
Monitoring Library Function-based Intrusion Prevention System with
Continuing Execution Mechanism

Yudai Kato, Yuji Makimoto1, Hironori Shirai, Hiromi Shimizu2,
Yusuke Furuya, Shoichi Saito, and Hiroshi Matsuo

Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya 466-8555 Japan

belem@mail.ssn.nitech.ac.jp

Abstract—Anomaly-based Intrusion Prevention Systems
have been studied to prevent zero-day attacks. However these
existing systems can’t prevent mimicry attacks because of the
inadequacy of monitoring accuracy. Moreover, they provide
no continuity for monitored applications when they have been
compromised. In this paper, we propose a novel Intrusion
Prevention System named Belem that detects anomaly states by
checking the ordering of library functions and has a Continuing
Execution Mechanism to provide application continuity. We
implemented Belem on Linux and evaluated it.

Keywords-Intrusion prevention system, Monitoring library
function, Continuing execution, Self-healing, Checkpoint

I. INTRODUCTION

Zero-day attacks continue to increase. They attack vul-
nerabilities for which no solutions currently exist. Currently,
anomaly-based Intrusion Prevention Systems (IPSs) protect
systems from zero-day attacks. This kind of IPS uses a
Regular Execution Rule (RER) to classify system activities.
Anomaly-based IPSs detect malicious attempts by running
applications to confirm whether executing functions conform
to the RER. Therefore such an IPS can detect malicious
attempts by a conflict between the rules and the functions.

Moreover, there is a problem to continue services until
the vulnerabilities are fixed. Therefore we provide not only
IPS but also a Continuing Execution Mechanism (CEM) to
detect and monitor vulnerabilities until they have been fixed.
For these reasons, we propose Belem, which is a new high
detectable IPS with CEM.

Many attacks change the process behavior defined in the
executable files of a process. For this reason, an anomaly-
based IPS makes a RER from source code, executable files,
and a regular execution and monitors the executions using
the rule. Many systems [1], [2], [3] use system-call hooking
for process monitoring. This technique is generally consid-
ered effective because a system-call is essential for attacks
that are intrusions into other systems or are tampering with
important files.

However these systems cannot check a function that
doesn’t make any system-calls. They can only check limited

1Presently with Mitsubishi Electric Corporation
2Presently with Toshiba Tec Corporation

functions that are called at that time; they cannot check
exited functions. For this reason, they can’t detect mimicry
attacks [1] that ape regular execution.

To combat such attacks, we propose Belem: (Belem is
Effective Library Executing Monitor. Belem has two mech-
anisms, IPS and CEM, and is composed of a user library
(libelem), a modified kernel for Belem, and a RER. The
RER is obtained by analyzing an executable file of a process
and makes normal execution orders of library functions.
Belem detects illegal library calls by the RER. This check
allows Belem to monitor a process more precisely. Moreover
Belem continues the execution of a monitored process when
its IPS detects an intrusion. Generally, a server system
cannot provide service until the server vulnerabilities have
been corrected. Belem’s CEM avoids the monitored process
from stopping or rebooting by the IPS when the process is
attacked. CEM is a kind of a self-healing mechanism that
improves application availability.

This paper is organized as follows. Section II describes
related researches and how the IPS monitors a process.
Section III describes an overview of our approach. Section
IV describes Belem implementation, and Section V evaluates
Belem. We discuss our approach in Section VI and provide
a conclusion in Section VII.

II. RELATED WORK

In this section, we describe anomaly detection methods
and related works of CEM. An anomaly detection method
monitors the execution of a process and compares it with
a regular execution rule. Process monitoring methods can
be classified into system-call monitoring (SCM) and library
function call monitoring (LFCM).

A. System-Call Monitoring (SCM)

SCM compares called system-calls with a RER. Below,
we discuss the problems of this method.

1) Overview of existing SCM systems: Wagner’s [1] ap-
proach determines whether the order of the system-calls is
in accordance with the rule whenever they are executed.
However, this approach doesn’t use any information except
the order of system-calls; it becomes difficult to uniquely



(1)

(2)

Function that 
always executes 
system-calls

Function that may 
not execute 
system-calls

Call A

Entry X

Call B

Call C
Return

Call D

Figure 1. Problem of execution rule on related researches

identify a process execution state. Therefore an attacker
can easily impersonate a regular execution. Feng [2] and
Abe [3] confirm the return address in the call stack and
accurately determine the execution state of a process when it
executes a system-call besides Wagner’s method . Moreover,
checking the changes of the call stack from when the
previous system-call was executed can monitor execution
states that cannot be determined by only the order of the
system-calls. However, functions that can be monitored by
their systems are limited to called functions when a system-
call is executed. Therefore, their systems cannot determine
functions that didn’t make any system-calls.

2) Problem of SCM: We explain the above SCM problem
here. A system’s RER defines the order of functions. Con-
sider the case where the RER for Function X is expressed
as in Figure 1, which shows that Function X calls functions
in the order of A→B→C or A→D. X exits after that.

Function A was called from Function X and executed the
nth system-call, and Function B is called from Function
X and executes the (n + 1)th system-call, and we assume
that Function B is called after Function A. Therefore,
this call order corresponds with the RER of Function X.
Now consider a situation where Function B doesn’t always
execute system-calls and the calling of Function B can’t
always be confirmed. In this situation, if the SCM system
observes Function C at a (n + 1)th system-call, it cannot
verify the calling of Function B. Therefore, a RER of the
system must include an extra rule so that it doesn’t treat this
situation as an anomaly. The extra rule accepts function calls
in the order of A→C (Figure 1(1)) as well as A→B→C,
as if they were present from the beginning. The rule of
SCM systems can represent the detailed states of a process.
However SCM systems cannot detect detailed states in run-
time as the rule. Here, consider an attack that modifies the
return address of Function B while executing Function B
and calls Function D after Function B. This attack can be
detected if Function B executes one or more system-calls
because the RER doesn’t define the order of the functions as
A→B→D. However if Function B doesn’t make any system-
calls, the observed order is A→D, which matches the rule.

As a result, the SCM systems defend themselves from this
attack.

B. Library Function Call Monitoring (LFCM)

LFCM verifies that the calling of a library function is
consistent with a RER. Compared to a SCM system, a
LFCM system can monitor a detailed state and strictly
define a rule. Therefore, a LFCM system can detect such
illegal transfers as shown in Figure 1(2). However, no
anomaly-based IPSs are perfectly based on library function
calls. E-NeXSh [4] only uses LFCM for verifying system-
calls. Moreover, e-NeXSh executes a special system-call for
verifying each library function call, and its overhead costs
are high. For reducing overhead, e-NeXSh limits the verified
library functions to those most likely to be exploited by
attackers. For this, it monitors as accurately as does system-
call monitoring. Therefore, it may not be able to detect
mimicry attacks.

C. Related work of CEM

Next we describe the existing continuing execution sys-
tems. Reactive immune systems [5] store all the modified
data of the entire memory and the files and restore them
when the system detects an anomaly. This system lightens its
load by conjecturing vulnerabilities. However, the conjecture
method is simply that a fixed-length array is considered
vulnerable. This system has two problems. The first is that
once the conjecture comes off, every time conjecture at the
same point will come off. The second is that vulnerability
cannot be conjectured, except for a fixed-length array.

Rx [6] periodically creates a process checkpoint and
returns the process to the checkpoint at which it detected
the anomaly. Rx modifies the environment and re-executes
a doubtful function in the process to inspect the vulner-
abilities. Rx, Sweeper [7], and ASSURE [8] periodically
create a checkpoint and automatically seek vulnerability
by re-execution from the latest checkpoint at which an
intrusion was detected. However, these systems cannot find
vulnerabilities that are placed before the latest checkpoint.
In these systems [6], [7], [8], detecting anomalies, which
is the starting point of restoring action, is assumed to be
a relatively simple method, such as Exception Interrupts ,
CCure [9], StackGuard [10], and so on. Therefore some
anomalies cannot be detected.

III. PROPOSED METHOD

In this section, we propose Belem’s IPS method that is
based LFCM and CEM for a process when it is attacked. We
start with the proposed IPS and next discuss the proposed
CEM.

A. Monitored Library Functions

Many monitored library functions can accurately specify
a process state. However, since an increase of monitored



library functions will greatly increase the monitoring over-
head, the number of monitored library functions must be set
adequately. E-NeXSh only monitors functions that attackers
use frequently. However it is not always ensured for every
application, and some functions are inadequate, as already
mentioned in II-B. Therefore, Belem targets all system-calls
to monitor any execution states of a process and monitors
all library calls that may execute system-calls. This approach
enables Belem to capture a library function call even if it
doesn’t execute any system-calls. Belem can monitor more
execution states than the SCM systems and e-NeXSh.

B. Storing an Execution History in User Space

As mentioned above, increasing the number of monitored
functions increases overhead. E-NeXSh also uses a special
system-call to record library function calls. Therefore, a
special system-call is executed whenever library functions
are called, and the overhead is larger than when only a
library function is called. This overhead problem can also
be applied to Belem, Because Belem needs to records a call
stack history (CSH) as the library function was called for
verification of the execution path at the subsequent system-
call. To cope with the overhead, Belem stores CSH in the
user memory space instead of kernel space. This way of
storing history avoids Belem from calling any kind of special
system-calls. Therefore, Belem can monitor the calling of
all library functions that execute system-calls with small
overhead.

C. Continuing Execution Method (CEM)

When an attack is detected, the source of the vulnerabil-
ity is supposedly located before the attacked point. These
systems [6], [7], [8] need to re-execute from the latest
checkpoint to detect the vulnerable point. However, Belem
has RER recoding all of a program’s control flow. For this
RER, Belem can precisely identify the attacked point and the
previously executed process flow. Exploiting this rule, Belem
estimates a candidate vulnerable point without re-execution.
However, since it doesn’t have an analysis function and
cannot determine the vulnerable point, it expects and decides
a scope containing vulnerability (vulnerable scope) and
protects the process by Checkpoint-Rollback. A vulnerable
scope starts from functions (read, recv, recvfrom, getenv)
concerned with input just before an anomaly was detected
and ends where it was detected. Initially, this vulnerable
scope is large, but it is optimized during each repeated
attacks, so the scope eventually becomes very small. Belem
can effectively continue the process execution without ex-
cessive overhead. In CEM, a return address and malicious
input data are checked, and the process state is restored by
a rollback when abnormalities are detected. CEM prevents
process behavior from being changed by overflow and code
injection attacks. However, the CEM overhead described

Figure 2. Process flow of IPS in Belem

above is expensive. But it is only performed in a vulnerable
scope.

IV. IMPLEMENTATION

Here, we describe a Belem implementation for Linux.
Belem is composed of a Belem kernel, which is a modified
Linux kernel, and libelem, which is a library hooking library
function. The Belem kernel modifies an entry of system-call
(entry.S) to hook and verify all system-calls and call stacks
with a RER. The libelem hook library function calls with
linker option LD PRELOAD and makes a call stack history.
In this section, we summarize a RER that provides normal
execution order. Next, we describe the LFCM details by
Belem with the generation of a CSH and the confirmation
of a RER. Finally, we describe CEM.

A. RER Summary and Generation

A RER is generated from analyzing a disassembled exe-
cutable file of a target program. It stores an execution order
of the user functions and library functions for each user
function. An entry of each user function in the RER contains
all callee functions that the user function calls and the caller
addresses that summon the callee functions.

B. Call Stack History and Confirmation of Execution

Figure 2 represents an overview of Belem and shows its
process flow when the read library function is called. Belem
adds a new CSH and confirms the RER and the CSH. We
discuss these processes in this part.

1) Generation of call stack history: Libelem generates a
CSH after hooking a library function (Figure 2(3)). Figure 3
shows an example of CSH. Figure 3(a) shows a RER and
(b) shows three examples of CSH after executing (a). RER
(a) prescribes that the main function is composed of three
Library Functions, A, B, and D, and one User Function,
C. Library Function E is called from User Function C.



Library Functions A and D always execute system-calls, but
not Library Functions B and E. Figure 3(b) shows three
executed results of Figure 3(a): (1) A→B→C→E→D, (2)
A→C→E→D, and (3) A→D. (1) and (2) are normal CSHs
but (3) is abnormal.

An executing history is added to a CSH whenever a library
function is called. The history is removed from the CSH after
the Belem kernel confirms that the RER and the history are
the same when the next system-call is executed. Therefore a
confirmation and deletion interval exists between successive
system-calls, as shown in the dotted lines in Figure 3(b). The
contents of the executing histories in a CSH are composed
of all addresses calling callee functions in all functions
between the main and current functions. These addresses
are extracted from a return address from the call stack when
a corresponding library function is called; these addresses
are simply denoted by the function name in Figure 3. For
example, Library Function A is directly called from the Main
Function, and the CSH contains only one return address of
Library Function A. Next, Library Function E is called from
User Function C; therefore the history consists of two return
addresses of User Function C and Library Function E. In
this way, a CSH is recorded for all library function calls.
At the end of calling a library function (Figure 2(9)), a
LD PRELOAD routine records the end of a library function
to the history as well.

2) Confirmation of RER: The Belem kernel confirms
that the CSH matches the RER after hooking a system-
call (Figure 2(6)). If the confirmation fails, Belem detects
the irregularity. For example, Figure 3(b)(3) is an irregular
history, where Library Function D is called after Library
Function A, but the RER does not include Function D in
the next functions of Library Function A. Therefore Belem
can detect that callee Library Function D is irregular. This
detection ability is a feature of Belem’s LFCM.

C. Continuing execution method

The CEM flows are shown in Figure 4. Figure 4(a) shows
the CEM flow before the IPS detects an intrusion. If no
intrusions are detected, CEM will do nothing. When IPS
detects an intrusion, it sets a vulnerable scope and activates
CEM. The end of the vulnerable scope is placed at detecting
point, and the start of the scope is placed at the input
function just before the detecting point.

Figure 4(b) shows the CEM flow after IPS detects an
intrusion. For creating a checkpoint, Belem executes an
original system-call that resembles a fork system-call. After
detecting an intrusion, the flow mainly consists of two parts:
process state confirmation in a vulnerable scope (Detection
Block in Figure 4(b)) and restart processing when Belem
previously failed to setup the vulnerable scope (Restart
Block in Figure 4(b)).

In the Detection Block, the following three analyses are
performed for each library function before execution:

Entry main
7000

Call Lib-A
7100

Call User-C
7300

Call Lib-D
7400

Return
7500

Entry C
8000

Call Lib-E
8100

Return
8200

Function that 
always executes
system calls

Function that 
may not execute 
system calls

Function entry
and return node

Call Lib-B
7200

User function

(a) Example of RER

A D

A D

A

Confirmation and deletion 

D

B

E

S S

S

S

S

S

S

Execution of 
system call

A

Call stack history
t

t

t

(3) example of anomaly

(1) A->B->C->E->D

(2) A->C->E->D

C

E

C

(b) Examples of CSH

Figure 3. Change of CSH and confirmation of RER

• Detect a tampered return address
• Detect an overflow of input data
• Confirm that input data don’t contain any shell codes

Execution of the library function is continued if an anomaly
is not found by the analysis. If an anomaly is found, the
function being executed now is specified for the vulnerable
point. In addition, Belem discards the input data and roll-
backs to the adjacent checkpoint to resume execution.

A restart block is executed when IPS detects a new attack.
IPS judges that the current vulnerable scope is inappropriate
and expands the scope if the detected point is the same
as the previous detected point. On the other hand, if the
detected point is not the same as the previously detected
point, Belem judges that there is another vulnerable point
and adds a new vulnerable scope. In this case, the process
must be re-executed.

V. EVALUATION

Next we evaluated Belem by two methods. The first
is detection accuracy by an average number of candidate
entries to which they can be transferred from the current
entry in the rule. The second is monitoring overhead, which



(a) Flow of CEM before detecting intrusion

(b) Flow of CEM after detecting intrusion

Figure 4. CEM flow

is measured in both cases with and without CEM. The
applications for evaluations are wc (a file utility) and inetd
(a network server).

A. Evaluation of Detection Accuracy by Average Number of
Transfers

We evaluated detection accuracy by the Average Number
of Transfers (ANTs). An ANT is obtained by dividing the

Table I
AVERAGE NUMBER OF TRANSFERS OF PARTLY KEEPING TRACK

METHOD (E-NEXSH)

Application Average transfers Total transfers Total nodes
wc 1.57 367 234

inetd 2.01 783 389

Table II
AVERAGE NUMBER OF TRANSFERS OF FULLY KEEPING TRACK METHOD

(BELEM)

Application Average transfers Total transfers Total nodes
wc 1.33 312 234

inetd 1.48 574 389

Table III
MONITORING OVERHEAD

Application Normal execution Belem
wc 1.69 msec (1.00) 3.33 msec (1.97)

inetd 2.53 msec (1.00) 3.39 msec (1.34)
In parentheses, proportions of increase for normal execution

number of transfers in the rule by the number of nodes in it.
A small ANT means that the transferable candidate nodes
are rigidly restricted, and the execution flow of the process
is also restricted. Therefore it is difficult to attack without
being detected in small ANTs. We evaluate how accurately
Belem can detect an anomaly by tracking the function calls
and comparing them with an ANT in cases where library
function calls cannot be always detected.

Here, we label the method, which can completely track li-
brary function calls, the fully keeping track method (FKTM),
and the method that cannot completely keep track of library
function calls the partly keeping track method (PKTM). The
number of transfers increases in the PKTM, as shown in
Figure 1. Belem adopted FKTM. PKTM was adopted by the
SCM systems and e-NeXSh whose detection is as accurate
as the SCM system.

The ANTs of PKTM and FKTM are shown in Table I
and II, which indicate that both the average and the total
number of FKTM transfers are less than that of PKTM.
Therefore FKTM restricts a process flow more rigidly than
PKTM. Such FKTMs as Belem can restrict the flexibility of
an attack, increasing the safety of monitored processes.

B. Measuring Monitoring Overhead

One characteristic of wc, which is a file utility, is that
it rarely executes system-calls, but it does call the library
functions of each character in a file. When wc reads a 15
MB file, there are only 1000 system-calls, even though there
are 15 million library function calls . On the other hand,
the numbers of calling library functions and system-calls
are almost the same in inetd: about 1000 times for each.
We evaluated the effect of hooking a library function in the
monitoring library function method using these applications.



Table IV
OVERHEAD OF CEM

Without monitoring Monitoring
6 usec 416 usec

The evaluation of monitoring overhead is done without
CEM, so we accurately measured the effect of hooking.

We measured the overheads of monitoring wc and inetd
on the machine with Intel Pentium4 2.4GHz processor and
512MByte of RAM running Fedora Core 5 with kernel
2.6.17.8, and the result is shown in Table III. The result
of wc is measured when it reads a 15 MB file. The result
of inetd is measured when another host connects to it
1000 times. Wc shows that monitoring overhead increases
significantly, if there are many more library function calls
than system-calls. However, if the number of both calls is
about the same, inetd shows that monitoring overhead is
about 30%, which is considered acceptable for today’s high-
performance computers.

C. Overhead for CEM

We measured the CEM overhead and evaluated it by
manually setting a vulnerable scope that only contained
one library function. In this evaluation, Belem rollbacks the
monitored process to the latest checkpoint whenever the
library function is called. We measured the overheads of
IPS and CEM on the machine with Intel Pentium4 3.0GHz
processor and 1GByte of RAM running CentOS 5.4 with
kernel 2.6.17.8, and show the monitoring overhead result
for each vulnerability scope in Table IV. When Belem
didn’t monitor the process, the execution time was about
6 usec, and when it did monitor the process, the execution
time was about 400 usec. From this result, the monitoring
overhead for each vulnerability scope is estimated to be
about 400 usec. The monitoring overhead details are that
the overhead at the IPS is about 200 usec and about 130
usec for the fork operation as a checkpoint. CEM is only
performed in a vulnerable scope after the IPS detects an
attack, and the scope is narrowed after multiple attacks.
For this mechanism, the Belem performance should be
adequate in acute situations where threats such as zero-day
attacks exist. Future works include decreasing overhead by
improving the checkpoint method.

VI. CONSIDERATION

In this section, we discuss how to defend attacks directed
at Belem by imagining a situation where an attacker invades
a process after learning the process is protected by Belem.

A. Mimicry Attack

Attacks that mimic regular execution tamper with the
call stack and/or the call stack histories and cause Belem
to misjudge that the victim process runs along the regular
execution rule. We discuss these mimicry attacks below.

Attacks disguised as call stacks exist [11]. Therefore,
an attack disguised as a CSH against Belem is possible.
However, realizing such attack requires that the call order
of library functions, return addresses, and caller addresses
must conform to those of the RER. Moreover, system-calls
that attackers can execute are limited to what is given in
the rule. Therefore, the actions that attackers can mount are
restricted.

Belem makes a CSH each time a library function is
called. If an attacker tampers with the call stack that cannot
be transformed from the previously confirmed state, this
malicious attempt can be detected by the inconsistency
between the CSH and the RER. For this reason, tampering
with the call stack before the previous library function call is
impossible. Next, Belem confirms and deletes the CSH each
time a system-call is executed. This produces a tampered
CSH that is limited to one CSH after the previous system-
call. If another history is tampered with, an attack can be
detected by the inconsistencies between the RER and the
CSH. Consequently, for any situations, the execution state
cannot be returned to its state before the previous system-
call. Tampering attacks are limited within the interval of
consecutive system-calls.

Against tampering with the call stack, we can decrease
the possibility of such tampering by concealing the CSH’s
address by randomizing it. However, since libelem needs the
address to update the CSH, it must have the address itself.
But the address must also be concealed. To defend against
this attack, we randomize the libelem address and use the
GOT [12][13] method. We prohibit references to the memory
layout of the process by a proc file system to prevent leaks
of addresses to other processes. CSH can be protected by
these solutions.

As discussed above, some attacks may occur by tamper-
ing, but the operations that can be performed by attackers are
limited. Moreover, Belem restricts the possible transferring
within the interval of consecutive system-calls and library
calls. This greatly complicates attacks. In addition, the
randomizing memory layout parries attacks by making it
difficult to determine the return addresses.

B. Invalidating attacks against Belem’s protection mecha-
nism

Belem needs correct RERs to detect intrusions because
some attacks may invalidate the IPS by making the rule
incorrect.

There may be an attack against Belem that modifies
the RER to perform arbitrary attacks. If the modifications
succeed, a malicious code can call any library functions
needed for its attempts. To prevent this attack, an executable
binary with a RER is combined and signed. The combined
file is signed by those who compiled the execution binary or
who can confirm the identity of the binary (e.g., a distributor
of a Linux package). Public keys, which are needed for



electronic signatures, can be acquired from a web site or
a directory from those who compile the code. Belem can
protect a distributed RER from this.

To prevent tampering with the RER while the correspond-
ing binary is running, the Belem kernel prohibits anyone
from writing to an address range where the RER is being
loaded. Moreover, against changing the access right by
mprotect(), Belem kernel prohibits changing the access right
of the address range. These countermeasures allow us to
protect the RER when the corresponding binary is running.

VII. CONCLUSION

We discussed Belem, which has high detectable IPSs and
CEMs. It can inspect process states in detail by hooking li-
brary functions and decrease monitoring overhead by storing
a CSH in a user memory space. Since Belem can track more
detailed order of function calls than the existing systems, it
can defend itself from an attack that tampers with executing
states as regular states and protect a computer from threats
such as zero-day attacks.

In the evaluations, the increase of the execution time when
Belem monitors execution was only about 30%, which is
acceptable overhead. We evaluated the ANTs of applications
to show that Belem can restrict the transferring more rigidly
with FKTM.

We described our CEM with a RER. CEM can grasp
an accurate flow of execution before an attack without re-
execution.

Our future work will examine our system with practi-
cal exploits and support transferring caused by a function
pointer and longjump.

REFERENCES

[1] D. Wagner and D. Dean, “Interusion detection via static
analysis,” in IEEE Symposium on Security and Privacy, 2001,
pp. 144–155.

[2] H.H.Feng, O.M.Kolesnikov, P.Fogla, W.Lee, and W.Gong,
“Anomaly detection using call stack information,” in IEEE
Symposium on Security and Privacy, 2003, pp. 62–77.

[3] H. Abe, Y. Oyama, M. Oka, and K. Kato, “Optimization
of intrusion detection system based on static analyses (in
japanese),” IPSJ Journal, vol. 45, no. SIG 3(ACS 5), pp. 11–
20, 2004.

[4] G. S.Kc and A. D.Keromytis, “e-nexsh: Achieving an effec-
tively non-executable stack and heap via system-call polic-
ing,” in Proceedings of the 21st Annual Computer Security
Applications Conference (ACSAC), 2005, pp. 288–302.

[5] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis, “Building a reactive immune system for software
services,” in USENIX Annual Technical Conference, General
Track, 2005, pp. 149–161.

[6] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating
bugs as allergies—a safe method to survive software failures,”
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), vol. 39, no. 5, pp. 235–248, 2005.

[7] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos, D. Brum-
ley, Y. Zhou, and D. Song, “Sweeper: A lightweight end-to-
end system for defending against fast worms,” in In EuroSys’
07, 3 2007.

[8] S. Stelios, L. Oren, P. Carlos, V. Nicolas, N. Jason, and K. A.
D., “Assure: automatic software self-healing using rescue
points,” in ASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming lan-
guages and operating systems, 2009, pp. 37–48.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer, “Ccured in the real world,” in PLDI ’03: Proceed-
ings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, 2003, pp. 232–244.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “Stack-
guard: Automatic adaptive detection and prevention of buffer-
overflow attacks,” in Proceedings of the 7th USENIX Security
Conference, jan 1998, pp. 63–78.

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Automating mimicry attacks using static binary analysis,” in
14th USENIX Security Symposium, 2005, pp. 161–176.

[12] U. Drepper, “How to write shared libraries,”
http://people.redhat.com/drepper/ dsohowto.pdf, 2006.

[13] Y. Furuya, S. Saito, and H. Matsuo, “Implementation of
protecting program behavior rules for intrusion prevention
system (in japanese),” in IPSJ SIG Technical Report, vol.
2009-OS-112, no. 7, 2009.


