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Abstract

Aminimum generation error (MGE) criterion had been pro-
posed for model training in HMM-based speech synthesis. In
this paper, we apply the MGE criterion to model adaptation for
HMM-based speech synthesis, and introduce an MGE linear re-
gression (MGELR) based model adaptation algorithm, where
the regression matrices used to transform source models are op-
timized so as to minimize the generation errors of adaptation
data. In addition, we incorporate the recent improvements of
MGE criterion into MGELR-based model adaptation, includ-
ing state alignment under MGE criterion and using a log spec-
tral distortion (LSD) instead of Euclidean distance for spectral
distortion measure. From the experimental results, the adapta-
tion performance was improved after incorporating these two
techniques, and the formal listening tests showed that the qual-
ity and speaker similarity of synthesized speech after MGELR-
based adaptation were significantly improved over the original
MLLR-based adaptation.
Index Terms: Speech synthesis, HMM, speaker adaptation,
minimum generation error, linear regression

1. Introduction
HMM-based speech synthesis method [1, 2] had been under de-
veloped for a decade, and shown its potential to realize a speech
synthesis system with high quality and flexibility [3]. One of the
unique capabilities of HMM-based speech synthesis is the abil-
ity to adapt the models in order to modify the characteristics
of synthesized speech, including the change of speaker iden-
tity, speaking style, and so on. This is achieved by modifying
the HMM parameters using model adaptation techniques. Sev-
eral model adaptation algorithms, which were originally pro-
posed for speech recognition, including Maximum a Posteriori
(MAP), Maximum Likelihood Linear Regression (MLLR) [4],
Constrained MLLR (CMLLR) [5], and so on, have been applied
to HMM-based speech synthesis [6, 7]. It has also been demon-
strated that speaker adaptation of an “Average Voice” model [8]
is superior to speaker adaptation of a speaker-dependent model.

Recently, a minimum generation error (MGE) criterion [9]
was proposed for HMM training in order to solve two is-
sues related to ML-based HMM training for speech synthesis,
which includes the mismatch between training and application
of HMM, and the ignorance of constraint between static and
dynamic features. In this new criterion, a generation error func-
tion using Euclidean distance was defined, and the HMM pa-
rameters were optimized so as to minimize the total genera-
tion errors of training data. In [10], a log spectral distortion
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(LSD) was adopted to replace the Euclidean distance for calcu-
lating the generation error between the original and generated
line spectral pairs (LSPs) [11] in MGE training, and the quality
of synthesized speech was significantly improved.

Since the ML criterion is also used for model adaptation,
this paper continue to apply the MGE criterion to model adap-
tation for HMM-based speech synthesis, and introduce a MGE
linear regression (MGELR) algorithm [12]. In order to effec-
tively make use of limited adaptation data, the source models
are firstly grouped into regression classes, where the models
within one class share the same linear transformation matrix.
After initialized using the MLLR-based model adaptation, the
parameters of the transforms are re-estimated under the MGE
criterion, where the parameters are optimized to minimize the
total generation errors of the adaptation data. Furthermore,
we incorporate the recent improvements of MGE criterion into
MGELR-based model adaptation, including state alignment un-
der MGE criterion and using the LSD instead of the Euclidean
distance for spectral distortion measure, and investigate the ef-
fectiveness of these two techniques.

The rest of this paper is organized as follows. In section
2, we first briefly review the MGE criterion for HMM training.
In section 3, we present the details of MGELR-based model
adaptation algorithm. In section 3, we describe the experiments
used to evaluate the performance of the MGELR-based speaker
adaptation and present the results. Finally, our conclusions are
given in section 4.

2. Minimum generation error criterion
The basic concept of MGE criterion is to calculate the genera-
tion errors by incorporating the parameter generation into train-
ing process, and then optimize the HMM parameters so as to
minimize the total generation errors of training data.

2.1. Parameter generation
For a given HMM λ and the state sequence q, the param-
eter generation algorithm [1] is to determine the speech pa-
rameter vector sequence o = [o�1 , o�2 , . . . , o�T ]� which max-
imizes P (o|q, λ). In HMM-based speech synthesis, ot =

[c�t , Δ(1)c�t , Δ(2)c�t ]� includes not only static but also dy-
namic features. The constraint between static and dynamic
feature vector can be formulated as o = W c, where c =
[c�1 , c�2 , . . . , c�T ]�, and W is a regression matrix [1] for cal-
culating dynamic features.

Under this constraint, parameter generation is equiva-
lent to determining c to maximize P (o|λ,q). By setting
∂P (o|λ, q)/∂c = 0, we obtain

c̄q = R
−1
q rq , (1)

where
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Rq = W
�
Σ
−1
q W , rq = W

�
Σ
−1
q μq , (2)

and μq =
[
μ�1 , . . . , μ�T

]� and Σq = diag (Σ1, . . . ,ΣT ) are
the mean vector and covariance matrix related to q, respectively.

2.2. Generation error
With the generated feature vector c̄q , we need to measure the
distortion between the original and generated feature vector. In
the baseline MGE criterion, the Euclidean distance was used to
calculate the distortion

D(c, c̄q) =‖ c− c̄q ‖
2 . (3)

Although the posterior probability can be used to weight the
distance for all possible state sequence, it is computationally ex-
pensive for this direct calculation. Therefore, the representative
n-best paths can be used to approximate the generation error. In
our current implementation, only the optimal state sequence is
used, and the generation error is defined as

e(c, λ) = D(c, c̄q̂), (4)

where q̂ is the optimal state sequence for o. This refers to a
Viterbi-type MGE training. In the rest of the paper, we use q to
denote q̂.

2.3. Re-estimation of model parameters
Based on the generation error definition, the parameter genera-
tion process is incorporated into HMM training for calculating
the total generation errors for all training data cn, which is

E(λ) =
∑

n

e(cn, λ). (5)

Finally, the objective of MGE criterion is to optimize the
model parameters so as to minimize the total generation errors,
i.e.,

λ̂ = arg min E(λ). (6)

As direct solution for Eq. (6) is mathematically intractable,
probabilistic descent (PD) [13] method was adopted for param-
eter optimization. The details of updating rules for mean and
variance parameters in MGE training can be found in [9].

3. MGELR algorithm for model adaptation
The Maximum Likelihood Linear Regression (MLLR) algo-
rithm had been successfully applied for model adaptation in
HMM-based speech synthesis. Since the MGE criterion had
been proposed to solve the two issues related to the ML-based
HMM training, we introduce a corresponding MGELR algo-
rithm for model adaptation in HMM-based speech synthesis.

3.1. Linear transformation for model parameters
In the MLLR-based model adaptation framework, the linear
transformations for the mean vector μ and covariance matrix
Σ of one model are defined as

μ̂ = Φξ, (7)

Σ̂
−1 = AH

−1
A
�, (8)

where μ̂ and Σ̂ are the transformed mean vector and covariance
matrix, Φ andH are the transformation matrices for mean and
variance parameters, ξ =

[
�, μ�

]� is an extended vector for
μ, andA is the Cholesky decomposition factor of Σ−1, i.e.,

Σ
−1 = AA

�. (9)

For a state sequence q = [q1, q2, . . . , qT ], the transformed
mean vector sequence and covariance matrix can be calculated
as

μ̂q = Φqξq (10)

Σ̂
−1
q = AqH

−1
q A

�

q (11)

where

Φq = diag [Φq1 , Φq2 , . . . ,ΦqT
] (12)

ξq =
[
ξ
�

q1
, ξ�q2 , . . . , ξ�qT

]
�

(13)

H
−1
q = diag

[
H
−1
q1

, H−1
q2

, . . . , H−1
qT

]
(14)

Aq = diag [Aq1 , Aq2 , . . . , AqT
] (15)

3.2. MGELR-based model adaptation
In the MGELR-based model adaptation, we incorporate the pa-
rameter generation into model adaptation process to calculate
the generation errors of adaptation data, and then optimize the
parameters of transformation matrices so as to minimize the to-
tal generation errors of adaptation data.

3.2.1. Generation error after transformation
After model transformation, the generation error for a feature
vector sequence c in adaptation data is defined as

ê(c, λ) = D(c, ĉq) = ‖ĉq − c‖� , (16)

where ĉq is the generated feature vector sequence using the
transformed models, which is calculated as

ĉq = R̂
−1
q r̂q , (17)

where

R̂q = W
�
Σ̂
−1
q W , (18)

r̂q = W
�
Σ̂
−1
q μ̂q . (19)

Similarly, we can get the total generation error by accumu-
lating the generation error for all adaptation data, which is

Ê(λ) =
∑

n

ê(cn, λ). (20)

3.2.2. Optimization of transformation matrices
Under the MGELR framework, the parameters of transforma-
tion matrices are optimized in order to minimize the total gen-
eration errors of adaptation data. Here, the PD-based method
is adopted for parameter optimization. For each adaptation data
cτ , the parameter set is updated as

λ(τ + 1) = λ(τ )− ετBτ

∂ê(cτ , λ)

∂λ

∣∣∣∣
λ=λτ

. (21)

where Bτ is a positive definite matrix, and ετ is a learning rate
that decrease when utterance index τ increase.

For the transformation matrices of the mean vector and co-
variance matrix related to ĉq , the gradients of the generation
error function are calculated as

∂D

∂Φq

= 2Σ̂−1
q W R̂

−1
q (ĉq − c)ξ�q , (22)

∂D

∂H−1
q

= 2A
�

q (μ̂q −W ĉq)(ĉq − c)�R̂
−1
q W

�
Aq . (23)

Finally, the updating rules for the transformation matrices of
whole parameter set can formulated correpondingly.
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3.2.3. Adaptation procedure
The whole model training and adaptation procedure based on
the MGELR algorithm is implemented as follows:
1) Train the source voice model using the source speech
database.

2) Conduct the MLLR-based model adaptation, and initial-
ize the transformation matrices.

3) Obtain the optimal state alignments for all adaptation
data using the MLLR-adapted HMMs.

4) Iteratively optimize the parameters of transformation
matrices based on MGELR algorithm.

5) Apply the optimized transformation matrices to the
source voice model.

3.3. Improvements
Here, we incorporate two recent techniques of MGE criterion
into the MGELR-based model adaptation, including state align-
ment under MGE criterion and using the LSD instead of the Eu-
clidean distance for spectral distortion measure, and investigate
the effectiveness of these two techniques.

3.3.1. State alignment under MGE criterion
As we mentioned in Sect. 2.2, only the optimal state sequence is
used for generation error definition. Under the MGE criterion,
the optimal state sequence should be calculated by

q̂ = arg min
q

e(c, λ) = arg min
q

D(c, c̄q), (24)

However, the parameter generation process depends on the
whole state sequence, which makes it intractable to search for
the optimal state sequence directly using the Viterbi algorithm.
In previous implementation, we used the optimal state sequence
calculated under the ML criterion for approximation, which is

q̂ ≈ arg max
q

P (c,q|λ) (25)

Under this approximation, the Viterbi algorithm can be applied.
However, such approximation reduce the effect of MGE crite-
rion.

Recently, we proposed a heuristic method to search for the
optimal state sequence under MGE criterion, which is as fol-
lows:
1) Initialize the state alignment for the input utterance un-
der Eq. (25) by using the Viterbi algorithm.

2) For each state boundary in the state alignment, try to shift
it to the left (or right), and calculate the generation errors
before and after shifting the state boundary.

3) If the generation errors decrease, keep the new state
boundary and go back to the step 2); otherwise terminate
the process.

In this procedure, we need to re-generate the whole utterance
after each attempt of boundary shifting, which introduces the
excessively high computational cost . Due to this, we make an
approximation and only re-generate the feature vector sequence
inside the window centered at the boundary, which means that
the boundary location is optimized locally in each step. In this
paper, we set the window size to 50 frames, which is enough to
keep the accuracy.

3.3.2. LSD for spectral distortion measure
Since we used the LSPs as spectral feature for HMMmodeling,
the Euclidean distance between two LSPs is not so convincing
as a spectral distortion measure. A log spectral distortion (LSD)

was adopted in [10] to replace the Euclidean distance to calcu-
late the distortion for generated LSPs, i.e.,

Dlsd(ct, c̄t)=
1

π

∫ π

0

[log |Act
(ω)|−log |Ac̄t

((ω)|]2 dω. (26)

where Act
(ω) and Ac̄t

(ω) are the spectra derived from the
original and generated LSPs at t-th frame, respectively.

Since it is difficult to formulate the direct solution for the
integration in Eq. (26). An alternative is to use a numerical
integration to approximate the integral, which is calculated by
accumulating the values of integrand at certain sampling points.
Then Eq. (26) can be rewritten as

Dlsd(ct, c̄t)=
1

Ns

Ns∑
j=1

[log |Ac(ωj)| − log |Ac̄(ωj)|]
2 , (27)

where ωj is the location of each sampling point and Ns is the
total number of sampling points.

Two sampling strategies, including the equidistance sam-
pling and the sampling at LSP frequencies, were investigated in
[10], and the experimental results showed that using the LSDs
calculated by sampling at LSP frequencies outperformed that
with the equidistance sampling strategy in the MGE-LSD train-
ing. In this paper, we adopt the sampling strategy by sampling
at LSP frequencies, i.e.,

ωj = ct,j , j = 1, 2, . . . , p, (28)

where ct,j is the j-th coefficient of the original LSP vector ct.

4. Experiments
4.1. Experimental conditions
We used the CMU-ARCTIC English database [14] in the exper-
iment. Speech data (about 1 hour) from each of 4 males (awb,
bdl, rms, jmk) and 1 female (clb) was used to train the source
Average Voice model. 100 utterances of speech data from an-
other female speaker (slt) were used to adapt the source model.
The acoustic features include F0 and LSP coefficients, where
LSP coefficients were calculated based on spectra extracted by
STRAIGHT [15]. The feature vector consists of static features
(including 24-th LSP coefficients, logarithm of gain and loga-
rithm of F0), and their delta and delta-delta coefficients. A 5-
state left-to-right no-skip HMMwas used, andMSD-HMM [16]
was adopted for F0 modeling. In synthesis, the STRAIGHT
synthesis filter was used to synthesize the speech waveform.

While using the full matrix instead of diagonal matrix for
model adaptation usually improved the speaker similarity of
generated speech after adaptation, it also resulted in the disorder
problem of generated LSPs [17]. The band-diagonal matrix is a
compromised solution considering both speaker similarity and
stability of generated speech after adaptation. Here we adopted
the band-diagonal matrix whose diagonal bandwidth is set to 3.
In the experiment, we compared the following configurations
for model adaptation:
a) MLLR: MLLR-based model adaptation;
b) MGELR-B: basic MGELR-based model adaptation with
Euclidean distance;

c) MGELR-N: newMGELR-based model adaptation by in-
corporating LSD and state alignment by MGE;

In addition, two speaker dependent models using 1-hour speech
data from the target speaker were trained under the ML-based
training (SDML) and MGE-based training (SDMGE) proce-
dures, respectively. Note that the LSD and state alignment by
MGE are also incorporated into the MGE-based training. Here
the speaker dependant models are regarded the upper bounds of
model adaptation.
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(a) MOS (b) DMOS

Figure 1: MOS and DMOS scores of synthesized speech from
the adapted models and speaker dependent models

4.2. Experimental results
Two formal subjective listening tests were conducted. The
first test evaluated the quality of synthesized speech using the
MOS score, and the second one evaluated the speaker similarity
between the natural target speech and the synthesized speech
from the adapted models and speaker dependent models us-
ing DMOS score. 40 sentences, which were not included in
the training data, were synthesized from the adapted models
(MLLR, MGELR-B, MGELR-N) and speaker dependent mod-
els (SDML, SDMGE). Eight Japanese listeners participated in
the test. Each listener evaluated 15 sets of samples consisting of
five synthesized speech samples, and gave the MOS and DMOS
scores for each sample. The speech samples were randomly se-
lected for each listener from the 40 test sentences.

The results are shown in Fig. 1, with the vertical line in-
dicating the 95% confidence intervals. In this figure, it can
be seen that both speech quality and speaker similarity were
improved over the MLLR-based adaptation after applying the
basic MGELR adaptation, and were further improved after in-
corporating the two improvements of MGE criterion into the
MGELR adaptation. Usually, the performance of ML-based SD
model training can be regarded as the upper bound of MLLR
adaptation. From the figure, the MOS and DMOS scores of
MGELR-N (i.e. improved MGELR adaptation) is higher than
that of SDML (i.e. ML-trained SD model), which means the
performance of the improved MGELR adaptation was even over
the original upper bound of MLLR adaptation. However, the
performance of MGELR adaptation is still worse than that of
MGE-based SD model training, which can be regarded as the
upper bound of the new MGELR adaptation. Furthermore, it
can be seen that MGELR-B has higher MOS score but slightly
lower DMOS score comparing to the scores of SDML in the fig-
ure, which means the basic MGELR adaptation is very effective
to improve the speech quality, but less effective to improve the
speaker similarity.

5. Conclusions
This paper introduce an improved MGE linear regression
(MGELR) based model adaptation algorithm, where two recent
improvements of MGE criterion, including state alignment un-
der MGE criterion and using a log spectral distortion (LSD)
instead of Euclidean distance for spectral distortion measure,
are incorporated into MGELR-based model adaptation. From
the experimental results, the adaptation performance was im-
proved after incorporating these two techniques, where the qual-
ity and speaker similarity of synthesized speech after MGELR-
based adaptation were significantly improved over the original
MLLR-based adaptation, and even over the ML-based speaker
dependent model training.
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