報 文

電気浸透流における逆放物線状フロープロフィルの形成と パルス電場によるゾーン先端の挙動

津田 孝雄^{®*},北川 慎也*, Rajeev DADOO**, Richard N. ZARE**

Formation of a reverse parabolic flow profile with electroosmosis in capillary zone electrophoresis and the behavior of zone progress related to the application of a pulsed electric field

Takao TSUDA, Shinya KITAGAWA*, Rajeev DADOO and Richard N. ZARE**

*Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya-shi, Aichi 466

** Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA

(Received 30 January 1997, Accepted 28 February 1997)

The flow profile of electroosmosis in capillary-zone electrophoresis was observed using a microscope-CCD-video system, rectangular capillary $(50 \times 1000 \,\mu\text{m})$ and fused-silica capillary (75 μm in diameter). A rhodamine 6 G-methanol solution was used as a fluorescent sample solution. The front zone of electrosomosis forms a reverse parabolic flow profile. The flow speed at the center of a cross-section of capillary was 0.4% lower than that at the near the wall. The progress of frontal zone while an applying pulsed electric field was observed. It was found that the growth and decay is very rapid, less than 1/15 second (which is equal to the time resolution in this experiment).

Keywords: electroosmotic flow; reverse parabolic flow profile; pulsed electric field; growth and decay of electroosmotic flow velocity; microscopic observation, capillary-zone electrophoresis.

1緒 言

電気浸透流はキャピラリー電気泳動の基本因子の一つ である^{1)~4)}.電気浸透流についてガラス管・テフロン 管等の素材³⁾⁴⁾,ガラス管内表面の化学的処理や界面活 性剤の吸着^{5)~7)},カラム軸やカラム断面方向への電場 の印加¹⁾²⁾⁸⁾⁹⁾¹¹⁾,溶媒組成¹⁰⁾¹¹⁾などの検討が近年進み理 解が深まってきている.電気浸透流に関連する物性因子

- ** Department of Chemistry, Stanford University, Stan-
- ford, CA 94305-5080, USA

としてはガラス管内表面の電荷及びその密度³⁾⁵⁾⁹⁾, 溶媒の pH・塩濃度・粘性, ゼータ電位, 媒体や素材の誘電 率等^{1)2)4)5)12)~14)}が挙げられる.

ガラス毛細管の内表面の電荷については、シラノール 基の解離に基づく電荷の保持¹⁾⁵⁾¹²⁾とともに、カラム軸 方向に印加された電場により誘起される電荷も存在す る¹⁾¹²⁾. これは一つには、溶融石英キャピラリー管の外 部に被覆されたポリイミド樹脂表面からの電流の放出に よりカラムのラジアル方向(断面方向)に電場がかかっ ていると考えればよい. このことは溶融石英キャピラ リー管の外壁にほこりが付着していく現象により実在す

^{*} 名古屋工業大学: 466 愛知県名古屋市昭和区御器所町

ることが分かる.このような表面電荷(シラノールの解離により生じる電荷と誘起された電荷の二つ)が電気浸透流を誘起する基本因子である¹⁾²⁾.

キャピラリー管の内表面に存在する電荷により溶液媒 体中のイオンが壁面へ集まった結果,電荷密度の偏りが 生じる.この偏ったプラス電荷(通常はガラス壁面が負 に帯電し,溶液中ではプラス電荷が壁面近傍へ集まる) は溶融石英キャピラリー管端に設置された負電極(管壁 面上がプラスの場合,正電極)に向かって移動する.こ れが電気浸透流である.この浸透流のフロープロフィル については Pretorius らにより栓流との提案がなされて いる¹⁵⁾.このフロープロフィルの実測は Tsuda ら²⁾¹⁶⁾, 及び Taylor ら¹⁷⁾によりなされた.Tsuda らは電気浸透 流のフロープロフィルは逆放物線状であることを見いだ した¹⁾²⁾¹⁵⁾.Taylor らの実験結果¹⁷⁾もこの事実を支持す るものであった.又,Tsuda らは円形断面を持つ溶融 石英キャピラリー管(直径 65 µm)についてもその管中 でのフロープロフィルを観察している²⁾¹⁸⁾.

著者らは長方形断面及び円形断面を持つキャピラリー 管を用いてゾーン先端のフロープロフィルを詳細に検討 したところ,中央部の流速が遅いことを見いだした.更 にパルス電場による電気浸透流の開始(立ち上がり時 間)と停止(立ち下がり時間)を調べたところ興味ある 知見が得られたので報告する.

2 実 験

2.1 実験装置

装置は既報¹⁶⁾とほぼ同様に組み立てたものを用いた. すなわち,長方形断面のキャピラリー管 {ホウケイ酸ガ ラス,1mm (Y軸),50µm (Z軸),長さ16.4mm (X 軸),Wilmad Glass, Buena, NJ, USA},溶融石英キ ャピラリー管 (内径 75µm,ジーエルサイエンス製), キャピラリー管の保持台 (X-Yステージ,自製),試料 溶液及び溶媒槽用の注射器を移動させたり,入れ替えた りするための X-Y ステージ,実体顕微鏡 (SMZ-2T, ニコン製),カラービデオ CCD カメラ (DXC-101,ソ ニー製),VHS ビデオレコーダー (松下電器製),高電 圧電源 (自製)よりなる.キャピラリー管中の試料ゾー ンの照明 (ハロゲンランプ,150W, Cole Parmer Instruments, Chicago, IL, USA) は側面から行い,試 料ゾーンの蛍光観察に用いた.

キャピラリー管は直線上のまま保持し,両端に溶媒を 満たしたポリエチレン製の注射器(2 ml)を溶媒槽とし て用い,観察用のキャピラリー管の端を注射器の針を付 ける部分から挿入する.電極には白金線を用い,注射筒

Fig. 1 Schematic diagram for the instrumentation for visual observation of zone front

A and B are reservoirs of the medium and the colored sample solution, respectively. Each reservoir has its own platinum electrode. Current is measured at C. D~E is a rectangular or a round capillary. R_2 and R_3 are 64×10^3 and $2 \times 10^7 \Omega$, respectively. X-Y-stage-1 is used for following up the frontal zone, and X-Y-stage-2 for transferring reservoirs for injection.

にあけた小さい穴より白金線を溶媒中に挿入して用いた. 蛍光試料溶液も同一の注射器に満たした.

用いた高電圧電源の立ち上がり時間と立ち下がり時間 (過渡応答特性) は共に 10000 V につき 2 ミリ秒に設計 した. 又,キャピラリー管に平行に電気抵抗 (2×10⁷ Ω ,キャピラリーカラムの予想される抵抗値の 1/700) を用いて,電圧印加時や切断時にキャピラリー管中に 流れる残余電流を少なくした.この回路を Fig. 1 に示 した.抵抗 R_2 はキャピラリー管中を流れる電流量の測 定のために用いた.

2.2 操作

キャピラリー管を保持台に設置後、メタノールを満た した溶媒槽にキャピラリー管の一端を浸すと、毛管現象 によりキャピラリー管はメタノールで満たされる.次い でほかの一端も溶媒槽に浸ける.しばらく電圧を印加し 定常状態になるまで待つ.次いで電圧の印加を止め、 Fig. 1の X-Y ステージ-2 を用いて溶媒槽を外し、試 料を入れた溶媒槽を代わりにキャピラリー管の端に浸け る.この操作は X-Y ステージに付属するダイヤルを用 いて行い、振動を与えないように非常に慎重に行う.次 いで電圧を連続的に印加し、色素によって形作られる ゾーン先端を観察する.ゾーン先端の蛍光画像が CRT 上にくるように, Fig. 1 の X-Y ステージ-1 により保持 台全体を移動させながら観察する. キャピラリー管の槽 内の水位が同一になるように槽の水平位置を同一に保 つ.

ローダミン 6G (Exciton Chemical, Dayton, OH, USA 又は東京化成製) は化学用を使用し、メタノール は特級試薬を使用した.メタノール中ではこの試薬は電 気的には中性物質として存在すると仮定した. ローダミ ン 6G の濃度は 0.1~1.0 mM に保ち、蛍光試薬の溶液 と純メタノールが物性的に近似の状態にあるとした.

3 結果と考察

電気浸透流は種々の媒体(水,メタノール,アセトニ トリル,メタノール-ベンゼン,界面活性剤を含んだへ キサン等)¹³³¹¹⁾を用いて,種々の素材(パイレックスガ ラス,溶融石英ガラス,ポリテトラフルオロエチレン, ポリフルオロエチレンプロピレン³⁾¹⁹⁾の管中で電圧を 印加すれば発生させることができる.電気浸透流の流 速, v (osm) は次式で示される.

$$v_{\rm (osm)} = -\left(\varepsilon \zeta E\right) / \eta \tag{1}$$

ここで ε , ζ , E, η はそれぞれ誘電率, ゼータ電位, 電 位こう配, 媒体の粘性である. 又, $\zeta = \delta e$ の関連があ り, ゼータ電位は拡散二重層(δ)及び管壁表面の電荷 密度 (e) との関連を持つ²⁰⁾. $E = i/k_c$ [i は電流密度 (A cm⁻²) で k_c 導電率 (Ω cm)⁻¹] であるので, 式(1) か ら次式が導かれる.

$$v (\text{osm}) = -\left(\varepsilon \zeta i\right) / k_c \eta \tag{2}$$

 $k_c\eta$ は Walden product として温度に独立な因子になる ので、v(osm) は電流密度と直線的な関連にな る $^{(1)-3)5(21)}$.

本報告では素材としてホウケイ酸ガラス(長方形断面 のガラスキャピラリー)及び溶融石英ガラス(円形断面 のガラスキャピラリー),媒体としてメタノールを用い, 蛍光試薬としてローダミン 6Gを用いた.用いたガラス キャピラリー管は無修飾のまま用いたので,内壁面の電 荷密度は自然に付与されたものである.メタノール媒体 を用いているので電気二重層は電解質を含んだ水溶液に 比べてかなり大きくなっている.Martinら²²⁾は 50 mM Na₂HPO₄水溶液で電気二重層の厚さを 1.7~2.6 µm と 計算しているが,この値はかなり通常の計算より大きめ であり,メタノール媒体中では前記の値程度にはなって いるであろう.電気浸透流は *E*, *i* を制御することによ り開始や停止できる.

Fig. 2 Frontal zone profiles of Poiseuille flow

P₂ (color: white) was taken after 9.70 s of P₁ (color: black). The flow profiles of P₁ and P₂ were obtained by a successive run. These flow images were obtained after the image processing using the soft for the strengthening of contrast and the negative conversion. Rectangular capillary (1 mm×50 µm and 16.4 cm long) was used. Colored sample: methanol solution of 0.1 mM Rohdamine 6G. Poiseuille flow was generated by the difference of levels of the edges of the capillary, *ca.* 3 mm in height. Flow velocity at the center and the half of radius are 8.3×10^{-2} and 7.8×10^{-2} mm/s, respectively. The ratio of the flow velocity given by (flow velocity at half radius)/(flow velocity at center) is 0.94. The scale of X and Y axes are same.

3・1 逆放物線フロープロフィルの形成

電気浸透流のフロープロフィルとの比較のため同一の 実験装置を用いて圧力差流のフロープロフィルを得た. これを Fig. 2 に示した. すなわち長方形断面のキャピ ラリー (50×1000 μm, 長さ 113 mm)²³⁾の試料注入側 (Fig. 1 の E) を約 3 mm 程度高くしてこう配をつけ圧 力差流を生じさせた. P1, P2 は連続的に観察された. Fig. 2の X 軸は連続的なゾーンの移行を示している. 二つのフロープロフィルの観察された時間差は 10.1 秒 で、この間中央部で 0.83 mm 進んでいる. 中央部の線 流速, $v(\text{pres})_{\text{central}}$ と管中央と側壁の中間位置 ($\mathbf{R}/2$) の線流速, v (pres)_{R/2}, はそれぞれ 0.083, 0.078 mm/s で、両者の比 $[v (\text{pres})_{R/2}]/[v (\text{pres})_{\text{central}}]$ は 0.94 で、 後者が約6%程度減少している.この実験条件では Poiseulle フローとして非常に線流速を小さく保ちゆっ くり展開されているので,拡散の影響が大きく,中央部 と壁面近傍側との速度差が比較的小さく保たれている.

キャピラリー管中の電気浸透流のフロープロフィルが 逆放物線フロープロフィルを形成することは Tsuda ら^{1)~3)5)16)18)}により報告されている.ピーク幅の広がり を用いた計算の結果により,電気浸透流は Poiseulle フ ローと栓流の合成であるとされてきた³⁾²²⁾.これを先端

Fig. 3 Frontal zone profile of electroosmotic flow

Frontal zone profiles of O_1 (color: white) and O_2 (color: black) were successively taken. The period between two zones was 11.44 s. The distance between two frontal zones is 6.52 mm. Flow velocity of center is 0.57 mm/s. The ratio of the flow velocities given by (flow velocity at half radius)/(flow velocity at center) is 1.0027. The retarded speed of the flow velocity at center compared to that of at the corner is only 0.4%. Although the same scale was used for X and Y axes, there are time interval between O_1 and O_2 in (A). The Fig. (B) is obtained by the combination of O_1 and O_2 (overlapping two frontal zone profiles at the corner). Therefore the right and left profiles correspond to O_1 and O_2 , respectively. Applied voltage: 1.59 kV; Current: 120 nA. Other conditions were same as Fig. 2.

ゾーンのフロープロフィルの観察から実証することを試 みた.

先端ゾーンのフロープロフィルを Fig. 3 に示した. O₁ は色素のゾーンを白色で示し, O₂ では色素のゾーンを黒で示した.二つのフロープロフィル O₁, O₂ は 連続的観察により得られたもので,両者の時間差は 11.22 秒で距離にして 6.52 mm ある. Fig. 3 の X 軸は 一定のスケールで示されているが O₁ と O₂ 間に断続が ある. O₁ の $v(osm)_{central}$ は 0.57 mm/s であった. O₁, O₂ のフロープロフィルの管壁側 (Y 軸方向のキャピラ リー管の両端)を重ねたものは両者間線流速の差異によ りちょうど三か月形の形態を生じた.すなわち管中央部 の線流速は管壁の線流速よりも小さい.管壁と管中央の 中間位置における線流速, $v(\operatorname{osm})_{R/2}$, と管中央における線流速, $v(\operatorname{osm})_{central}$ との線流速比 [$v(\operatorname{osm})_{R/2}$]/ [$v(\operatorname{osm})_{central}$]は1.0027の値を得た.ゾーン先端の両端に位置する管壁の極近傍(壁側と略称)と管中央との線流速比 [$v(\operatorname{osm})_{\underline{w}\underline{m}}$]/[$v(\operatorname{osm})_{central}$]は1.004であった.

Fig. 2 と 3 の比較から浸透流のフロープロフィルは Poiseulle フローによるフロープロフィルと全く異なり, 逆放物線を形成しており,更に管中央部の線流速は壁側 の速度より微少な割合であるが遅いことが分かった.こ の結果はこれまでの実験報告と一致する¹⁾⁻³⁾²²⁾.

これは壁面が負電荷の場合,壁面への陽イオンの偏り が生じ中央部での陽イオンの分布を減じ,中央部では陰 イオンが相対的に増え,これが中央部の速度の減少に寄 与していると考えることができる²⁾.このような考えに ついて大須賀²⁴⁾はある一定条件下では可能性のあるこ とを示唆している.

3•2 円形断面キャピラリー管中での電気浸透流のフ ロープロフィル

100~50 µm の円形断面キャピラリーカラムが一般に キャピラリー電気泳動でよく用いられている. この毛細 管中でのゾーンのフロープロフィルについては, Pretorius¹⁵⁾, Tsuda $6^{2(3)(16)}$, Yenug $6^{(17)}$ により検討さ れ, Guiochon $6^{2(2)}$ により計算されてきた.

円形断面キャピラリー管中のフロープロフィルの直接 的な観察は Tsuda ら¹⁶⁾により最初になされてきたが, Yeung ら¹⁷⁾によっても観察されている. Yeung ら¹⁷⁾は ポリスチレンパウダーの挙動により流れのプロフィルを 検討している. しかし彼らの実験条件ではポリスチレン パウダーの表面電荷をなくすことができないので間接的 な実証になっている.

0.2 秒ごとにおける 75 µm の円形断面キャピラリー管 中での電気浸透流の進行状態を写真で Fig. 4 に示した. 溶液の色の濃さはその液の厚さに比例するのでガラスキ ャピラリー管の管中央では濃くなり,壁面近傍では薄く なってしまう.一方用いた顕微鏡の焦点深度にこの溶液 の厚さは関係する.用いた顕微鏡の被写界深度は約 5~10 µm であるので,結果として壁面近傍の色は薄く なり,明確に確認できなくなる.Fig. 4 はビデオに録画 された画像を直接カメラで写した写真である.管中央が 若干遅れていることが認められ,長方形断面のキャピラ リー管の結果や以前の結果を支持している.全体的に見 れば圧力差流のフロープロフィルに比べて非常に栓流に 近い形をとっていると言えよう.

Fig. 4 Successive frontal zone profiles of 0.2 s interval using a fused-silica capillary of round crosssection

Round capillary (75 μ m in diameter and 28 mm in length) was used. Applied voltage: 150 V; Colored sample: methanol solution of 1 mM Rhodamine 6G. The zone (white color) progresses in the capillary from 40.5 to 41.1 s.

3・3 パルス電源による電気浸透流の停止と開始の制 御

電気浸透流,圧力差流のそれぞれの起動力は電圧であ り,又流体への加圧である.加圧に比べて電圧は簡単な 操作で瞬時に止めることができる.電気浸透流の立ち上 がる時間及び立ち下がる時間について実験的に観測され た報告が見当たらない.これらの時間は電気浸透流によ る流体の制御や,電気浸透流を駆動力などに用いる場合 の制御(例えばマイクロマシン)にとって非常に重要と 思われる.

長方形断面のキャピラリー管を用いて電圧の印加や切 断による電気浸透流の停止と開始を観察した.実験で用 いた電源の立ち上がり時間及び立ち下がり時間は使用し た印加電圧が 1.59 kV においては 0.32 ms であり,又溶 媒槽中での残余電流を少なくするため Fig. 1 で示すよ うにキャピラリー管と並列に電気抵抗を配線した.画像 の入力に用いた CCD カメラ-ビデオシステムは 1/30 秒の時間分解能を持つが,コンピュータによる画像処理 の結果最終時間分解能は 1/15 秒で行った.進行方向 (X 軸)の速度は CRT 画像中央部にカーソル (Y 軸の 方向に描画した)を引き求めた.得られた実験結果を Fig. 5 に示した.横軸の時間の最小目盛りは 1/15 秒で ある.又,縦軸は 167 画像素子 (ピクセル)が 1 mm に相当する.

電圧印加に伴う電気浸透流の立ち上がり時間及び立ち 下がり時間は Fig. 5 に示すように 1/15 秒以下において 達成されている.非常に迅速に達成されることを著者ら は実験的に発見した.大須賀ら²⁴⁾²⁵⁾の計算では 1.5 ミ リ秒以下で達成されると理論計算されている.著者らの 時間分解能が 67 ミリ秒であるので,この時間分解能を 更に上げて観察を行えば理論的な計算との整合性が求め

Fig. 5 Progress of frontal zone under application of pulsed electric field

Pulsed electric field was applied by 2 s cycle (electric field was applied for half of the period, and was stopped for the other half). Frontal zone positions were measured from the digital picture on CRT. Perpendicular line shows the direction of moving of the frontal zone, and 1 mm in length is equal to 167 pixels. Horizontal line shows the time, and its minimum time scale observed is equal to one-fifteenth. Other conditions were the same as in Fig. 3.

られるであろう.又,実用的な流体の迅速な制御,例え ばマイクロマシンにおける駆動部の制御機構への応用に 用いることができよう.著者らは現在この方向で検討を 進めている.

文 献

 T. Tsuda: "Handbook of Capillary Electrophoresis", Edited by J. P. Landers, Chap. 22, pp. 564~590 (1992), (CRC Press, Boca Raton).

- T. Tsuda Ed.: "Electric Field Applications in Chromatography, Industrial and Chemical Processes", (1995), (VCH, Weinheim).
- 3) T. Tsuda, K. Nomura, G. Nakagawa: J. Chromatogr., 248, 241, (1982); ibid., 248, 385 (1983).
- J. W. Jorgenson, K. D. Lukas: J. Chromatogr., 218, 209 (1981).
- 5) T. Tsuda: J. Liq. Chromatogr., 12, 2501 (1989).
- W. D. Pfeffen, E. S. Yeung: J. Chromatogr., 557, 125 (1991).
- 7) J. K. Towns, F. Regnier: Anal. Chem., 64, 2473 (1992).
- T. Nagaoka: "Electric Field Applications in Chromatography", Edited by T. Tsuda, Chap. 4, pp. 75~89 (1995), (VCH, Mainheim).
- 9) C.-T. Wu, C. S. Lee: Anal. Chem., 64, 2310 (1992).
- 10) 津田孝雄: 日本化学会誌, 1986, 937.
- 11) S. Fujiwara, S. Honda: Anal. Chem., 59, 487 (1987).
- 12) S. Kitagawa, T. Tsuda: J. Microcol. Sep., 7, 59 (1995).
- 13) F. Foret, L. Krivankova, P. Bocek: "Capillary Zone Electrophoresis", (1993), (VCH, Weinheim).

- 14) X. Huang, M. J. Gordon, R. N. Zare: Anal. Chem., 60, 1837 (1988).
- 15) V. Pretorius, B. J. Hopkins, J. D. Schieke: J. Chromatogr., 99, 23 (1974).
- 16) T. Tsuda, M. Ikedo, G. Jomnes, R. Dadoo, R. N. Zare: J. Chromatogr., 632, 201 (1993).
- J. A. Taylor, E. S. Yeung: Anal. Chem., 65, 2928 (1993).
- 18)津田孝雄,第 55 回分析化学討論会講演要旨集, p. 413 (1994).
- K. D. Lukas, J. W. Jorgenson: J. High Resolu. Chromatogr. Chromatogr. Commun., 8, 407 (1985).
- P. Delahay: "Double Layer and Electric Kinetics", (1965), (Interscience, New York).
- 21) X. Huang, M. J. Gordon, R. N. Zare: J. Chromatogr., 48, 95 (1988).
- 22) M. Martin, G. Guiochon: Anal. Chem., 56, 614 (1984).
- 23) T. Tsuda, J. V. Sweedler, R. N. Zare: Anal. Chem., 62, 2149 (1992).
- 24) 大須賀敏明: 私信, (1997).
- T. Osuga, H. Sakamoto, T. Takagi: J. Phy. Soc. Japan, 65, 1854 (1996).

要 旨

電気浸透流及び圧力差流の先端ゾーンプロフィルを顕微鏡下で観察した.長方形断面のキャピラリー 管(50×1000 μm)と円形断面の溶融石英キャピラリー管(直径 75 μm)を用い,色素としてローダミ ン 6Gを使用しその蛍光を観察した.電気浸透流の管断面方向での速度分布は,管中央部が管壁近傍に 比べて約 0.4% 遅いことが分かった.電気浸透流は逆放物線状フロープロフィルを形成していることが いずれのキャピラリー管中においても確認できた.電気浸透流の立ち上がり時間と立ち下がり時間は本 実験の時間分解能(1/15 秒)以下であり非常に迅速に達成されることを発見した.