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Abstract 
 

Since the problem of disclosing personal 

information on the Internet continues to increase, 

many anonymous communication systems have been 

studied. Such systems usually use directory servers to 

manage the public keys of participant nodes and such 

node information as IP address, port number, and 

NodeID. However, this reduces anonymity because the 

query messages for the directory servers can give 

adversaries route information of anonymous 

communication channels. To solve this problem, 

applying ID-Based Encryption has been proposed, but 

in the existing method, directory servers continue to 

exist. 

Our novel method, which can grasp assigned 

NodeIDs without directory servers, can be applied to 

existing Distributed Hash Table (DHT)-based 

anonymous communication systems. Our proposal 

enhances scalability. This paper describes the 

structure of our proposed system and its application. 

 

1. Introduction 
 

As Internet proliferation continues, it provides more 

and more services, some of which need high 

confidentiality, including medical treatment and 

psychological counseling. Hence, research is intensely 

investigating anonymous communication systems to 

ensure anonymity on the Internet. Anonymous 

communication must satisfy the following three 

requirements [11]: a source node cannot be identified, 

a destination node cannot be identified, and the data 

flow cannot be traced. These properties are collectively 

called anonymity, and communication with anonymity 

is called anonymous communication. Furthermore, 

communication channels with anonymous 

communication are called anonymous communication 

channels. 

A typical technique to realize anonymous 

communication is a multistage relaying method that 

uses such multiple encryptions as Onion Routing [4, 

16]. This method sends messages to a destination by 

multiple relay nodes, and a source multiply encrypts 

messages using the public keys of relay nodes and the 

destination to conceal the final destination from all 

relay nodes. Relay nodes can only get the next-hop 

node after decrypting the messages. 

The method requires a source to obtain the public 

keys and such node information of each relay node as 

IP address, port number, and NodeID. For that purpose, 

Cashmere [20], Bifrost [7], and Bluemoon [13] need 

directory servers to manage the public keys and node 

information. However, the method compromises 

anonymity because query messages for directory 

servers can reveal the routing information of 

anonymous communication channels to adversaries. 

This is obvious from research that infers client 

behavior from name resolution by DNS [5, 18]. 

To solve the first problem of obtaining public keys, 

anonymous communication with ID-Based Encryption 

(IBE) [2] has been proposed [6]. With IBE, 

communication for obtaining public keys can be 

omitted. However, sources must choose the NodeIDs, 

which are IDs for IBE, of all relay nodes before 

building new anonymous communication channels. 

But the sources do not know how many nodes have 

already joined and been assigned NodeIDs. Hence, 

they cannot choose any NodeIDs for relay nodes. 

Because Kate et al.’s proposal [6] requires directory 

servers to distribute assigned NodeIDs, it cannot 

remove directory servers from anonymous 

communication systems. Moreover, directory servers 

become bottlenecked and reduce scalability. We 

propose a novel method that can grasp the assigned 

NodeIDs without directory servers and improve 

scalability.  

The second problem is how to acquire the node 

information of the destination. Tor [3] introduces 

Introduction Points to solve it without directory servers. 

Introduction Points are nodes that arrange to meet 

sources and destinations. However, the solution 

reduces anonymity, because an Introduction Point and 



a destination share a one-on-one relationship. 

Therefore, the Introduction Point can learn the related 

destination. We expand Introduction Point to improve 

anonymity. 

In Section 2, we describe the outline and the 

problems of existing anonymous communication 

systems. Section 3 explains ID-based encryption and 

its problems. Section 4 introduces the details of our 

proposal. Section 5 describes how we apply it to 

existing Distributed Hash Table (DHT)-based 

anonymous communication systems. Section 6 

describes its implementation and performance analysis. 

Section 7 provides a conclusion. 

 

2. Related work and its problems 
 

This section outlines and describes the problems of 

existing anonymous communication systems. 

 

2.1. Multistage relay using multiple encryptions 
 

In this section, we describe existing anonymous 

communication methods using multistage relay and 

multiple encryptions. 

 

2.1.1. Outline. In IP communication, a source and a 

destination have to know each other’s IP addresses for 

communication. Hence, in anonymous communication 

over an IP to conceal the source and the destination, 

messages must be relayed by many nodes [4, 16]. 

No relay node can identify a source and a 

destination to protect anonymity with the multistage 

relay. However, messages must obviously be delivered. 

The realization of the above requires that each relay 

node only learn the node information of the nodes 

located before and after it on the anonymous 

communication channel. Public key cryptography 

solves this problem. Sources encrypt each piece of 

next-hop node information as routing information in 

the reverse order of the relaying. Relay nodes can only 

get their next-hop node. The relay nodes cannot 

identify other nodes, except themselves, the next-hop 

node, and the previous node on the channel. In the end, 

no relay nodes can learn the entire anonymous 

communication channel. The above outlines 

anonymous communication with multistage relay and 

multiple encryptions. This method is used by many 

anonymous communication systems [3, 4, 7, 8, 10, 19, 

20].  

 

2.1.2. Bifrost. Bifrost is an example of an anonymous 

communication system that combines multiple 

encryption and node management using DHT. Bifrost 

uses Chord [15] for DHT.  

Bifrost has the following three features. First, a 

source can locate an arbitrary destination position in an 

anonymous communication channel. Second, routes to 

and from a destination are difference. Third, Bifrost 

introduces a receiver area to reduce the processing 

time of message encryption and searching for a next 

node. A receiver area is a subspace of an ID space and 

consists of consecutive Chord IDs. The beginning node 

of a receiver area receives a message, which is 

repeatedly relayed to successors by nodes in the 

receiver area until the message reaches the receiver 

area’s end node. Finally, the end node of the receiver 

area sends the message to the beginning node of the 

next receiver area. A source can arbitrarily set the 

number of receiver areas and a beginning and ending 

nodes for them. 

The construction of anonymous communication 

channels in Bifrost is different from that in Tor, where 

a source constructs an anonymous communication 

channel by telescoping construction. By contrast, in 

Bifrost, a source can construct an anonymous 

communication channel by one round trip of one 

message. Hence, Bifrost has both construction and data 

messages. Construction message Mc consists of header 

Hc and body Bc. The header has shared keys between 

the source and relay nodes and the route information. 

The body has data to a destination. The header and 

body are separately encrypted. The structure of Mc is as 

follows:  
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where “|” is union. Pi is a public key of node i and Pi() 

represents encryption using Pi. Si is a shared key 

between a source and node i and Si() represents 

encryption using Si. IDi is an ID of the node i. HR, 

which is a reply header with reply route information 

differently from a route to a destination, is created by 

the source and used to reply by a destination. D 

represents a destination node, and N represents the Nth 

relay node, which is an end node of an anonymous 

communication channel. In general, D differs from N 

because a source can set an arbitrary destination 

position in an anonymous communication channel in 

Bifrost. 

The end nodes of each receiver area decrypt 

messages using their own private keys and send the 

messages to the next relay node in the next receiver 

area. The innermost messages are encrypted using a 

destination’s public key. Only the destination can 

decrypt it and receive the plain data. 

Reply construction message Mcr and relay header 

Hcr are created as follows:  
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where the nodes from T1 to Tn are relay nodes on the 

reply channel. The source, which is located the next of 

Ts (s<n) in the reply route, receives the reply message 

through the reply channel and gets the reply messages, 

which are enclosed in a reply body. Reply body Bcr is 

encrypted and relayed to the source by every reply 

relay nodes. The destination only encrypts a reply 

message, rmsg, once as follows: 

(rmsg).SB Dcr   

Eventually Bcr, which has reached the source, becomes:  

(rmsg))).(S(...SSB DTTcr s 1
  

Note that Bcr is encrypted on the relay nodes that 

successfully decrypted the corresponding header. In 

this way, the destination never learns about the shared 

keys used on the reply route. 

After the construction of an anonymous 

communication channel, a source communicates using 

data messages, which are sent by a constructed 

anonymous communication channel built by a 

construction message. Therefore, data messages only 

have body Bd and do not have a header for routing. The 

following is the structure of data message Md: 
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Each relay node decrypts the message and relays it. 

Only a destination can decrypt the message using SD 

and obtain msg. On the other hand, in a reply channel, 

the structure of relay data message Mdr is the same 

structure with Md and each relay node encrypts reply 

data body Bdr on the same way as reply construction 

message Bcr. 

 

2.2. Problems of node and public key management 
 

To construct an anonymous communication channel 

using multiple encryptions, a source first arbitrarily 

chooses some relay nodes. Hence, the source must 

obtain their public keys. There are three methods for 

managing nodes and distributing public keys. First, a 

source beforehand obtains a list of all participant nodes, 

including node information and a public key, as in the 

case of Tor. Second, all nodes are controlled by DHT, 

whose public keys are managed by directory servers. A 

source obtains node information with a DHT and 

public keys with such directory servers as Bifrost, 

Cashmere, or Bluemoon. Cashmere's off-line central 

authority (CA) and Bluemoon's official CA are 

equivalent to directory servers. Third, public keys are 

built by IBEs such as Pairing Based Onion Routing [6]. 

In the first method, a source can arbitrarily choose 

relay nodes from the list of all participant nodes. It 

does not need extra communication to get relay node 

information. Consequently, relay nodes cannot be 

inferred by communication. A source can also obtain 

public keys with the list without extra communication. 

However, a source periodically gets a large list in this 

method. Therefore, it needs to pay a large cost to 

maintain the list. 

In the second method, a source only chooses 

arbitrary DHT-IDs, and nodes managing them become 

relay nodes. A source does not need to look up relay 

nodes because each relay node looks up the IP address 

of the next-hop node using the next-hop DHT-ID in a 

relaying message. The method does not require 

communication to obtain relay node candidates. 

However, a source needs to look up public keys in 

directory servers. Adversaries can surreptitiously 

discover relay nodes by monitoring query messages 

from the source to the directory servers. 

In the third method, a source can arbitrarily choose 

relay nodes, as in the first method, because both 

methods need directory servers to distribute a list of 

participant nodes. Therefore, this method also needs to 

pay a large cost to maintain the list. Moreover, 

adversaries can learn all nodes easily, and participant 

anonymity suffers. 

In the first method, node management and public 

key management do not have scalability. In the second 

method, node management has scalability but public 

key management does not. In the third method, public 

key management has scalability but node management 

does not, just like in the first method. Hence, 

anonymous communication systems can ensure 

scalability by combining the second and third methods.  

 

2.3. Problems of retrieval destination’s NodeID 
 

Generally, sources do not know the destination’s 

NodeIDs as node information in DHT-based 

anonymous communication systems. They need to 

search for the NodeIDs of destinations before starting 

to connect. There are some searching methods. The 

first, a simple discovery way, floods the destination’s 

NodeIDs. However, flooding is needed whenever a 

destination’s NodeID is renewed. Furthermore, this 

method is not scalable. The second way is an existing 

secure service discovery method [17]. In this method, 

because search keywords are clear text, a third person 

can learn what service is being provided and being 

searched for by any nodes. The last, Introduction Point, 

was proposed by Tor to contact hidden servers. 

Introduction Points are nodes that arrange to meet 

sources and destinations and can respond to the 

changes of the destination NodeIDs. An Introduction 

Point and a destination share a one-on-one relationship. 

Therefore, an Introduction Point can learn the related 

destination. We believe this relationship reduces 

anonymity. 

 

3. Introducing IBE and its Problems 
 



This section outlines IBE and shows three new 

problems for applying IBE to DHT-based anonymous 

communication systems. 

  

3.1. ID-Based Encryption 
 

IBE is a kind of public-key cryptography that 

derives a public key from an ID. IBE encrypts with a 

hash function and a destination’s ID called an IBE-ID, 

which can be an arbitrary string. The hash function is 

shared by all users. IBE has a Private Key Generator 

(PKG), which we assume is operated by a trusted third 

party. PKG generates the master private key and a hash 

function, which it disseminates to all nodes. PKG also 

generates a private key of each node using the master 

private key and each IBE-ID. For IBE, a destination’s 

public key does not need verification because it is 

based on the reliability of an IBE-ID and the hash 

function. In addition, Boneh and Franklin [2] suggest 

using a distributed PKG to realize a robust system. 

 

3.2. Introducing IBE 
 

Introducing IBE can prevent anonymity from being 

reduced by monitoring query messages for directory 

servers to solve the problems defined in 2.2. Since 

regarding a NodeID as an IBE-ID can retrench the 

communication for obtaining a public key, we can 

achieve a robust anonymous communication method. 

Our proposal can be applied to various DHT-based 

anonymous communication systems. 

 

3.3. Problems of introducing IBE 
 

To introduce IBE into a DHT-based communication 

system and realize a system that does not depend on 

directory servers, we need to solve the following 

challenges. Our proposal, which solves them, is 

described in detail in the following sections.  

Unique NodeID assignment With IBE, PKG 

generates and assigns a private key corresponding to a 

NodeID as an IBE-ID. If a NodeID overlaps, some 

nodes have identical private keys and can decrypt the 

same message. Therefore, a collision-free NodeID 

assignment method is needed. 

Verification of assigned NodeIDs Sources can 

even adopt arbitrary NodeIDs as relay nodes that have 

not been assigned yet in a system and encrypt 

messages with those NodeIDs as IBE-IDs. IBEs can 

create public keys that are not corresponding nodes, 

and no node can decrypt encrypted messages with the 

public keys. Since the messages must be encrypted 

only using the previously assigned NodeIDs, a new 

problem occurs: how to get the previously assigned 

NodeIDs. If a source communicates to verify 

previously assigned NodeIDs, anonymity is reduced. 

Therefore, we need a verification method for 

previously assigned NodeIDs that does not rely on 

communication. 

Retrieval of a destination’s NodeID In the 

NodeID assignment of anonymous communication 

systems, a NodeID is mainly a hash value of an IP 

address or a random value. The reasons for a random 

value for a NodeID are to uniformly assign the 

NodeIDs in DHT’s ID space [8] and to prevent 

adversaries from choosing the NodeIDs they want [7, 

9]. In addition, some systems [13, 20] use a random 

value for ID assignment without describing why. If 

NodeIDs are assigned randomly, we need to retrieve a 

destination’s NodeID before beginning communication. 

But a source cannot communicate to retrieve the 

destination’s NodeID for the same reason as the 

retrieval of public keys. 

 

4. Proposed methods 
 

We propose novel methods that resolve the 

problems mentioned in 3.3 and ensure that a node 

grasps the assigned NodeIDs without directory servers. 

Our proposal also enhances scalability. 

 

4.1. Unique NodeID assignment 
 

An IBE-based system must not allow duplication of 

identical NodeIDs because a public key is derived from 

a NodeID as an IBE-ID. Therefore, we introduce a 

NodeID Allocator (NIA) that assigns one NodeID to 

just one node when the node joins an anonymous 

communication system. We assume that NIA is 

operated by a trusted third party. 

The NIA assigns a NodeID with its digital signature 

to a participating node. A PKG verifies the NIA’s 

digital signature, generates a private key corresponding 

to the NodeID, and hands it over to the participating 

node. This prevents faked NodeIDs. Connections 

between participating nodes and NIA/PKG are over 

SSL. 

 

4.2. Verification of previously assigned NodeIDs 
 

To encrypt messages using only the assigned 

NodeIDs and to protect anonymity, obtaining assigned 

NodeIDs needs no communication for looking up 

nodes. However, it is difficult to obtain the latest 

assigned NodeID. The goal for obtaining assigned 

NodeIDs is to discern nodes that can decrypt messages 

rather than acquire the latest assigned NodeID. 

Therefore, we propose a method that loosely grasps the 

assigned NodeIDs by dividing them into groups. The 

details are discussed below. 

Such a simple ascending order NodeID assignment 

as 0,1, does not allow nodes to be sought effectively 



because these NodeIDs are not equalized in a DHT’s 

ID space. Moreover, nodes cannot know the latest 

assigned NodeID because the latest node is not 

necessarily on their routing table. Therefore, we 

introduce JoinNumbers, which are assigned in 

ascending order to the nodes. Reversing a JoinNumber 

in the order of the bits is a NodeID (e.g., in case of 4 

bits, 00011000, 00100100). Searching efficiency 

with DHT is not reduced because these NodeIDs are 

evenly spread over the DHT’s ID space. All new 

NodeIDs with this method are middles of the adjacent 

nodes at all times. Hence, all nodes can know the latest 

state of the NodeID assignment by reversing the next 

NodeIDs. 

However since this method does not have a random 

nature, we add a partially random nature to it. We call 

a set of nodes whose JoinNumbers can be found from 

2
i1

 to 2
i
1(i1)  the “ith JoinGroup,” and randomly 

assign JoinNumbers to each JoinGroup. Here, the 0th 

JoinGroup has only one node of NodeID 0. JoinGroup 

is assigned in ascending order. More than one 

JoinGroup cannot be assigned simultaneously. 

Figure 1 shows an example of a NodeID 

assignment when the size of the ID space is 6 bits. First, 

one node of NodeID 0 joins the 0th JoinGroup. If a 

new node joins, it is assigned to JoinNumber 000001, 

NodeID is 100000 (32). This belongs to the 1st 

JoinGroup. New participating nodes are randomly 

assigned JoinNumbers 000010 and 000011, their 

NodeIDs are 010000 (16) and 110000 (48) as the 2nd 

JoinGroup. The NodeIDs of the new JoinGroup are 

located between the NodeIDs of the already assigned 

JoinGroups. New participating nodes are assigned 

NodeIDs in the same way. 

The proposed method has the following 

characteristic: a node itself or the next nodes of it also 

belong to the current JoinGroup, which is the latest or 

the immediately preceding JoinGroup. Therefore, all 

nodes can know the current JoinGroup only using their 

own routing tables because the routing tables of each 

node have the next node. Each node can judge that 

nodes belong to the current and previous JoinGroups 

have already been assigned.  

Here, the proposed method can have a partial 

random nature on the NodeID assignment. Our 

verification method requires that any NodeIDs which 

belong to the current and previous JoinGroups have 

already been assigned before being assigned to a new 

JoinGroup. Our proposed method ensures that the 

assignment of JoinGroups the current and previous 

JoinGroups have already finished. The order of the 

NodeID assignment in a JoinGroup is not designated in 

the above requirement and guarantee. In other words, if 

NodeIDs are randomly assigned in a JoinGroup, it does 

not affect the verification of the previously assigned 

NodeIDs. 

 Consequently, our proposed method provides 

verification without communication of the previously 

assigned NodeIDs and the random NodeID assignment. 

 

4.3. Retrieval of destination’s NodeID 
 

To send messages, sources need to know the 

destination’s NodeID. But it is assigned randomly. We 

suppose that destinations offer their own Service 

Names (SN) to the public in place of their own 

NodeIDs. Hence, sources can search for destinations 

with their SNs. 

Our proposed method of searching and connecting 

to a destination is based on IBE and the Introduction 

Points of Tor. We enhance the Introduction Point to 

increase anonymity and call it a Multi-connected 

Introduction Point (MIP). A node managing the hash 

value of an SN is an MIP of the SN. Since MIPs 

simultaneously maintain connections to many 

destinations and relay ID retrieval messages from 

sources to all the connected destinations, many 

destinations that share one MIP receive the same 

message. We propose using IBE so that the only true 

destination can receive it. A sender encrypts an ID 

retrieval message by an SN as a public key of IBE. The 

encrypted message can only be decrypted by the true 

destination that has the IBE’s private key. Therefore 

only the destination can receive and respond to it. 

To keep multiple connections to one MIP, a 

number of MIPs needs to be less than a number of 

destinations. Nodes belonging to a small number of 

JoinGroups can only be an MIP. The number of 

JoinGroups for MIPs depends on the number of 

destinations in a system. 

 

5. Application of proposal to existing 

systems 
 

 
 

Figure 1. NodeID and JoinGroup when NodeID 

consists of 6 bits 

 



In this section, we apply our proposal to existing 

DHT-based anonymous communication systems. 

 

5.1. Applications to DHT-based anonymous 

communication systems 
 

To apply our proposal to DHT-based anonymous 

communication systems, the system needs to add PKG 

and NIA. Nodes are needed to add the following 

change and mechanisms:  

• Changing join-protocol to our proposal  

• MIP mechanism  

• Requesting a NodeID mechanism for sources  

• Providing a NodeID mechanism for 

destinations  

The procedures after retrieving the destination’s 

NodeID are not changed. 

 

5.2. Join protocol of proposal 
 

To apply our proposal to DHT-based anonymous 

communication systems, we need to introduce an NIA 

and a PKG. All participant nodes assume that NIA and 

PKG can be trusted. Therefore, they can be combined 

into one. The join-protocol consists of the following 

four steps: 

1. A joining node sends an assignment request of 

a NodeID to the NIA when the node enters the 

system.  

2. The NIA assigns a new NodeID with NIA’s 

digital signature to the node. 

3. The node notifies the PKG about the assigned 

NodeID with the NIA’s digital signature. 

4. The PKG verifies the NIA’s digital signature, 

generates a corresponding private key, and 

sends it and the IBE’s hash function.  

These communications are done over SSL. 

 

5.3. NodeID assignment method 
 

This section describes our proposed NodeID 

assignment method over Chord and Pastry [14], which 

are base DHTs. Chord is used in SALSA [10] and 

Bifrost. Pastry is used in Cashmere. Our proposal 

assigns NodeIDs to infer previously assigned NodeIDs 

from such known information as a DHT routing table. 

The NodeID assignment method is shown in Figure 2. 

In this method, the NodeIDs in one JoinGroup are 

randomly assigned. This process is repeatedly executed 

whenever new JoinGroups are assigned. For Chord and 

Pastry, the ID space sizes are 2
160

. As an initial 

condition, we consider that just one node (NodeID:0) 

has participated in the system. NIA assigns a NodeID 

from the 1st JoinGroup. In this method, if a node 

belonging to the xth JoinGroup is in its own routing 

table, which is the Finger Table of Chord and the Leaf 

Set, the Routing Table and the Neighborhood Set of 

Pastry, the previous assigned JoinGroups prove to be 

less than xth. Consequently, sources can choose relay 

nodes from nodes belonging to from 0th to the (x1)th 

JoinGroups.  

Examples of the proposed NodeID assignment 

method and the verification method of the assigned 

NodeID are illustrated in Figure 3. Here, the 5th 

JoinGroup is assigning. At this time, the node of 

NodeID 40 starts to verify the assigned NodeIDs. The 

node checks its own routing table and finds a node of 

the 5th JoinGroup. Therefore, it can judge that the 

nodes in the 0th to the 4th JoinGroups have already 

been assigned. 

We need to separately consider an assignment 

method for other DHTs. 

 

5.4. Message structure of Bifrost with proposed 

method 
 

This section describes the structure of a Bifrost 

message with the proposed method. The following is 

the structure of construction message M’c: 

 
 

Figure 3. Verification of assigned NodeID 

 

NodeIDAssgin(JoinGroup i){ 

    Generate JoinNumber[] from 2
i - 1

 to 2
i
 – 1 

RandomSort(JoinNumber[]) 

for j=0 to 2
i - 1

 – 1 do 

NodeID = bit_order_reverse(JoinNumber[j]) 

end for 
} 

 
Figure 2. Pseudo code of NodeID assignment method 
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where P’i is a public key derived from NodeID i and 

P’i() is encryption using P’i. This structure is the same 

as Mc of traditional Bifrost. The only difference is that 

the public keys are provided by IBE. The following is 

the structure of data message M’d: 
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M’d is encrypted using shared keys. The structure of a 

data message is the same as Md in traditional Bifrost. 

 

5.5. Retrieval of destination’s NodeID 
 

Figure 4 shows a proposed NodeID retrieval 

protocol using MIP for Bifrost. The following are its 

details: 

Step 1) A destination registers its SN with PKG 

and obtains a private key corresponding to its SN as a 

public key. 

Step 2) The destination constructs an anonymous 

communication channel between itself and the MIP in 

charge of the hash value of the SN. 

Step 3) When a source connects to the destination, it 

generates a NodeID retrieval request message for the 

destination. The message is multiple encrypted using 

some relay nodes’ NodeIDs and the destination’s SN 

as public keys. Furthermore, it contains a reply header 

to construct a reply anonymous communication 

channel. The following is the request message’s REQ 

structure:  

),|IdR|S(HPREQ DDtoSSN  

where HXtoY  is a header of a multistage encrypted 

message from node X to node Y, IdR is an ID retrieval 

command, and node S is the source. At this time, since 

the source does not know the destination’s NodeID, it 

cannot send the message to the destination. 

Step 4) The source sends a construction message to 

the MIP managing the hash value of the SN. The 

message structure is the same with M’c. Message 

header HStoMIP , which has route information of an 

anonymous communication channel between the 

source and the MIP, is encrypted as follows:  

|null))),(SP(...P||ID(SPH
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where notes from E1 to Em are relay nodes. Message 

body BStoMIP, which is sent from the source to the MIP, 

is encrypted as follows:  

)).((...
1

REQSSB MIPEStoMIP   

Step 5) The relayed messages go through the reply 

channels built at Step 2 and reach the true destination 

and other destinations. Encryption of the reply 

channels is the same with Bdr. The relayed messages 

are encrypted by every relay nodes and become: 

))),(((...
1

REQSSSB MIPFFMIPtoD d
  

where S’i is a shared key between node i and node D, 

which is a source of this channel, and S’i() is 

encryption using S’i. The nodes from F1 to Fd are relay 

nodes, and Fd is each previous node of the destinations 

in each route from the MIP to the destinations.  

Step 6) The true destination and other destinations 

sharing the same MIP receive the message and decrypt 

REQ using their private keys that correspond to their 

own SNs. 

Step 7) The true destination, which can completely 

decrypt the message, sends a reply with its own 

NodeID, IDD, to the source using an enclosed reply 

header HDtoS as following: 

|null))).(SP(...P||ID(SPH
ll GGGGGGDtoS 
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Note that nodes from G1 to Gl are nodes in the route 

from the destination to the source. Body BDtoS, which 

has reached the source, becomes: 

))),(((...
1 DDGGDtoS IDSSSB

s
  

where the node Gs (s<l) is the previous node of the 

source in the route from the destination to the source.  

Step 8) Shared keys from SG1 to SGs and SD are 

shared by the source and the relay nodes. The source 

completely decrypts the body BDtoS, obtains the 

destination’s NodeID and constructs an anonymous 

communication channel between the source and the 

destination using the destination’s NodeID. 

Because the source, the MIP, and the destination 

are connected by anonymous communication channels, 

they cannot identify each other. Moreover, because the 

MIP forwards a NodeID request message to two or 

more destinations, it cannot identify which destination 

is the true destination of the request message. Hence, 

the source can retrieve the destination’s NodeID 

without reducing anonymity. 

 

 
 

Figure 4. Retrieval of destination’s NodeID using MIP 



6. Evaluations 
 

We implemented our proposal and measured its 

execution time for NodeID retrieval using MIP, which 

is assumed to be a challenge posed by the introduction 

of IBE. We combined Bifrost and the IBE library [1]. 

First, we successfully confirmed that anonymous 

communication can be realized without directory 

servers. Next, we performed the following three 

evaluations: time of destination’s NodeID retrieval 

using MIP, MIP performance, and scalability.  

 

6.1. NodeID retrieval using MIP 
 

In the first measurement, we evaluated in two 

environments. The first was a local network system 

connected by 1G-bps networks, and the second was a 

PlanetLab [12] connected all over the world. In both 

cases, 32 computers were joined to the environment 

systems. NodeID request messages go through three 

channels: the first is a channel from a source to an MIP 

(Step 4 in Section 5.5), the second is a reply channel 

from the MIP to a destination (Step 5), and the third is 

a reply channel from the destination to the source (Step 

7). Each channel has three receiver areas and six relay 

nodes: nine receiver areas and 18 relay nodes in total. 

An MIP only has one destination in this evaluation. 

Figures 5 and 6 show the processing times of three 

channels for NodeID retrieval in the two environments. 

Each processing time is composed of communication, 

lookup, and decrypting/encrypting processing times. 

The communication time is for sending a message, the 

lookup time is for searching for the IP addresses of the 

next relay node, and decrypting/encrypting processing 

time is for decrypting/encrypting a message. The total 

times of the NodeID retrieval are 382 ms in the LAN 

and 5,726 ms in the PlanetLab. The first and third 

channels occupied about 40% of each channel in both 

environments because they are constructed when the 

request messages are conveyed. In PlanetLab, 

communication delay significantly influences NodeID 

retrieval time. Therefore, the communication and 

lookup times in PlanetLab are larger than LAN. 

NodeID retrieval in PlanetLab requires excessive time. 

For practical use, this retrieval time is considerable. 

Hence reducing the channel construction time is a 

critical future issue. 

 

6.2. Performance evaluation of MIP 
 

We compared NodeID retrieval times when an MIP 

is in charge of one destination and five destinations. In 

the case of five destinations, we measured two times in 

the first and the last orders of relaying to the true 

destination. This evaluation is performed in the LAN 

environment. The result is shown in Table 1. The 

difference between one and fifth of five is 15 ms and 

between first and fifth of fives is 11ms. Increments are 

3ms or less a destination and 1% or less of the total 

NodeID retrieval time in the LAN. The MIP, a sender 

of the second channel, only encrypts a message once 

each destination, because the second channel is a reply 

channel. Therefore, when the number of destinations 

relayed by MIP grows, the increase of the NodeID 

retrieval time is negligible.  

 

Table 1. Performance evaluation of MIP 

 

Destinations relayed by MIP 1 5 

Order of relaying to the true destination 1st 1st 5th 

NodeID retrieval time 372ms 376ms 387ms 

 

 
Figure 5. NodeID retrieval time: LAN 

 
Figure 6. NodeID retrieval time: PlanetLab 



6.3. Evaluation of scalability 
 

In this section, we focus on the costs of node 

management and compare the scalability of the 

proposed method with an existing method that 

distributes node information by directory servers. Here, 

we assume that the number of nodes is N. 

The existing method needs directory servers to 

manage the participating nodes. Directory servers 

manage the node information of N nodes. Therefore, 

the data transfer cost of the directory servers is 

proportional to the product of the data size of the node 

information and the number of nodes to which the 

directory servers communicate. As a result, the cost of 

the directory servers is O(N
2
). In addition, directory 

servers periodically gather and provide the node 

information for N nodes. On the other hand, our 

proposed method does not need a directory server. In 

the proposal, N nodes access NIA and PKG only once 

when joining the system. There is no periodic 

communication. In addition, NIA only gives out a hash 

function to participant nodes. Thus, the cost of our 

proposed method is O(N). For these reasons, our 

proposed method has more scalability than the existing 

method that uses directory servers. 

 

7. Conclusion 
 

We proposed a novel method that can grasp 

previously assigned NodeIDs and obtain a 

destination’s NodeID without directory servers. This 

method enhances scalability. In addition, we applied 

our proposed method to an existing DHT-based 

anonymous communication system and realized a 

system that does not need directory servers. 

Furthermore, we described the behavior of existing 

DHT-based anonymous communication systems by 

applying our proposal not only to Bifrost but also to 

many other DHT-based anonymous communication 

systems. However, robust anonymity is realized in 

exchange for the high cost of NodeID retrieval 

processing. In the future, we will address the excessive 

retrieval time of the destination NodeIDs in Internet 

environments. Remaining challenges include measures 

against dynamic joining and leaving of nodes. 
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