisfying the condition 2.

2. Both of p and q can be generated by C: Since C can generate p, there exists a configuration
D such that C

∗→ D and p ∈ D. We consider the subconfiguration D′ that is obtained
by replacing the entry of p in D by ⊥. Then, if we can show that D′ cannot generate
q, the lemma is proved by letting C ′ = D′ and G = G ∪ {q}. In the following, we show
it actually holds: Suppose for contradiction that D′ can generate q. Then, there exists a
trace T that makes D′ reach a configuration with q. By Lemma 1, T is also applicable
to D, and σT (D) includes both p and q. This implies that C can reach the configuration
σT (D) that includes both p and q. Then, It is clear that C can generate both p′ and q′

because the transition r is enabled in the configuration σT (D). However, either of p′ or q′

belongs to G and thus it is contradict to that C cannot generate G.

2

Lemma 5 Any self-stabilizing leader election protocol P has no closed set excluding its leader
state.

Proof Suppose for contradiction that P has a closed set H which excludes its leader state in
P . Consider an initial configuration C whose states are all in H. Since H is closed, so C can
only generate the states in H. Because the leader state is not in H, C cannot generate a leader
state. This implies that any execution starting from C cannot reach a configuration with leader.
It is contradiction. 2

By using the above two lemmas, we can show the impossibility of self-stabilizing leader
election using only n − 1 states.

Theorem 1 There is no self-stabilizing leader election protocol that uses only n − 1 states.

Proof We assume for contradiction that a self-stabilizing leader election protocol P which
uses only distinct n − 1 states. The n − 1 states of the protocol P are denoted by Q =
{s0, s1, s2, · · · , sn−2}, where s0 is the leader state. The set of all transitions constituting P
is denoted by δP .

Letting C be a legitimate configuration, that is, exactly one leader exists in it and another
leader is not newly created in any following execution. This implies that the subconfiguration C ′

7

Figure 2: Prove the theorem by contradiction

which obtained by masking the leader state s0 in C cannot generate the leader state s0. Thus,
letting C0 = C ′ and G0 = {s0}, C0 cannot generate G0, and it holds that |C0| = n − 1 and
|G0| = 1. By Lemma 5, there is no closed set excluding s0 in P . Thus, the complement of G0

is not closed. Then, by Lemma 4, we can obtain a configuration C1 and a superset G1 of G0

satisfying that |C1| ≥ |C0| − 1 = n − 2, |G1| = |G0| + 1, and C1 cannot generate G1. Similarly,
we can also obtain Ci+1 and Gi+1 from Ci and Gi by applying Lemma 4 repeatedly. Finally,
after applying the lemma n − 2 times, we have a configuration Cn−2 and a set Gn−2 satisfying
|Cn−2| ≥ 1, |Gn−2| = n − 1 and Cn−2 cannot generate Gn−2. See Figure 2. Then, Gn−2 is
equivalent to Q, and thus Cn−2 cannot generate any state. However, Cn−2 is not empty, which
implies a state sx (0 ≤ x ≤ n − 2) in Cn−2 can be generated by Cn−2. This is contradiction. 2

Since the one-way protocol is a special case of the two-way one, the impossibility result holds
even for the one-way protocol. And any impossibility result for the two-way protocol also holds
in the one-way one.

Remarks 1 Noting that our proof does not request any constraint to the transition function.
That means the impossibility result also holds for a probabilistic protocol. Thus, our impossibil-
ity result can be extended as follows: Without oracles, there is no deterministic or probabilistic
SS-LE protocol using only n − 1 states of memory even if we assume global fairness.

4 Leader Election Protocol Using n States

In this section, we will show a self-stabilizing leader election one-way protocol which uses distinct
n states. The n states of the protocol are denoted by Q = {s0, s1, s2, · · · , sn−1}, where s0 is
the leader state. The proposed protocol is quite simple: When two agents with the same state
interact, the responder will increment the subscript of its state (modulo n). That is, when the
state of the responder is si, it will changed to be si+1, i = 0, 1, · · · , n − 2, exceptionally, sn−1

will be changed to s0.

Protocol 1 (si, si) → (si, s(i+1) mod n), (i = 0, 1, · · · , n − 1)

8

In what follows, we show that the above protocol correctly elects a unique leader. First, we
introduce several notions necessary for the proofs. Throughout this section, we use another
representation of each configuration C = (m0(C),m1(C), · · · ,mn−1(C)), where mk(C) (0 ≤ k <
n) is the number of agents having the state sk in C. We also define #0(C) to be the number of
mk(C) (k = 0, 1, · · · , n − 1) such that mk(C) = 0 holds.

Lemma 6 A configuration C with #0(C) = 0 is a legitimate configuration.

Proof From the definition of #0(C), we know #0(C) = 0 means: for every sk (k = 0, 1, · · · , n−
1), there exists an agent whose state is sk in C. Because the number of agents equals to
the number of states, so the states of every agents are different. Therefore, in any following
execution, there is only one leader state s0 in the configuration and the state of each agent will
not be changed. 2

The correctness of the protocol is proved by the argument based on monotonically-decreasing
function, which is a standard technique for proving the correctness of self-stabilizing protocols.
We first define the distance between two states.

Definition 4 (Distance Function) For any configuration C, the distance dk,j(C) from the
state sk to sj is defined as follows:

dk,j(C) =

 0 (mj(C) 6= 0 or k = j)
(j − k)(mk(C) − 1) (0 ≤ k < j)
(j + n − k)(mk(C) − 1) (j < k ≤ n)

The total distance dj(C) of state sj in C is the sum of the distances from any state to sj ,
that is, dj(C) = Σn−1

k=0dk,j(C).

From the definition, a pair of different states (sk, sj) can have a non-zero distance only if
mj(C) = 0 and mk(C) > 1. That is, if the distance from sk to sj for a configuration C is
non-zero, no agent has the state sj and two or more agents necessarily have sk. Then, the value
dk,j(C) means how many interactions are necessary to create an agent with the state sj from
an agent having sk in C. The distance dk,j(C) is obtained by multiplying the surplus number
of agents having the state sk by such the necessary number of interactions.

The following lemmas show that if the total distance of some state becomes zero, it remains
zero in any following execution.

Lemma 7 If mk(C) > 0 (0 ≤ k < n) holds in a configuration C, then mk(C ′) > 0 in C ′ holds
for any configuration C ′ such that C

∗→ C ′.

Proof Any active interaction of the Protocol 1 reduces the number of mk(C) by exactly one
for some k. In addition, to enable the interaction that reducing mk(C), it is necessary that at
least two agents have state sk. So no interaction reduces mk(C) from 1 to 0. This implies that
mk(C) never becomes zero after it becomes more than zero. 2

Lemma 8 Let E be any unfair execution of Protocol 1, (i.e., E ∈ EU (1)). If mj(C) = 0 holds
for some j in a configuration C which appears in E, a configuration C ′ such that mj(C ′) > 0 is
reachable from C in E.

Proof Clearly, in C ′, the total distance of the state sj is zero. In addition, for any configuration
C ′′, if mj(C ′′) = 0, two or more agents have the same state in C ′′, which implies that as long as no
agent has the state sj , some active interaction eventually occurs (notice that it holds even under
the unfairness assumption). Thus, it is sufficient to show that any active interaction decreases
the total distance of sj by one. Let two agents having state sk interact at a configuration

9

C1, and C2 be the resultant configuration of the interaction. Then, except for i = k, k + 1,
di,j(C1) = di,j(C2) necessarily holds because mi(C1) = mi(C2) holds for any i other than k
and k + 1. In addition, by the transition, the number of agents with sk decreases by one, and
the number of agents with sk+1 increases by one. Thus, by simple calculation, we can obtain
dk,j(C1) + dk+1,j(C1) = dk,j(C2) + dk+1,j(C2) + 1. This implies that dj(C1) = dj(C2) + 1 holds,
which means any active interaction decreases the total distance of sj by one and eventually
mj(C) will increase from 0 to 1. 2

By the above two lemmas, we know that if mj(C) = 0, eventually there exists a configuration
C ′ which is reachable from C such that mj(C ′) > 0. And there is no execution can reduce
mj(C) > 0 to 0. Because the number of agents is the same as the number of distinct states, so
we can show the following corollary.

Corollary 1 For any execution E = C0, r0, C1, r1, C2, · · · ∈ EU (1), there exists i such that
#0(Cj) = 0 holds for any j ≥ i.

Corollary 1 and Lemma 6 directly imply the correctness of the protocol, and we can get the
following theorem.

Theorem 2 Protocol 1 is a self-stabilizing leader election one-way protocol working correctly
under the unfairness assumption, and an arbitrary configuration converges to a legitimate con-
figuration in Θ(n2) active interactions.

5 No Single Protocol for Complete Graphs with Difference Sizes

In Section 4, we give a protocol using n states to solve the self-stabilizing leader election in
a complete graph of size n. In this section, we will show that there does not exist any single
protocol to solve the self-stabilizing leader election in complete graphs with different sizes.

Theorem 3 Letting B be a protocol which can solve the self-stabilizing leader election in com-
plete graphs with size n, then B cannot work correctly in complete graphs with size n − 1.

Proof Consider the legitimate configuration C of a complete graph with size n. Since a new
leader will not be created, so the subconfiguration D which obtained by masking the leader state
in C where |D| = n − 1, cannot generate the leader state. So consider an initial configuration
C ′ = D − {⊥} (a configuration of a complete graph with size n − 1 and whose entries are the
non-⊥ entries in D), from which the leader state will not be generated when using protocol B.
Noting that C ′ is an initial configuration of a complete graph with size n− 1, and from such the
initial configuration, the legitimate configuration will never be reached. Hence, B cannot elect
a leader correctly in complete graphs with size n − 1. 2

The above theorem also shows that even the upper bound for n is not sufficient knowledge
to realize any SS-LE protocol.

6 Conclusion

In this paper, we have shown the necessary and sufficient conditions to the solvability of the SS-
LE in population protocols having no oracles and of complete interaction graphs. The conditions
are characterized by local memory space and fairness assumptions. To prove the impossibility
under global fairness, we introduce a new proof technique using closed sets.

10

References

[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4), pages
235-253, 2006.

[2] Dana Angluin, James Aspnes, Michael J. Fischer, Hong Jiang. Self-stabilizing popula-
tion protocols. In Proc. 9th International Conference on Principles of Distributed Sys-
tems(OPODIS), Vol. 3974 of LNCS, pages 103-117, 2005.

[3] Dana Angluin, James Aspnes, Melody Chan, Michael J. Fischer, Hong Jiang, René Per-
alta. Stably computable properties of network graphs. In Proc. International Conference on
Distributed Computing in Sensor Systems(DCOSS), Vol. 3560 of LNCS, pages 63-74, June
2005.

[4] Dana Angluin, James Aspnes, David Eisenstat. Stably computable predicates are semilinear.
In Proc. 25th Annual ACM Symposium on Principles of Distributed Computing, pages 292-
299, 2006.

[5] Dana Angluin, James Aspnes, David Eisenstat. A simple protocol for fast robust approximate
majority. In Proc. 21st International Symposium on Distributed Computing(DISC), Vol. 4731
of LNCS, pages 20-32, 2007.

[6] Dana Angluin, James Aspnes, David Eisenstat, Eric Ruppert. The computational power of
population protocols. Distributed Computing, 20(4), pages 279-304, 2007.

[7] James Aspnes, Eric Ruppert. An introduction to population protocols. Bulletin of the
EATCS, 93, pages 98-117, October 2007.

[8] Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, Brigitte Rozoy. Self-
stabilizing counting in mobil sensor networks. In Proc. 21st International Symposium on
Distributed Computing(DISC), Vol. 4731 of LNCS, pages 63-76, 2007.

[9] Davide Canepa, Maria Gradinariu Potop-Butucaru. Stabilizing leader election in population
protocols. Unpublished, 2007.

[10] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Eric Ruppert. When birds
die: Making population protocols fault-tolerant. In Proc. 2nd IEEE International Conference
on Distributed Computing in Sensor Systems(DCOSS), Vol. 4026 of LNCS, pages 51-66, 2006.

[11] Michael J. Fischer, Hong Jiang. Self-stabilizing leader election in networks of finite-state
anonymous agent. In Proc. 10th International Conference on Principle of Distributed Sys-
tems(OPODIS), Vol. 4305 of LNCS, pages 395-409, 2006.

11

