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Abstract
This paper reconfirms that  talker identity can be transmitted  
across languages. Talker discrimination was examined in the 
ABX paradigm, where the stimuli A and B were utterances by 
different talkers in the same language and the stimulus X was 
an utterance by either of A or B in  the different language. The 
average hit  rate of this discrimination task was as high as 0.89. 
The mutual distance matrices  were generated using the 
discrimination index, ′d . By applying the multidimensional 
scaling, three-dimensional perceptual spaces were estimated. 
The features related with loudness and spectral centroid had 
high contribution to the perceptual dimensions.
Index Terms: talker discrimination, bilingual corpus, MDS, 
auditory model

1.    Introduction
One of the most challenging tasks for the current text-to-
speech  (TTS) synthesis technology is how to realize a 
reasonable variety in synthesized voices. This variety includes 
the within-speaker variations reflecting the internal state, i.e., 
the emotional  change, or attitude of a specific speaker. It  also 
includes the between-speaker variation reflecting the variations 
among different personalities. The importance of the latter 
variation will increase under multi talker circumstances, such 
as meetings, conferences, and cocktail parties, because speech 
(spoken language) uses the acoustic channel where the mixture 
of the informations  from different sources is unavoidable [1]. 
The voice personality  can provide a signature of the particular 
information source. It helps listeners to dissect the surrounding 
world, that is, to understand “who is talking what”.

 The hidden  Markov model (HMM) based speech synthesis 
technique has been applied to  achieve a TTS system with a 
wide range of talker variation [2, 3]. Compared to the unit 
concatenation speech synthesis system that requires  a full set 
of speech corpus for each talker, the HMM system can 
potentially reduce the cost  to add a new talker by applying the 
speaker adaptation technique. One can apply the extension  of 
this  speaker adaptation technique to corpora of different 
languages [4]. The outline is as follows: (a) training of the 
speaker-independent model for each of the input and output 
languages; (b) mapping the corresponding states between the 
two speaker-independent models with the criterion of 
minimum Kullback-Leibler Divergence; (c) applying the 
conversion matrix of the target  speaker to the mapped output 
average voice.

 In parallel  to the development of this cross-lingual speaker 
adaptation technique, we need to establish the appropriate 
method to evaluate each new system. It is insufficient to check 
simply the standard mean opinion scores on speech quality 
and/or naturalness. At the first stage, it is  necessary to evaluate 

how similar the output voices sound as the target speaker by 
perceptual evaluations. It  is, however, an open question 
whether human listeners can  identify a certain person’s voice 
even if he/she speaks a different language without having any 
experience of hearing him/her speaking that language.

Kuwabara and Ohgushi argued that the perceptual cues for 
speaker identification mainly existed in the first and second 
formant frequencies [5]. If this  is the case, one might predict 
that the cross  linguistic speaker identification would be 
difficult because the first two formants could largely changes 
depending on languages. On the other hand, Kitamura and 
Saitou argued that the cues would be the frequencies of higher 
formants that  stayed reasonably stable against different 
configurations of articulatory systems [6]. Recently, it was 
reported that human listeners could successfully make talker 
discrimination across  languages [7], while it has  also been 
suggested that there exist language dependent cues for speaker 
identification [8].

The first purpose of the current paper was to reexamine 
whether features  characterizing speakers could be transferred 
across languages by using bilingual (English and Japanese) 
speech corpora. The second purpose was to estimate perceptual 
spaces for talker identity and to  explore the underlying 
auditory features.

2.    Perceptual Experiments
The basic paradigm of perceptual experiments was a talker 
discrimination task with the ABX method. Listeners heard a 
triplet of speech tokens in each trial. The triplet wad composed 
of three successive intervals. The intervals of A and B 
contained of utterances spoken by  a pair of different talkers, 
and the interval X contained of an utterance by either A or B. 
The tokens AB and the token X were uttered in  different 
languages. For example, when the tokens AB was uttered in 
Japanese, the token X was uttered in English. 

If the talkers’  characteristics were transmitted across the 
different languages, listeners could make correct judgments 
above the chance level (0.5). The rate of correct responses for 
each combination of talkers was then converted to  the distance 
measure ′d  in the frame work of the theory of signal detection 
[9]. Thus, matrices of mutual  distances between each pair of 
the talkers was obtained, which could be a base data for a 
further multi dimensional scaling and a cluster analysis.

2.1. Method

a. Stimuli
All the stimuli were selected from bilingual corpora which 
contains utterances  of 42 bilinguals, (27 Japanese-English 
bilinguals; 15 Japanese-Chinese bilinguals). Utterances of 27 



Japanese-English bilinguals were used. Since the experimental 
task was the discrimination between talkers, it is  not  so 
informative to ask listeners to distinguish between male voices 
and female voices. Therefore, the experimental sets were 
divided into the male-voice and female-voice tests. For each 
talker, five phrases were selected from the phoneme balanced 
sentences, and five phrases were selected from the public 
address by President Obama.

b. Task and Procedure
Listeners was required to distinguish a pair of talkers by the 
ABX paradigm. In each trial, three intervals, namely, A, B, and 
X were presented. The intervals, A and B, contained of 
utterances spoken by a pair of different talkers, and the interval 
X contained of an utterance by either A or B. The tokens A and 
B and the token X were uttered in different languages. 
Listeners’  task was to selected which  of A and B interval was 
perceived to be spoken by the same talker as X.

Listeners were divided into four groups depending on the 
voice set, male or female, and the language combination, 
Japanese to English, or English to  Japanese. In the Japanese-to-
English language direction, the intervals A and B were in 
Japanese, and the interval X was in English. In the English-to-
Japanese language direction, vice versa.

For each listener, all  the combination of the talkers were 
presented four times, that is  the combination of the order of A 
and B, and whether X was the same talker as A or B. Thus, the 
total number of trials for each listener was 364 (2C14× 4) for 
the male set, and 312 (2C13× 4) for the female voice set, 
respectively. The phrases  were randomly selected from the 10 
phrases to each interval, A, B, and X, with the limitation that 
they should be different from each other. 

Each experimental session lasted about three hours 
including breaks. The experimental session was controlled by a 
laptop computer, Apple MacBook, and the stimuli were 
presented through a headphone, SONY MDR-Z900.

c. Listeners
Forty Japanese listeners without any significant hearing 
problem participated in the experiments. They were divided 
into  four groups: (a) Male voice, English-to-Japanese; (b) Male 
voice, Japanese-to-English; (c) Female voice, English-to-
Japanese; (d) Female voice, Japanese-to-English. The number 
of listeners for each group was ten. They were paid 6,000 yen 
per hour for their participation. 

2.2. Results
Since no prominent difference was observed in the correct rate  
of the choice depending on the language direction, this factor  
and the individual listeners are pooled and the correct choice 
rates for each combination of the talkers are depicted in Fig. 1 
(Fig. 1a for the male voice set; Fig. 1b for the female voice 
set). The average correct rate was 0.89 for the male voice set, 
and 0.89 for the female voice set. The number of talker pair for 
which the correct choice rate was below 0.75 was only three 
for the male voice set, and five for the female voice set.

(a) Male voice set

(b) Female voice set

(a) Male

(b) Female

Figure 1. Correct choice rate in the ABX talker 
discrimination task. (a) The results for the male 
voice set. (b) The results for the female voice 
set.

Figure 2. Three dimensional talker spaces 
estimated by applying MDS to the mutual 
distance matrices of the ABX discrimination 
results. (a) The configuration for the male 
voice set. (b) The configuration for the female 
voice set.



Each correct choice rate can be converted into a 
discrimination index, ′d [9]. These scores are considered as 
perceptual distances between each pair of talkers. Thus, a 
distance matrix was constructed for each  voice set. Non-metric 
multidimensional scaling (MDS) was performed based on 
these scores for each voice set using MATLAB, Statistical 
Toolbox (Mathworks). The distance matrices were also  
submitted to the cluster analysis.

Three dimensional solution was adopted for the MDS. 
Figure 2 depict the perceptual talker spaces: (a) for the male 
voice set; (b) for the female voice set. The color indicates the 
clusters based on the cluster analysis, of which the 
dendrograms were shown in Fig. 3.

3.    Auditory Feature Estimation
Several auditory features were extracted for each speech 
samples to investigate what perceptual  cues were used for 
across language talker discrimination. Auditory Image Model 
(AIM) [10, 11] introduced by Patterson and his colleagues 
were used as a fundamental tools to simulate a plausible 
auditory processing.  

The outline of this simulated auditory processing was: (1) 
bandpass filtering  reflecting the frequency response of the 
outer and middle ear; (2) frequency analysis by the dynamic 
compressive gammachirp filter bank [12] mimicking the 

mechanical filtering by the basilar membrane; (3) half-wave 
rectification simulating the phase locked response of the inner 
hair cell; (4) obtaining time interval histograms by the strobed 
temporal integration.

These processing produced an image of multichannel time 
interval histograms of the auditory neural activity for a certain 
acoustic signal  with a 5 ms frame rate, where the channels 
corresponded  to an array of the center frequencies  of the filter 
bank aligned at an equal distance on the ERB rate. This two 
dimensional  activity pattern can be summarized in two 
directions. First, an “auditory” spectral profile can be obtained 
by  pooling over the time interval. Second, a periodicity profile 
can be obtained by pooling over the center frequency. An 
estimate corresponding to loudness can be obtained by 
integrating the auditory spectral profile. An example of this 
auditory image is displayed in Fig. 4. 

Thus, one can obtain following four estimates for every 
frame, (a) loudness, (b) F0, (c) pitch salience, and (d) spectral 
centroid. The F0 estimate can be calculated by taking the 
inverse of the time interval where the periodicity profile 
reaches a peak. The pitch salience can be calculated by  a 

(b) Female voice set

(a) Male voice set

MaleMaleMale FemaleFemaleFemale

Feature Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3

loudness_mean -3.51 2.45 2.96 3.99 2.40 3.57

loudness_sd 6.09 -0.76 -0.93 -4.39 -2.91 -0.48

F0_mean -0.46 -0.11 -0.81 0.86 -0.22 -0.12

F0_sd -0.77 0.63 0.23 -0.07 0.25 0.23

pitch_salience_mean -1.73 0.29 0.40 0.73 0.31 -0.70

pitch_salience_sd 0.41 -0.28 -0.22 -1.15 -0.12 1.18

centroid_mean 4.38 -2.16 -2.37 -5.65 -2.15 -2.79

centroid_sd -7.01 1.00 1.40 5.84 2.28 -0.22

speaking_rate -0.71 -0.12 -0.28 -0.16 0.15 -0.71

speaking_rate_sd -1.23 -0.04 0.20 0.29 -0.13 -0.29

Figure 3. Dendrograms obtained by the cluster 
analysis for the mutual distance matrices of the 
ABX discrimination results. (a) For the male 
voice set. (b) For the female voice set.

Table 1. Coefficients of multiple regression analyses for 
each dimension by the auditory features.

Figure 4. An example of the auditory image. 
Each line in the center panel depicts the time 
interval histogram for a specific center 
frequency. The profile at the bottom is  the 
periodicity profile. The profile at the right  is 
the auditory spectrum.



normalized peak height of the periodicity profile, where the 
normalization factor is the loudness.

The means and standard  deviations (SDs) of these 
estimates were calculated only for the sonorant segments of 
speech samples. The decision of sonorousness was performed 
by  an arbitrary thresholding based on the loudness and pitch 
salience. Accordingly, each speech sample could be divided 
into  two types of segment, sonorant, or non-sonorant. Only the 
statistics for the sonorants were collected for each talker. Two 
additional statistics were calculated: one was the speaking rate, 
which was defined by the average inter-onset interval  between 
the starting points of consecutive sonorants; the other was its 
standard deviation.

Multiple regression analysis was  performed using these 
auditory feature statistics as explanatory  parameters for each 
coordinate on the first  to third dimension of the male and 
female talker spaces. Tables. 1  shows the results of the 
regression analysis. The tendencies were almost similar 
between the male and female voice. The loudness SD, centroid 
mean, and centroid SD had large contribution  to  the first 
dimension. The loudness mean and centroid mean had  large 
contribution both to the second and to the third dimensions.

4.      Discussion
Although the experiments using two different, i.e., male and 
female, voice sets were done independently, and the voice 
quality can be assumed to be quite different depending on the 
gender, the auditory features used to distinguish talkers 
appeared to be similar. The reason that the second and third 
dimensions had almost similar regression coefficients might be 
that there would be other hidden auditory cues available to 
distinguish talkers. Although the cue used to differentiate 
talkers were similar, it would not  necessarily mean that the 
subjective impression to describe each of dimension was the 
same both for the male and female voice. For example, as the 
results of informal  listening, the first dimension seemed to 
correspond to the degree of matureness for the female voice, 
but it seemed to correspond to the degree of intonation for the 
male voice.

The authors would not insist that  the current experiment 
has revealed all the perceptual cues for the identification of 
talkers. Because of the experimental conditions used in this 
study, the talker identification performed was that for 
unfamiliar talkers. For familiar talkers, different cues might be 
used. However, the cues revealed in the current  study would be 
adequate for the cross lingual  talker adaptation. The usefulness 
of such a system will be demonstrated when we need voices of 
a specific person speaking in a language which that person 
cannot actually use. Imagine that Queen Elizabeth must make 
an address in Japanese.  If she were a fluent speaker of 
Japanese, why don’t we ask her to speak in Japanese? 
Accordingly, the situation to identify a person for the talker 
adapted synthesis is  limited to the case of identifying 
unfamiliar voices, even if the target person is of a certain 
familiarity.

5.     Conclusions
The ABX discrimination task of talkers in  the cross lingual 
situation revealed that the talker identity  could be transmitted 
across languages. The comparison of talker spaces estimated 
for the male and female voice sets in terms of their relation to 
the auditory features indicated that the information on loudness 
and spectral centroid would be the factors which contributed 
mainly for the cross lingual speaker identification.
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