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ABSTRACT 
 
The parameter generation algorithm considering global 
variance (GV) for HMM-based speech synthesis has proved 
to be effective against the over-smoothing problem. 
However, the correlation between dimensions of parameter 
vector is not sufficiently considered in the current GV 
model. For some parameters, e.g., Line Spectral Pairs (LSP), 
the difference of adjacent LSPs has the strong influence on 
the spectral envelop. Considering this important feature, the 
paper proposes a GV modeling on the difference of adjacent 
LSPs, i.e., GV on frequency domain delta LSP. By 
improving the GV likelihood on frequency domain delta 
LSP, the over-smoothing effect of generated parameter 
trajectory is better alleviate than conventional one. The 
result of a perceptual evaluation shows the proposed method 
outperforms the conventional one, and the naturalness of 
synthetic speech is improved. 
 

Index Terms— speech synthesis, hidden Markov 
model, global variance 
 

1. INTRODUCTION 
 
The Hidden Markov Model (HMM)-based speech synthesis 
has been widely used in recent years. In this method, the 
pitch, spectrum and duration are modeled simultaneously 
within a unified framework [1]. By taking account of 
constraints between the static and dynamic features, smooth 
speech parameter trajectories can be generated [2]. The 
synthetic speech is highly intelligible and smooth [3] [4]. 

However, the generated excitation and spectral 
parameters based on conventional speech parameter 
generation algorithm [2] are often over-smoothed. The 
reconstructed speech using over-smoothed speech 
parameters sounds muffled. Many methods have been 
proposed to alleviate this muffled effect, such as post-
filtering methods [4] [5], incorporating the stream of the 
difference of adjacent LSPs to HMM feature vector[6] ,the 
rich context model [7] and the conditional speech parameter 
generation algorithm [8], etc. A speech parameter 

generation algorithm considering global variance (GV) was 
also proposed to solve this problem [9]. In this method, a 
GV model was trained to model the variation of parameter 
trajectories at utterance level. The generated parameter 
sequence maximizes a likelihood based on not only an 
HMM likelihood but also a GV likelihood. The latter 
likelihood works as a penalty for reduction of the GV of the 
generated parameter trajectories. This method is proved to 
be effective against the over-smoothing problem and can 
improve the naturalness of synthetic speech [9]. However, 
the GV likelihood for each dimension of speech parameter 
is independent in [10]. Though a full covariance matrix of 
GV model can be trained, it’s still too loose to model the 
correlation between parameters. For spectral parameter like 
ne Spectral Pair (LSP), there’s strong correlation between 
adjacent LSPs. Better exploiting this property on modeling 
GV will achieves a better performance. In [10], a GV on 
power spectrum derived from LSPs is modeled. By 
establishing the relationship between power spectrum and 
LSPs, the correlation between LSPs is taken into account to 
some extent. However, the correlation still has not been 
sufficiently considered. 

In this paper, an improved parameter generation 
algorithm considering GV using LSPs as spectral parameter 
is proposed. Considering the property that the difference of 
adjacent LSPs can greatly affect the shape of spectral 
envelope, such as formant peak and formant bandwidth, a 
GV model on the difference of adjacent LSPs is built (for 
simplification, we call it GV model on frequency domain 
delta LSP). During the stage of speech parameter generation, 
this model works as a penalty for the reduction of GV of 
frequency domain delta LSP. Experimental results show the 
effectiveness of proposed method. 

The rest of this paper is organized as follows. In section 
2, the conventional parameter generation algorithm 
considering GV is reviewed. Section 3 describes the 
proposed GV model in details. In section 4 the evaluation 
result is presented. The conclusion is given in section 5. 
 

2. CONVENTIONAL PARAMETER GENERATOIN 
ALGORITHM CONSIDERING GV 



 
Assume a D-dimensional static feature vector 

T[ (1), (2), , ( ), , ( )]ttt t tc c c d c D= ⋅⋅⋅ ⋅⋅⋅c  at frame t and a static 
feature vector sequence T T T T T[ , , , , ]= ⋅⋅⋅ ⋅⋅⋅1 2 t Tc c c c c  over T 
frames, the GV is calculated by 
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At training stage, the GVs extracted from training 

sentences are used to train the GV model with single 
Gaussian distribution. During the stage of parameter 
generation, the optimum static feature parameter sequence 

*c  is derived by maximizing the following log-scaled 
likelihood  
 

ˆlog ( ) ( ( ) | )vL P Pω= ⎡ ⎤⎣ ⎦ Wc | Q v c, λ λ ,        (4) 

 
where the former probability represents the likelihood of 
HMM model λ , the latter one represents the likelihood of 
GV model vλ , ω  is the weight to balance these two 
likelihoods, Q̂  is the state sequence determined by 
maximizing the likelihood of state duration model, and W is 
a 3DT-by-DT velocity and acceleration matrix.  

The incorporation of GV likelihood into the total 
likelihood penalties the reduction of GV, and therefore can 
alleviate the over-smoothing effect on speech parameter 
sequences generated only by maximizing HMM likelihood. 
However, with the GV modeled on each dimension of static 
feature vector independently, the contribution of GV 
likelihood for each dimension is also independent. For 
spectral parameter like LSP which has strong correlation 
between adjacent dimensions, the conventional GV model is 
not idea. Though a full covariance matrix of GV model can 
be trained, it’s still too loose to model the correlation 
between dimensions. 
 

3. PROPOSED GV MODEL ON FREQUENCY 
DOMAIN DELTA LSP 

 
3.1. GV model on frequency domain delta LSP 
 
One useful property of LSPs is that the closer two adjacent 
LSPs are, the more resonant the vocal tract filter is at the 
corresponding frequency, which means the formant peak is 
sharper. This property has been exploited to perform the 
LSP-based formant enhancement [4]. Here, we take the 
advantage of this property by another way, i.e., building a 

GV model on frequency domain delta LSP. The generated 
speech parameters maximize the likelihood including 
conventional likelihood of HMM and likelihood of GV 
model on frequency domain delta LSPs. The latter 
likelihood works as a penalty for reduction of the GV of 
frequency domain delta LSPs. In this way, the over-
smoothing effect on spectral envelope reconstructed by 
generated LSPs can be better alleviated. 

Assume a D-dimensional static feature LSPs vector 
T[ (1), (2), , ( ), , ( )]ttt t tc c c d c D= ⋅⋅⋅ ⋅⋅⋅c at frame t, the ( 1D+ )-

dimensional delta LSPs vector 
T[ (1), (2), , ( ), , ( 1)]t t t t tc c c d c Dδ δ δ δ δ= ⋅⋅⋅ ⋅⋅⋅ +c  is calculated as 

follows 
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Note that the gain of linear predictive analysis is not 

included in the static feature vector tc  here, and it can be 
generated by conventional parameter generation method. 
The GV model on frequency domain delta LSP is defined as 
follows 
 

T( ) = [ (1), (2), , ( ), , ( 1)]v v v d v Dδ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +v c ,       (6) 
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A single Gaussian distribution  ( , )v vN Uμ  is trained to 

model the distribution of GV on frequency domain delta 
LSP, using the GV vectors calculated from each training 
sentence. 
 
3.2. Parameter generation considering GV on frequency 
domain delta LSP 
 
The speech parameters are generated by maximizing the 
following likelihood 
 

         

ˆlog ( ) ( ( ) | ) vL P P δ ωδ⎡ ⎤= ⎣ ⎦Wc | Q v c, λ λ ,       (9) 

 
where 

v
δλ is GV model and ω  is GV weight. The above 

likelihood can be further expanded as 
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where T T T T
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are the mean vector and covariance matrix of state sequence 
Q̂ , and K is independent of c .To determine the optimum 
parameter vector sequence *c , we can iteratively update c  by steepest descent algorithm, 
 

( 1) ( )

( )

i th i th

i th

Lα+ − −

−

∂
= +

∂ c=c
c c

c
 ,       (11) 

 
where  α  is the step size. With the likelihood L  defined in 
(10), the gradient in (11) can be calculated as 
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Since that only ( )v d  and ( 1)v d + are dependent on 

( )tc d , (14) can be simplified as 
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v
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4. EXPERIMENT 

 
4.1. Experimental conditions 
 
We used phonetically balanced 450 sentences from ATR 
Japanese speech database for training. Speech signals were 
sampled at 16kHz. The F0, spectral envelope and 
aperiodicity measure [11] were extracted by STRAIGHT 
[12] with a 5ms frame shift. The spectral envelope was then 
used to extract 40-order mel-LSPs and an extra gain 
dimension. A 5-state left-to-right ergodic multi-space 
probability distribution hidden-semi-Markov model (MSD-
HSMM) [13] structure was adopted to model each phoneme 
of Japanese. The feature vector consisted of log- scaled F0, 
mel-LSPs, aperiodicity measures, and their velocity and 
acceleration coefficients. Conventional GV model was 
trained for log-scaled F0s, gain of linear predictive analysis 

and aperiodicity measures. The proposed GV model was 
trained for LSPs. Single Gaussian distribution was used to 
model the distribution of GV. In the synthesis, firstly, the 
spectral envelope was reconstructed by generated LSPs. 
Then the speech was synthesized by STRAIGHT with 
generated F0, spectral envelope and aperiodicity measures.  

Three systems were compared in our experiment. 
· System A: LSPs were generated by conventional 

parameter generation method based on HMM likelihood. 
Then LSP-based formant enhancement was performed on 
the generated LSPs.  

· System B: LSPs were generated by parameter 
generation method with conventional GV model.  

·System C: LSPs were generated by proposed method. 
In system A, the factor of formant enhancement was set 

to 0.7. In system B, the weight ω  was set to 1/3T. In system 
C, the GV weight was set to 0.3T and iteration step was set 
to 0.01. To prevent the occurrences of the too close adjacent 
LSPs in system C, a minimum distance threshold 0.04 was 
set. The generated LSPs were checked and adjusted to 
satisfy the threshold. 
 
4.2. Subjective evaluation 
 
53 sentences out of the training set were synthesized by the 
three systems respectively. 10 out of the 53 test sentences 
were randomly selected for an AB comparison preference 
test. 10 Japanese listeners were forced to choose one which 
sounds more natural from each pair. The results of the 
preference test with 95% confidence interval are given in 
Fig. 1. 

Though the difference of adjacent LSPs is the target to 
adjust for both system A and C, the proposed parameter 
generation method which combines HMM likelihood and 
GV model likelihood is better than that of LSP-based 
formant enhancement which is performed only with an 
empirical formula. Actually, the naturalness of voice C is 
significantly better than A. For that the training data is very 
small, which is less than 1hour, sometimes one or several 
phones are not stable in voice A, which will be also not 
stable in voice C. However, the contrast between the stable 
and unstable parts of voice C is more intense than that of 
voice A. In such cases, many listeners prefer the latter. This 
is the reason why the preference of voice C to voice A is not 
as higher as we expected. If the trained HMMs are stable, 
the result will be further improved. 

The result of comparison between C and B indicates 
that the proposed method outperforms the conventional one. 
Due to the GV increasing on the difference of adjacent 
LSPs, the formant of reconstructed spectral envelope by 
proposed method is more enhanced than that by 
conventional one, which leads to a more articulate synthetic 
voice. An example of spectrum sequences generated by the 
three systems is shown in Fig. 2. As we can see, there’s no 
clear distinction between spectrums of voice A and B,  



 
Fig. 1 Preference scores of the three systems. 

 

 
Fig. 2 An example of spectrum sequences generated by the 

three systems. 
 

 
Fig. 3 An example of spectrum sequences generated by the systems 

C with different GV weight 
 
meanwhile, the formant structure of voice C is more 
enhanced than A and B. 

Another difference we found in the experiment was that 
the weight of conventional GV likelihood was not sensitive 
to the shape of generated spectral envelope. However, the 
weight of proposed GV likelihood was very sensitive. The 
larger the GV weight is, the more enhanced the formant 
structure is, as Fig. 3 shows. This also shows the strong 
effectiveness of proposed GV model on formant structure. 
However, the synthetic voice also sounds too sharp and 
unnatural when GV weight is too large. It is necessary to 
tune GV weight to balance the articulation and 
unnaturalness of synthetic voice.  
 

5. CONCLUSIONS 
 
In this paper, a GV modeling on frequency domain delta 
LSP is proposed, and the parameter generation with the new 
GV model is described in detail. The proposed method can 
alleviate the over-smoothing effect of generated spectral 
envelope better than the conventional method. The 
experimental results are promising and the proposed method 
outperforms the conventional one. Considering that the 

improvement is still not significant with the combination of 
conventional HMM and the proposed GV model, we will 
further attempt to add the stream of frequency domain delta 
LSP to HMM feature vector in the future. 
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