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ABSTRACT

This paper provides an analysis of the impacts of machine transla-
tion and speech synthesis on speech-to-speech translation systems.
The speech-to-speech translation system consists of three compo-
nents: speech recognition, machine translation and speech synthesis.
Many techniques for integration of speech recognition and machine
translation have been proposed. However, speech synthesis has not
yet been considered. Therefore, in this paper, we focus on machine
translation and speech synthesis, and report a subjective evaluation
to analyze the impact of each component. The results of these analy-
ses show that the naturalness and intelligibility of synthesized speech
are strongly affected by the fluency of the translated sentences.

Index Terms— speech synthesis, machine translation, speech-
to-speech translation, subjective evaluation

1. INTRODUCTION

In speech-to-speech translation (S2ST), the source language speech
is translated into target language speech. A S2ST system can help to
overcome the language barrier, and is essential for providing more
natural interaction. A S2ST system consists of three components:
speech recognition, machine translation and speech synthesis. In
the simplest S2ST system, only the single-best output of one com-
ponent is used as input to the next component. Therefore, errors
of the previous component strongly affect the performance of the
next component. Due to errors in speech recognition, the machine
translation component cannot achieve the same level of translation
performance as achieved for correct text input. To overcome this
problem, many techniques for integration of speech recognition and
machine translation have been proposed, such as [1, 2]. In these, the
impact of speech recognition errors on machine translation is alle-
viated by using N -best list or word lattice output from the speech
recognition component as input to the machine translation compo-
nent. Consequently, these approaches can improve the performance
of S2ST significantly. However, the speech synthesis component is
not usually considered. The output speech for translated sentences
is generated by the speech synthesis component. If the quality of
synthesized speech is bad, users will not understand what the sys-
tem said: the quality of synthesized speech is obviously important
for S2ST and any integration method intended to improve the end-
to-end performance of the system should take account of the speech
synthesis component.

The EMIME project [3] is developing personalized S2ST, such
that the a user’s speech input in one language is used to produce
speech output in another language. Speech characteristics of the
output speech are adapted to the input speech characteristics using

cross-lingual speaker adaptation techniques [4]. While personaliza-
tion is an important area of research, this paper focuses on the impact
of the machine translation and speech synthesis components on end-
to-end performance of an S2ST system. In order to understand the
degree to which each component affects performance, we investi-
gate integration methods. We first conducted a subjective evaluation
divided into three sections: speech synthesis, machine translation,
and speech-to-speech translation. Various translated sentences were
evaluated by using N -best translated sentences output from the ma-
chine translation component. The individual impacts of the machine
translation and the speech synthesis components are analyzed from
the results of this subjective evaluation.

2. RELATED WORK
In the field of spoken dialog systems, the quality of synthesized
speech is one of the most important features because users cannot
understand what the system said if the quality of synthesized speech
is low. Therefore, integration of natural language generation and
speech synthesis has been proposed [5, 6, 7].

In [5], a method was proposed for integration of natural language
generation and unit selection based speech synthesis which allows
the choice of wording and prosody to be jointly determined by the
language generation and speech synthesis components. A template-
based language generation component passes a word network ex-
pressing the same content to the speech synthesis component, rather
than a single word string. To perform the unit selection search on
this word network input efficiently, weighted finite-state transducers
(WFSTs) are employed. The weights of the WFST are determined
by join costs, prosodic prediction costs, and so on. In an experiment,
this system achieved higher quality speech output. However, this
method cannot be used with most existing speech synthesis systems,
because they do not accept word networks as input.

An alternative to the word network approach is to re-rank sen-
tences from the N -best output of the natural language generation
component [6]. N -best output can be used in conjunction with any
speech synthesis system although the natural language generation
component must be able to construct N -best sentences. In this
method, a re-ranking model selects the sentences that are predicted
to sound most natural when synthesized with the unit selection based
speech synthesis component. The re-ranking model is trained from
the subjective scores of the synthesized speech quality assigned in a
preliminary evaluation and features from the natural language gener-
ation and speech synthesis components such as word N -gram model
scores, join cost, and prosodic prediction costs. Experimental results
demonstrated higher quality speech output. Similarly, a re-ranking
model for N -best output was also been proposed in [7]. In contrast
to [6], this model used a much smaller data set for training and a



Table 1. Example of N -best MT output texts
N Output text

Reference We can support what you said.
1 We support what you have said.
2 We support what you said.
3 We are in favour of what you have said.
4 We support what you said about.
5 We are in favour of what you said.

larger set of features, but reached the same performance as reported
in [6].

These are integration methods for natural language generation
and speech synthesis for spoken dialog systems. In contrast to these
methods, our focus is on the integration of machine translation and
speech synthesis for S2ST. To this end, we first conducted a subjec-
tive evaluation – using Amazon Mechanical Turk [8] – then analyzed
the impact of machine translation and speech synthesis on S2ST.

3. SUBJECTIVE EVALUATION
3.1. Systems
In the subjective evaluation, a Finnish-to-English S2ST system was
used. To focus on the impacts of machine translation and speech
synthesis, the correct sentences were used as the input of the machine
translation component instead of the speech recognition results.

The system developed in [9] was used as the machine translation
component of our S2ST system. This system is HiFST: a hierar-
chical phrase-based system implemented with weighted finite-state
transducers [10]. 865,732 parallel sentences from the EuroParl cor-
pus [11] were used as training data, and 3,000 parallel sentences
from the same corpus was used as development data. When the sys-
tem was evaluated on 3,000 sentences in [9], it obtained 28.9 on the
BLEU-4 measure.

As the speech synthesis component, an HMM-based speech syn-
thesis system (HTS) [12] was used. 8,129 sentences uttered by one
male speaker were used for training acoustic models. Speech signals
were sampled at a rate of 16 kHz and windowed by an F0-adaptive
Gaussian window with a 5 ms shift. Feature vectors comprised
138-dimensions: 39-dimension STRAIGHT [13] mel-cepstral co-
efficients (plus the zero-th coefficient), log F0, 5 band-filtered ape-
riodicity measures, and their dynamic and acceleration coefficients.
We used 5-state left-to-right context-dependent multi-stream MSD-
HSMMs [14, 15]. Each state had a single Gaussian. Festival [16]
was used for deriving full-context labels from the text; the labels
include phoneme, part of speech (POS), intonational phrase bound-
aries, pitch accent, and boundary tones.

The test data comprised 100 sentences from EuroParl corpus not
included in the machine translation training data. The machine trans-
lation component output the 20-best translations for each input sen-
tence, resulting in 2,000 translated sentences. To these, we added
reference translations to give a total of 2,100 sentences to use in the
evaluation. Table 1 shows an example of top 5-best translated sen-
tences.

3.2. Evaluation procedure
The evaluation comprised 3 sections: In section 1, speech synthesis
was evaluated. Evaluators listened to synthesized speech and as-
signed scores for naturalness (TTS). We asked evaluators to assign

Table 2. Correlation coefficients between TTS or WER and MT
scores

MT-Adequacy MT-Fluency
TTS 0.12 0.24
WER -0.17 -0.25

a score without considering the correctness of grammar or content.
In section 2, speech-to-speech translation was evaluated. Evalua-
tors listened to synthesized speech, then typed in the sentence; we
measured their word error rate (WER). After this, evaluators as-
signed scores for “Adequacy” and “Fluency” of the typed-in sen-
tence (S2ST-Adequacy and S2ST-Fluency). Here, “Adequacy” in-
dicates how much of the information from the reference transla-
tion sentence was expressed in the sentence and “Fluency” indicates
that how fluent the sentence was [17]. These definitions were pro-
vided to the evaluators. “Adequacy” and “Fluency” measures do
not need bilingual evaluators; they can be evaluated by monolingual
target language listeners. These measures are widely used in ma-
chine translation evaluations, e.g., conducted by NIST and IWSLT.
In section 3, machine translation was evaluated. Evaluators didn’t
listen to synthesized speech. They read translated sentences and as-
signed scores of “Adequacy” and “Fluency” for each sentence (MT-
Adequacy and MT-Fluency).

TTS, S2ST-Adequacy, S2ST-Fluency, MT-Adequacy, and
MT-Adequacy were evaluated on five-point mean opinion score
(MOS) scales. Evaluators assigned scores to 42 test sentences in
each section. 150 people participated in the evaluation.

3.3. Impact of MT and WER on S2ST
First, we analyzed the impact of the translated sentences and the
intelligibility of synthesized speech on S2ST. WER averaged across
all test samples was 6.49%. The correlation coefficients between
MT-Adequacy and S2ST-Adequacy and between MT-Fluency and
S2ST-Fluency were strong (0.61 and 0.68, respectively).

The correlation coefficient between WER and S2ST-Adequacy
was −0.21, and the correlation coefficient between WER and S2ST-
Fluency was −0.20. These are only weak correlations. The impact
of the translated sentences on S2ST is larger than the impact of the
intelligibility of the synthesized speech, although this does affect the
performance of S2ST.

3.4. Impact of MT on TTS and WER
Next, we analyzed the impact of the translated sentences on the nat-
uralness and intelligibility of synthesized speech. Table 2 shows the
correlation coefficients between TTS and MT scores, and the cor-
relation coefficients between WER and MT scores. MT-Fluency
score has a stronger correlation with both TTS score and WER than
MT-Adequacy score. That is, the naturalness and intelligibility of
synthesized speech were more affected by the fluency of the trans-
lated sentences than by the content of them. Therefore, next we
focused on the relationship between the fluency of the translation
output and the synthesized speech.

Figure 1 shows boxplots of TTS score divided into four groups
by MT-Fluency score. In this figure, the red and green lines rep-
resent the median and average scores of the groups, respectively.
This figure illustrates that the median and average scores of TTS
are slightly improved by increasing MT-Fluency score. This is pre-
sumed to be because the speech synthesis text processor (Festival, in
our case) often produced incorrect full-context labels due to the er-
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Fig. 1. Boxplots of TTS score divided into four groups by MT-
Fluency score
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Fig. 2. Boxplots of WER score divided into four groups by MT-
Fluency score

rors in syntactic analysis of disfluent and ungrammatical translated
sentences. In addition, the psychological effect called “Llewelyn re-
action” [18] appears to affect the results. The “Llewelyn reaction”
is that evaluators perceive lower speech quality when the sentences
are less fluent or the content of the sentences is less natural, even
if the actual quality of synthesized speech is same. Therefore, we
conclude that the speech synthesis component will tend to generate
more natural speech as the translated sentences become more flu-
ent. Figure 2 shows the boxplots of WER divided into four groups
by MT-Fluency score. From this figure, it can be seen that the
median and average scores of WER improve and the variance of
boxplots shrinks, with increasing MT-Fluency score. This is pre-
sumed to be because evaluators can predict the next word when the
translated sentence does not include unusual words or phrases, in
addition to the naturalness of synthesized speech being better when
the sentences were more fluent, as previously described. Therefore,
the intelligibility of synthesized speech is improved as the translated
sentences become more fluent, even though all sentences are synthe-
sized by the same system.

3.5. Correlation between MT Fluency and N -gram scores
We have shown that the naturalness and intelligibility of the synthe-
sized speech are strongly affected by the fluency of sentences. It is
well known in the field of machine translation that the fluency of
translated sentences can be improved by using long-span word-level

Table 3. Table of correlation coefficients between MT-Fluency and
word N -gram scores

1-gram 2-gram 3-gram 4-gram 5-gram
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−8 −7 −6 −5 −4 −3 −2 −1
1

2

3

4

5

Word 5−gram

M
T

-F
lu

e
n

cy

Fig. 3. Correlation between bin-averaged MT-Fluency and word
5-gram scores (r = 0.87, p < 0.01)

N -grams. Therefore, we computed the correlation coefficient be-
tween MT-Fluency and word N -gram scores. The word N -gram
models we used were created using the SRILM toolkit [19], from
the same English sentences used for training the machine translation
component. Kneser-Ney smoothing [20] was employed.

Table 3 shows the correlation coefficient between MT-Fluency
and word N -gram scores. The word 5-gram gave the strongest corre-
lation coefficient of 0.44. Although there were weak correlations be-
tween MT-Fluency and word N -gram scores on raw data, it was dif-
ficult to find strong correlation coefficients. Therefore, MT-Fluency
scores were divided into 200 bins according to the word 5-gram
score and subsequently average MT-Fluency scores for each bin
were computed. In Figure 3, the averaged MT-Fluency scores and
word 5-gram scores are shown, and the regression line is illustrated
by the red line. Now, the correlation coefficient is 0.87. This result
indicates that the word 5-gram score is an appropriate feature for
measuring the average perceived fluency of translated sentences.

3.6. Correlation between TTS and N -gram scores
P.563 is an objective measure for predicting the quality of natural
speech in telecommunication applications [21]. However, we found
no correlation between TTS score and P.563. So, we looked for cor-
relations with other objective measures. It is well known that speech
synthesis systems generally produce better quality speech when the
input sentence is in-domain (i.e., similar to sentences found in the
training data). Therefore, we computed the correlation coefficient
between TTS and phoneme N -gram score of the sentence being
synthesized; the N -gram score is a measure of the coverage pro-
vided by the training data for that particular sentence. The phoneme
N -gram model was estimated from the English sentences used for
training the speech synthesizer. Table 4 shows the correlation co-
efficients of TTS and phoneme N -gram scores; the 4-gram model
gave the strongest correlation coefficient of 0.20. Figure 4 shows
the bin-averaged TTS and phoneme 4-gram scores. Now, the cor-
relation coefficient is 0.81. Although the correlation between TTS
and phoneme N -gram scores was weak on the raw data, there is a



Table 4. Table of correlation coefficients between TTS and
phoneme N -gram score
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Fig. 4. Correlation between bin-averaged TTS and phoneme 4-gram
scores (r = 0.81, p < 0.01)

strong correlation between bin-averaged TTS and phoneme N -gram
scores. This result suggests that the phoneme 4-gram score is a good
predictor of the expected naturalness of synthesized speech.

The ability to predict average naturalness of synthetic speech be-
fore generating the speech could be used in other applications, such
as sentence selection (as in this work, or in natural language gener-
ation with speech output), voice selection before generating speech.
We hope to investigate this further in the future.

4. CONCLUSION
This paper has provided an analysis of the impacts of machine trans-
lation and speech synthesis on speech-to-speech translation. We
have shown that the naturalness and intelligibility of the synthesized
speech are strongly affected by the fluency of the translated sen-
tences. The intelligibility of synthesized speech is improved as the
translated sentence become more fluent. In addition, we found that
long-span word N -gram scores correlate well with the perceived
fluency of sentences and that phoneme N -gram scores correlate
well with the perceived naturalness of synthesized speech. Our fu-
ture work will include investigations into the integration of machine
translation and speech synthesis using word N -gram and phoneme
N -gram scores.
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