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ABSTRACT

This paper proposes a technique for constructing independent
parameter tying structures of mean and variance in HMM-
based speech synthesis. Conventionally, mean and variance
parameters are assumed to have the same tying structure.
However, it has been reported that a clustering technique
of mean vectors while tying all variance matrices improves
the quality of synthesized speech. This indicates that mean
and variance parameters should have different optimal tying
structures. In the proposed technique, the decision trees for
mean and variance parameters are simultaneously grown by
taking into account the dependency on mean and variance
parameters. Experimental results show that the proposed
technique outperforms the conventional one.

Index Terms— speech synthesis, hidden Markov models,
decision trees, context clustering

1. INTRODUCTION

An HMM-based speech synthesis system has been proposed
to enable machines to speak naturally like humans [1, 2].
Speech parameters such as spectrum, excitation, and duration
depend on a variety of contextual factors such as phoneme
identities, accent, parts-of-speech, etc. In the HMM-based
speech synthesis system, context dependent models are gen-
erally used to capture these contextual factors. If more combi-
nations of these contextual factors are taken into account, we
can obtain more accurate models. However, as the number of
contextual factors increases, the number of possible combina-
tions also increases exponentially. Consequently, it is difficult
to robustly estimate model parameters due to the lack of the
training data. Furthermore, it is impossible to cover every
possible combination of contextual factors for a finite set of
the training data. Various parameter tying techniques have
been proposed to prevent this problem. A decision tree based
context clustering technique has been widely used [3]. With
this technique, top-down clustering is performed to maximize
the likelihood of model parameters with respect to the train-
ing data by using questions about contexts. Then, parameters
of all states belonging to the same leaf node are tied. Unseen
models can be generated by traversing the decision trees.
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Fig. 1. Example of parameter tying structures constructed
with the conventional and proposed techniques.

Conventionally, an HMM stream-level tying structure is
constructed in HMM-based speech synthesis, i.e., mean vec-
tors and variance matrices have exactly the same parameter
tying structure. However, it may not be always appropri-
ate that mean and variance parameters have the same tying
structure. As an example, we confirmed the effectiveness of
a technique for context clustering mean vectors while tying
all variance matrices [4]. In this technique, the synthesized
speech can be expected to improve by constructing different
tying structures for both mean and variance parameters. How-
ever, some degree of freedom for variance parameters may be
necessary for improving the quality of synthesized speech.

In this paper, we assume that both mean and variance pa-
rameters have their own tying structure and examine the con-
struction of appropriate parameter tying structures. Figure 1
shows an example of parameter tying structures constructed
with the conventional and proposed techniques. In the clus-
tering algorithm, it is necessary to simultaneously construct
each parameter tying structure due to the dependency on mean
and variance parameters. Although such a context clustering
algorithm can be derived by expanding the conventional con-
text clustering algorithm, we derive the algorithm using the
fact that simultaneous context clustering of mean and vari-
ance parameters can be regarded as a special case of context
clustering in additive structure models [5].

The rest of this paper is organized as follows. Section 2
describes a context clustering technique for both mean and
variance parameters. The experimental conditions and results
are presented in Section 3. Concluding remarks and future
work are presented in Section 4.



2. INDEPENDENT TYING STRUCTURES FOR
MEAN AND VARIANCE PARAMETERS

In this section, we describe a context clustering technique for
both mean and variance parameters. First, we explain the
additive structure models that have multiple decision trees.
Next, an optimization algorithm of independent mean and
variance parameter tying structures is shown as a special case
of the additive structure models.

2.1. Additive Structure Models

In additive structure models, an acoustic feature vector ot at
time t is generated by the sum of additive components:

ot =
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n=1

o
(n)
t , (1)

where o
(n)
t denotes the n-th additive component. If each com-

ponent is independent and generated according to a Gaussian
distribution, the probabilistic density function of acoustic fea-
tures is represented by the convolution of the additive compo-
nents [6] so that
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where µ
(n)
ct and Σ(n)

ct
are respectively the mean vector and

variance matrix of the n-th component o
(n)
t given a context

ct.
Since each additive component o

(n)
t has different context

dependencies, we assume that each component has a different
decision tree that represents tying structures of model param-
eters µct

and Σct .

2.2. Proposed Model Structure

In additive structure models, an acoustic feature vector is gen-
erated by the sum of additive components. In this paper, an
acoustic feature vector ot is generated by the sum of two com-
ponents, i.e., o

(m)
t and o

(v)
t :

ot = o
(m)
t + o

(v)
t . (3)

If each component is independent and generated according
to a Gaussian distribution, each component usually has mean
and variance parameters. In this paper, it is assumed that o

(m)
t

is generated from a Gaussian distribution that has only a mean
parameter and zero variance and o

(v)
t is generated from one

that has only a variance parameter and zero mean. In this

case, the probabilistic density function of the acoustic feature
is represented by the convolution of these two components so
that

o
(m)
t ∼ N (µct

,0), (4)

o
(v)
t ∼ N (0,Σct), (5)

P (ot | ct, λ) = N (ot |µct
,Σct). (6)

Assuming that each component has a different decision tree,
independent parameter tying structures of mean and variance
can be represented.

2.3. Parameter Estimation for the proposed technique

In this model structure, the Maximum Likelihood (ML) pa-
rameters can be estimated with the Expectation Maximiza-
tion (EM) algorithm. In the E-step, since the convolved out-
put probability distribution becomes a Gaussian distribution,
the standard forward-backward algorithm and the Viterbi al-
gorithm can simply be applied as in standard HMMs.

Using the statistics obtained by the E-step, the Q-function
with respect to the output probability distribution can be writ-
ten as

Q =
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t=1

∑
c∈C
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>
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where K is the dimensionality of feature vectors and C de-
notes all contexts observed in the training data. The statistics
with respect to context c are represented by (̃·)c and each of
the statistics is calculated as follows:

T̃c =
T∑

t=1

γt(c), µ̃c =
1
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γt(c)ot, (8)
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>

, (9)

where γt(c) is the state occupancy probability and the state
index is ignored for simplicity of notation.

By setting the first partial derivative of Q function with
respect to an arbitrary mean vector or variance matrix, the
ML parameters are given as follows:
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where n(m), n(v) are respectively the number of clusters in
mean and variance parameter trees, and φn(·) denotes the con-
texts included in the n(·)-th cluster.

It can be seen from the Eqs. (10) and (11) that the update
of µn(m) and Σn(v) requires the parameters of the other clus-
ters. Hence, all parameters of all trees have dependencies on
each other to compose the output probabilities; therefore, all
parameters of all trees should be estimated simultaneously.
Thus, iterative updates are needed for estimating mean and
variance parameters until a convergence.

2.4. Simultaneous Context Clustering for Mean and Vari-
ance Parameters

In the context clustering, the optimal parameter tying struc-
tures are given by maximizing Eq. (7). However, it is neces-
sary to simultaneously construct each parameter tying struc-
ture due to the dependency on mean and variance parameters.
Since this problem corresponds to a problem of estimating
parameter tying structures of additive components o

(m)
t and

o
(v)
t , appropriate parameter tying structures of mean and vari-

ance parameters are constructed with simultaneous context
clustering in additive structure models [5]. The procedure for
the proposed context clustering algorithm is as follows.

Step 1. The root nodes of the two trees of mean and variance
parameters are created.

Step 2. Questions at all leaf nodes of two trees are evaluated.
The likelihood after the node is split is calculated by
estimating the ML parameters of all leaf nodes of all
trees.

Step 3. The pair of a node and question that gives the max-
imum likelihood is selected, and the node is split into
two by applying the question. The model parameters of
all leaf nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is
below a predefined threshold, stop the procedure. Oth-
erwise, go to Step 2.

The decision trees of mean and variance parameters can
be simultaneously constructed with this technique. Further-
more, we can independently control the size of mean and

variance decision trees with the the proposed technique by ad-
justing the weights in the MDL criterion. Thus, the proposed
context clustering would construct more appropriate parame-
ter tying structures than the conventional one.

3. EXPERIMENTS

3.1. Experimental conditions

The first 450 sentences of the phonetically balanced 503 sen-
tences the ATR Japanese speech database B-set, uttered by
male speaker MHT, were used for training. The remaining
53 sentences were used for evaluation. The speech data was
down-sampled from 20 to 16 kHz and windowed at a frame
rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and F0 feature
vectors. The spectrum parameter vectors consisted of 39
STRAIGHT mel-cepstral coefficients [7] including the zero
coefficient, their delta and delta-delta coefficients. The ex-
citation parameter vectors consisted of log F0, its delta and
delta-delta.

A five-state, left-to-right, no-skip structure with diagonal
covariance matrices was used for the hidden semi-Markov
model. We applied the proposed context clustering technique
for mean and variance parameters to only the spectrum pa-
rameters. The conventional and proposed techniques have the
same tying structures for the excitation parameters. The MDL
criterion was used to control the size of the tree of the conven-
tional technique and the mean parameter tree of the proposed
technique. We changed the heuristic weight for the penalty
term (Eq. (18) in [3]) to construct the variance parameter tree
of the proposed technique. The weights used here were 4.0,
2.0, and 1.0. In addition, we compared the proposed tech-
nique with a technique for tying variance parameters in each
state of HMMs as conventional one1.

3.2. Experimental results

Table 1 lists the number of leaf nodes and the total number
of parameters for each technique. In this table, Baseline is
the conventional technique, TieVar is the technique for tying
variance parameters in each state of HMMs, and MDL4.0,
MDL2.0, and MDL1.0 respectively represent the proposed
technique with 4.0, 2.0, and 1.0 weights of the MDL criterion.
Although leaf nodes have mean and variance parameters in
Baseline, in the other techniques leaf nodes have only param-
eters of either. First, it can be seen from the table that MDL1.0
has more mean parameters and less variance parameters than
Baseline. This indicates that the proposed technique con-
structs decision trees that are appropriately sized for both
mean and variance parameters. Next, MDL2.0 and MDL4.0

1In [4], variance parameters are tied to one in all states of HMMs. In this
paper, we assume that the technique with the enough big weight of the MDL
criterion in the proposed technique is the conventional one.



Table 1. Number of leaf nodes and total number of parame-
ters.

Number of leaf nodes The total number of
Mean Variance parameters

Baseline 809 809 194160
TieVar 1316 5 158520

MDL4.0 1255 147 168240
MDL2.0 1249 247 179520
MDL1.0 1235 403 196560

have less variance parameters and slightly more mean param-
eters in the proposed technique. This means that the mean
parameter decision tree was constructed to compensate for
less variance parameters.

A subjective listening test was conducted to evaluate qual-
ity of synthesized speech. The subjects were asked to rate
the naturalness of the synthesized speech on a scale from one
(completely unnatural) to five (natural). The subjects were 10
Japanese. Twenty sentences were randomly chosen from the
evaluation sentences. Figure 2 plots the experimental results.
In this figure, although TieVar and MDL4.0 obtained almost
the same score, the proposed technique with the small weight
of MDL criterion achieved better subjective scores than the
conventional one. This indicates that the proposed technique
constructed the optimal tying structures for each of mean and
variance parameters. It can be seen from the table 1 that al-
though the total number of parameters is almost the same in
Baseline and MDL1.0, their balance between the number of
mean and variance parameters are different. Even though this
indicates that mean parameters are relatively more important
than variance parameters, some degree of freedom for vari-
ance parameters is necessary for improving the quality of syn-
thesized speech.

4. CONCLUSIONS

In this paper, we proposed an optimization algorithm of in-
dependent mean and variance parameter tying structures for
HMM-based speech synthesis. The proposed technique con-
structed simultaneously tying structures for both mean and
variance parameters using context clustering algorithm in ad-
ditive structure models. In the experiments, the proposed
technique outperformed the conventional one. Investigation
of the appropriate size of the trees will be future work.
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Fig. 2. Mean opinion scores for synthesized speech obtained
by the conventional and proposed techniques.
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