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ABSTRACT

Two techniques, including minimum generation error (MGE) cri-
terion for HMM training, and the parameter generation algorithm
considering global variance (GV), had been proposed to improve the
quality of HMM-based speech synthesis. In this paper, we incorpo-
rate the GV technique into MGE criterion, where an additional gen-
eration error component considering global/local variance (GV/LV)
is introduced for generation error definition, and the model param-
eters are optimized to minimize the new generation error function.
From the experimental results, the quality of synthesized speech was
improved after MGE-GV/LV training, which is similar to the effec-
tiveness of considering GV in parameter generation, however, with-
out introducing any extra computational cost in synthesis process.

Index Terms— Speech synthesis, HMM, minimum generation
error, global variance, local variance

1. INTRODUCTION

HMM-based speech synthesis had been proposed for a decade [1].
In this method, the spectrum, pitch and duration are modeled simul-
taneously in a unified framework of HMMs [2], and the parameter
sequence is generated by maximizing the likelihood of the HMMs
related to the parameter sequence under the constraint between static
and dynamic features [3]. Comparing to other synthesis methods,
this method has several advantages as follows: 1) under its statis-
tical training framework, it can learn salient statistical properties
of speakers, speaking styles, emotions, and etc., from the speech
corpus; 2) voice characteristic of synthesized speech can be easily
controlled by modifying acoustic statistics of HMMs [4]; 3) it can
generate smooth and stable speech under a small footprint. Due to
these, HMM-based speech synthesis gradually became popular both
in research and application.

Although current performance of HMM-based speech synthesis
is quite good, the quality of synthesized speech still needs to be im-
proved. In recent years, several techniques had been proposed to im-
prove the quality of synthesized speech for HMM-based speech syn-
thesis. In [5], two issues related to maximum likelihood (ML) based
HMM training, including the inconsistency between training and ap-
plication of HMM, and the ignorance of constraint between static
and dynamic features, were pointed out, and a minimum generation
error (MGE) criterion was proposed to resolve these two issues. Fur-
thermore, it had been applied to the tree-based clustering for context
dependent HMMs [6] and the whole HMM training procedure [7]. In
[8], a new parameter generation algorithm considering global vari-
ance (GV) was proposed to alleviate the over-smoothing problem of
generated speech features, where the speech features are generated
to maximize not only the conventional likelihood for acoustic feature
but also the likelihood for the GV of generated feature trajectory.

The effectiveness of the parameter generation algorithm consid-
ering GV indicates that the quality of synthesized speech can be im-
proved when the GVs of generated trajectory become closer to that
of natural one. From this point, the HMMs should be trained to re-
duce the distortion between generated GV and original GV. In this
paper, we incorporate this GV concept into MGE criterion, and in-
troduce a more general variance term, called local variance (LV). In
MGE-GV/LV training, the generation error is re-defined by intro-
ducing an additional generation error component, which measures
the distortion between the generated GV/LV and original GV/LV,
and the parameters of HMMs are optimized so as to minimize the
new generation error function.

The rest of paper is organized as follows. In section 2, we briefly
review the minimum generation error (MGE) criterion for HMM
training. In section 3, we present the details of incorporating GV/LV
component into MGE criterion. In section 4, we describe the exper-
iments to evaluate the effectiveness of MGE-GV/LV training, and
present the results. Finally, our conclusion and future work are given
in section 5.

2. MINIMUM GENERATION ERROR CRITERION

2.1. Parameter generation algorithm

For a given HMM λ and the state sequence q, the parameter genera-
tion algorithm is to determine the speech parameter vector sequence
o = [o�

1 , o�
2 , . . . , o�

T ]� to maximize P (o|q, λ). In order to keep
the smooth property of the generated parameter sequence, the dy-
namic features including delta and delta-delta coefficientsΔ(n)ct(n =
1, 2) are used, and the parameter vector can be rewritten as

ot =
[
c�

t , Δ(1)c�
t , Δ(2)c�

t

]�
. (1)

The constraints between static and dynamic feature vector sequence
can be formulated as

o = W c, (2)
where c =

[
c�
1 , c�

2 , . . . , c�
T

]�. Due to limited space, here the de-
tails ofW is not given, which can be found in [3, 5].

Under this constraint, determining o to maximize P (o|λ, q)
is equivalent to determining c to maximize P (o|λ, q). By setting
∂P (o|λ, q)/∂c = 0, we obtain

c̄q =
(
W �Σ−1

q W
)−1

W �Σ−1
q μq = R−1

q rq , (3)

where

Rq = W �Σ−1
q W , (4)

rq = W �Σ−1
q μq , (5)

and μq and Σq are the mean vector and covariance matrix, respec-
tively.
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2.2. Measure of generation error

With the generated parameter vector c̄q , we need to measure the dis-
tortion between the original and generated feature vector, i.e. fea-
ture distortion. Here, the Euclidean distance was adopted to calcu-
late the distortion

Dc(c, c̄q) =‖ c − c̄q ‖2 . (6)
The posterior probability P (q|λ, o) can be used to weight the

distance for all possible state sequence q, and the generation error
for c is defined as

e(c, λ) =
∑
all q

P (q|λ, o)Dc(c, c̄q). (7)

As direct calculation of generation error using the above defini-
tion is computationally expensive, the representative N-best path can
be used to approximate this generation error. In extreme case, we can
use the 1-best path, i.e. the optimal state sequence. The generation
error is simplified as

e(c, λ) = Dc(c, c̄q̂), (8)

where q̂ is the optimal state sequence for o. In this paper, we use
this simplified generation error function in MGE training. In fact, it
refers to a Viterbi-type training. In the following part of this paper,
we use q to denote q̂ by default.

2.3. MGE criterion

With the measure of generation error, we incorporate parameter gen-
eration process into HMM training for calculating the total genera-
tion errors for all training data, which is

E(λ) =

N∑
n=1

e(cn, λ), (9)

where N is the total number of training utterances.
Finally, we define the object of MGE criterion, which is to opti-

mize the parameters of HMMs so as to minimize the total generation
errors

λ̂ = arg min E(λ). (10)
As direct solution for Eq. (10) is mathematically intractable,

probabilistic descent (PD) [9] method was adopted for parameter
optimization. The details of updating rules for mean and variance
parameters in MGE training can be found in [5].

3. MGEWITH GLOBAL/LOCAL VARIANCE

In this section, we incorporate the GV/LV concept into MGE crite-
rion, where an additional generation error component measuring the
distortion between the generated GV/LV and original GV/LV is in-
troduced in generation error definition, and the parameters of HMMs
are optimized so as to minimize the new generation error function.

3.1. Global/local variance

In [8], a GV of the static feature trajectory in an utterance is calcu-
lated by

vg(c) = [vg(1), vg(2), . . . , vg(d), . . . , vg(D)]�, (11)

vg(d) =
1

T

T∑
t=1

(ct(d) − mg(d))2 , (12)

mg(d) =
1

T

T∑
t=1

ct(d), (13)

where D is the dimension of static feature vector. The GV is calcu-
lated utterance by utterance.

Furthermore, we define a more general variance term, called lo-
cal variance (LV), which is calculated by

v(c) = [v1(1), . . . , v1(D), . . . , vT (1), . . . , vT (D)]�, (14)

m(c) = [m1(1), . . . , m1(D), . . . , mT (1), . . . , mT (D)]�, (15)

vt(d) =
1

L

t+L+∑
i=t−L−

(ci(d) − mt(d))2 , (16)

mt(d) =
1

L

t+L+∑
i=t−L−

ci(d), (17)

where L = (L− + L+ + 1) is the size of the window for variance
calculation. It should be noted that the LV is calculated frame by
frame. Actually, GV can be regarded as a special case of LV, where
the same window covering whole utterance is used for variance cal-
culation for each frame. Therefore, we use LV as example to define
the new generation error function, and formulate the updating rules
for model parameters.

3.2. Generation error considering GV/LV

In order to normalize the scale of the generation error components
for static feature and GV/LV of feature trajectory, we denote

σ(c) = [σ1(1), . . . , σ1(D), . . . , σT (1), . . . , σT (D)], (18)

σt(d) =
√

vt(d) (t = 1, ..., T ; d = 1, ..., D), (19)

and use σ(c) instead of v(c) to calculate the generation error.
Similar to Eq. (6), the Euclidean distance is adopted to calculate

the distortion between the GV/LV of generated trajectory and that of
original one, i.e. GV/LV distortion

Dv(σ(c), σ(c̄q)) =‖ σ(c) − σ(c̄q) ‖2, (20)

Finally, we combine this GV/LV distortion with the original fea-
ture distortion, and define the new generation error for c as

e′(c, σ(c), λ) = Dc(c, c̄q) + wDv(σ(c), σ(c̄q)), (21)

where w denotes the GV/LV weight for controlling a balance be-
tween these two distortions. As the scales of these two distortions
have been normalized, one reasonable value ofw could be 1. Further
investigation of the effect of w is shown in section 4.

3.3. Parameter updating

With the new generation error function, the MGE training is to min-
imize the total generation errors

λ̂ = arg min E′(λ) = arg min

N∑
n=1

e′(cn, λ), (22)

with respect to

μ =
[
μ�

1 , μ�
2 , . . . , μ�

K

]�
, (23)

U =
[
Σ−1

1 ,Σ−1
2 , . . . ,Σ−1

K

]�
, (24)

where μ and U are defined by concatenating the mean vectors and
covariance matrices of all unique Gaussian components in the model
set λ, μk and Σk are the mean vector and covariance matrix of the
k-th unique Gaussian component, andK is the total number of Gaus-
sian components in the model set, respectively.
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The PD method is adopted here for parameter optimization. For
each training utterance cτ , the parameter set is updated as

λτ+1 = λτ − ετHτ
∂e′(cτ , λ)

∂λ

∣∣∣∣
λ=λτ

, (25)

whereHτ is a positive definite matrix, and ετ is a learning rate that
decrease when utterance index τ increase.

For the mean parameters, the gradient of generation error func-
tion is calculated as

∂e(cτ , λ)

∂μ
= 2S�

q Σ−1
q W R−1

q ζ, (26)

where

Σ−1
q = diag(SqU ), (27)
ζ = (c̄q − cτ ) + wA(c̄q − m(c̄q)), (28)

and A is a diagonal matrix, whose diagonal elements are

Aj,j = 1 − 1

L

t+L+∑
i=t−L−

σi(d)

σ̄i(d)
, j = (t − 1) ∗ D + d. (29)

where σi(d) and σ̄i(d) are the GV/LV of original and generated fea-
ture trajectory, respectively. In the above equations, Sq is a 3DT ×
3DK matrix whose elements are 0 or 1 determined according to the
optimal state sequence q for cτ . The operation of diag(.) is to con-
vert a 3DT × 3D matrix to a 3DT × 3DT block-diagonal matrix
with a block size of 3D.

For the variance parameters, the gradient of generation error
function is calculated as

∂e(cτ , λ)

∂U
= 2S�

q diag−1(W R−1
q ζ(μq − W c̄q)

)
, (30)

where

μq = Sqm, (31)

and diag−1(.) is the inverse operation of diag(.).
From Eq. (26) and (30), the computational complexity of MGE-

GV/LV training is similar to that of MGE training, since the most
computational cost in parameter updating is still related to the calcu-
lation ofR−1

q .

4. EXPERIMENTS

4.1. Experimental conditions

We used the phonetically balanced 503 sentences fromATR Japanese
speech database (B-set, MHT) in this experiments. The first 450
sentences were used as training data, and the remaining 53 sen-
tences were used for evaluation. Speech signal were sampled at a
rate of 16kHz. The acoustic features, including F0 and mel-cepstral
coefficients, were extracted with a 5ms shift. Feature vector con-
sists of static features, including 25-th mel-cepstral coefficients and
logarithm of F0, and their delta and delta-delta coefficients. A 5-
state left-to-right no-skip HMMwas used, and MSD-HMM [10] was
adopted for F0 modeling. In synthesis, the Mel Log Spectrum Ap-
proximation (MLSA) filter [11] was used to synthesize the speech
waveform.

The HMM training in this experiment was performed as follows.
Firstly, the conventional ML-based HMM training procedure was
conducted. Then the optimal state alignment for all training data
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Fig. 1. Effect of MGE-GV training with different GV weights: rel-
ative reduction of generated mel-cepstra distortion (left) and its GV
distortion (right) on test data
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Fig. 2. Effect of MGE-LV training with different LV weights: rel-
ative reduction of generated mel-cepstra distortion (left) and its LV
distortion (right) on test data

were obtained using the ML-trained HMMs. With the state align-
ments, the MGE-GV/LV training was performed to re-estimate the
parameters of clustered HMMs, where both spectral and F0 part of
model parameters were updated. The window size for LV calculation
was set to 50 in MGE-LV training .

4.2. Experimental results

4.2.1. Objective measure

Fig. 1 shows the relative reduction of generated mel-cepstra distor-
tion and its GV distortion for several typical dimensions after MGE-
GV training. It can be seen that when GV weight is set to 0, i.e.
MGE training only, both the feature distortion and GV distortion was
improved. When the GV weight increased, the GV distortion was
improved, whereas the feature distortion increased, which is even
worse than the baseline when the GV weight is too large. In addi-
tion, the effectiveness of GV weight is different for each dimension
of mel-cepstral coefficient. With the same GV weight in MGE-GV
training, the relative reduction of GV distortion for high dimension
of mel-cepstra coefficients is bigger than that for low dimension of
mel-cepstral coefficients, e.g. 96% reduction of GV distortion for
20-th mel-cepstral coefficient when the GV weight set to 10.

Similar effect of MGE-LV training can be found in Fig. 2, where
the relative reduction of generated mel-cepstra distortion and its LV
distortion after MGE-LV training are shown. Comparing to Fig. 1,
the only difference is that the relative reduction of LV distortion is
smaller than that of GV distortion, which is reasonable since LV
distortion is calculated frame-by-frame, whereas GV distortion is
calculated utterance-by-utterance.

Fig. 3 shows the relative reduction of generated F0 distortion
and its GV/LV distortion after MGE-GV/LV training. It can be seen
that the GV distortion reduced only when the GVweight was smaller
than 0.5, and the LV distortion reduced when the LV weight was less
than 2. In fact, the GV/LV distortion was always improved on close
test (not shown here), which means the model parameters over-fit
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Fig. 3. Effect of MGE-GV/LV training on F0: relative reduction of
F0 distortion (left) and its GV/LV distortion (right) on test data
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Fig. 4. Results of MOS

to the training data. There are two possible reasons to explain that
MGE-GV/LV training for F0 is not as effective as for mel-cepstra.
One reason is that the errors in automatic F0 extraction may affect
the GV/LVs in training. Another one is that the likelihood of mel-
cepstra dominates the Viterbi alignment process, which makes that
the state alignments used in MGE-GV/LV training and evaluation
are biased to mel-cepstra.

4.2.2. Subjective listening

From the informal listening, we found that the synthesized speech
became clearer after applyingMGE-GV/LV training. When the GV/LV
weight increased, the clearness of synthesized speech was enhanced.
However, it simultaneously introduced some artificial effect in speech
sound. The GV/LV weight should be properly set for balancing the
clearness and naturalness. Here, we set the GV/LV weight to 2.

Finally,we conducted a formal subjective listening test to evalu-
ate the effectiveness of MGE-GV/LV training. Seven kinds of syn-
thesized voice were evaluated, which includes the baseline (ML),
MGE training on spectrum (MGE-S), MGE training on spectrum and
F0 (MGE-A), MGE-GV/LV training on spectrum (MGE-GV/LV-S),
MGE-GV/LV training on spectrum and F0 (MGE-GV/LV-A). Ten
Japanese listener participated in the test. Each listener evaluated 15
set of samples consisting of seven synthesized speech samples, and
give the MOS on the naturalness. The speech samples were ran-
domly selected for each listener from the 53 test sentences.

Fig. 4 shows the results of listening test. It is obvious that the
MGE-GV/LV training worked very well for spectral parameters. The
quality of synthesized speech was improved after MGE training for
spectrum, and it was improved further after incorporating GV/LV
into MGE training. For F0 parameter, the MGE-GV/LV training
did not cause significant improvement. Actually, the synthesized
quality even had degraded a little after applying MGE training on F0
parameter. By analyzing the synthesized speech, we found that the
dynamic range of generated F0 trajectory was enlarged. However, it
also introduced some unnatural fluctuation into the F0 contour.

From the results, the difference between MGE-GV and MGE-
LV training is insignificant, and MGE-LV training is slightly worse

than MGE-GV training, which is not as we expected. Since current
experiment only evaluated the effect of MGE-LV training with the
window size of 50, we need to conduct more experiments to optimize
the window size for MGE-LV training.

Comparing to the results in [8], the effectiveness ofMGE-GV/LV
training is quite similar to that of considering GV in parameter gener-
ation process. Furthermore, one advantage of MGE-GV/LV training
is that it does not introduce any extra computational cost in synthesis
process.

5. CONCLUSIONS AND FUTUREWORK

In this paper, we incorporate the GV technique into MGE crite-
rion, where an additional generation error component considering
global/local variance (GV/LV) is introduced for generation error def-
inition. The experimental results show that MGE-GV/LV training
worked well on spectral parameter, but was not effective for F0 pa-
rameter. From the subjective listening test, the quality of synthesized
speech was improved after MGE-GV/LV training, which is similar
to the effectiveness of considering GV in parameter generation pro-
cess. However, it would not introduce any extra computational cost
in synthesis process.

Future work is to investigate the effect of window size for MGE-
LV training, and conduct the listening test to compare the MGE-
GV/LV training with the GV-based parameter generation technique.
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