Communication-efficient Self-stabilizing Protocols for
Spanning-Tree Construction

Toshimitsu Masuzawat* Taisuke Izumif Yoshiaki Katayamal Koichi Wadaf

1Osaka University, Japan, masuzawa@ist.osaka-u.ac.jp
INagoya Institute of Technology, Japan, {t-izumi, katayama, wada}@nitech.ac.jp

Abstract

A self-stabilizing protocol can eventually recover its intended behavior even when started
from an arbitrary configuration. Most of self-stabilizing protocols require every pair of neighbor-
ing processes to communicate with each other repeatedly and forever even after converging to
legitimate configurations. Such permanent communication impairs efficiency, but is necessary in
nature of self-stabilization: if we allow a process to stop its communication with other processes,
the process may initially start and remain forever at a state inconsistent with the states of other
processes. So it is challenging to minimize the number of process pairs communicating after
convergence.

We investigate possibility of communication-efficient self-stabilization, which allows only
O(n) pairs of neighboring processes to communicate repeatedly after convergence. For spanning-
tree construction, we show the following results: (a) communication-efficiency is attainable
when a unique root is designated a priori, (b) communication-efficiency is impossible to at-
tain when each process has a unique identifier but without a designated unique root, and (c)
communication-efficiency becomes attainable with process identifiers if each process initially
knows an upper bound of the network size.

Keywords self-stabilization, fault-tolerance, spanning-tree construction, communication-efficiency

1 Introduction

A self-stabilizing protocol [9] can eventually recover its intended behavior without external in-
tervention even when started from an arbitrary configuration (or global state). Because of its
high and autonomous adaptability to transient faults and dynamical topology changes of networks,
self-stabilization attains much attention of designers and practioners of distributed systems.

The high adaptability of self-stabilizing protocols is usually acquired at the cost of efficiency.
A main concern in efficiency considered so far is efficiency in convergence after faults, i.e., the
stabilization time that is the maximum amount of time required to recover its intended behavior
after faults occur. This metric is undoubtedly meaningful to evaluate efficiency in adaptation to
faults. However, another crucial difference in cost between self-stabilizing protocols and classical
(or non-self-stabilizing) ones lies in the cost required for communication after convergence. The
difference is quite evident in protocols for static problems such as leader election and spanning-tree
construction. Self-stabilizing protocols cannot allow any process to terminate its communication
after convergence, while classical ones can allow every process to terminate all the activity. So
the termination requirement we can expect for self-stabilizing protocols (for static problems) is

*Contact author: Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka,
Suita, Osaka, 565-0871, Japan, FAX: +81-6-6879-4119

at the best the silence property, which implies that no process changes its state after convergence.
Even in silent protocols, processes are required to communicate with neighboring processes to check
consistency repeatedly and forever; otherwise, a process may initially start and remain forever at a
state inconsistent with the states of other processes, and the protocols cannot guarantee convergence
to legitimate configurations.

Most of self-stabilizing protocols proposed so far require every process to communicate with
every neighboring process repeatedly after convergence. This leads high communication load in
networks and make self-stabilizing protocols unacceptable in some real situations. Only a few pa-
pers [7, 8] are dedicated to improving communication efficiency after convergence; a self-stabilizing
protocol is said to be communication-efficient if only a small number of process pairs communicate
forever.

Contribution of this work In this paper, we introduce <-k-communication-efficiency as an effi-
ciency measure of self-stabilization after convergence. We investigate possibility of ¢-k-communication-
efficient self-stabilization for spanning-tree construction and show the following results.

(a) When a unique root is designated a priori, there exists a self-stabilizing protocol that al-
lows each process, after convergence, to read the state only from its parent (i.e., O-(n — 1)-
communication-efficient where n is the number of processes in the distributed system).

(b) When each process has a unique identifier but a unique root is not predetermined, no protocol
can allow even a single pair of processes to eventually stop communication between them
(i.e., ©-o(m)-communication-efficiency is unattainable where m is the number of links in the
distributed system).

(c) When each process has a unique identifier and knows an upper bound N (n < N < 2n) of
n a priori (but a unique root is not predetermined), there exists a protocol that allows each
process, after convergence, to read the states only from its parent and children (i.e., ¢-2(n—1)-
communication-efficient). The restriction N < 2n on the upper bound N is the weakest for
attaining communication-efficiency because communication-efficiency becomes unattainable
when N = 2n.

The results (a) and (b) bring out the contrast between self-stabilization and communication-
efficient self-stabilization: these show that existence of a unique root is sufficient for attaining
communication-efficiency but existence of unique process identifiers is not, however, self-stabilizing
(but not communication-efficient) spanning-tree construction is possible with either assumption.

Related works Anguilera et al. [2] introduced the concept of communication-efficiency in the
implementation of failure detector Q! in partially synchronous systems. Following the work, some
papers investigated possibility of communication-efficient implementations of failure detector €2
(e.g., [3, 4, 6, 11]). The implementations in [2, 3, 11] can tolerate any number of crash processes
and require only n — 1 unidirectional links to carry messages forever. Anguilera et al. [4] presented
another implementation that requires only f unidirectional links to carry messages forever where
at most f processes may crash. Biely and Widder [6] presented a message-driven implementation
(or not relied on timers) of €, which is also communication-efficient in the sense that only f + 2
processes broadcast messages forever where at most f processes may crash.

"Roughly speaking, failure detector 2 eventually provides all processes with the identifier of a unique correct
process (i.e., a leader).

Delporte-Gallet et al. [7] considered self-stabilizing leader election that can tolerate process
crashes as well as transient faults. They presented an algorithm in the fully-synchronous system
that requires only n — 1 unidirectional links to carry messages forever.

The above communication-efficiency considers global communication and aims to reduce the
total number of links carrying messages. When we consider communication activity of individual
processes, all the above algorithms require a process (or f + 2 processes in [6]) to repeatedly
broadcast messages to all other processes (or f other processes in [4]). Devismes et al.[8] focused
on communication-efficiency with a local criterion. They considered the shared-state model and
introduced the concept of <C-k-stability to self-stabilization that allows each process to repeatedly
read the states only from k neighbors after convergence. They investigated possibility of the <-k-
stability for the maximal independent set and the maximal matching.

Spanning-tree construction is one of the most investigated subjects in self-stabilization and
many protocols have been presented (see [10] for a survey). But most of the protocols require
every process to communicate repeatedly with its every neighbor after convergence. To the best
of our knowledge, no previous paper has shed light on communication-efficiency of self-stabilizing
spanning-tree construction.

2 Preliminaries

2.1 System model

A distributed system S = (P, L) consists of set P = {vg,v1,...,v,-1} of processes and set L of
bidirectional (communication) links. A link connects two distinct processes. When a link connects
processes v and w, this link is denoted by (v,w). We say w is a neighbor of v if (v,w) € L and
the set of neighbors of v is denoted by N,. In this paper, we interchangeably use the terms, a
distributed system and a network.

Each process v is a state machine and its action is defined by guarded actions of the form
(guard,) — (statement,). The guard (guard,) of process v is a Boolean expression on its own
state and its neighbors’ states. When the guard evaluates true, (statement,) is executed to change
the state of v. This model is called the shared-state model. For convenience, we use variables of each
process to define the process state and the variables read by a neighbor are called communication
variables.

A configuration (i.e., a global state) of a distributed system is specified by an n-tuple o =
(0,81, --,Sn—1) Where s; stands for the state of process v;. A process v is said to be enabled at a
configuration ¢ when v has a guarded action whose guard is true at o. A process v is said to be
disabled at o when it is not enabled at o.

/ / / /
Let 0 = (s0,51,-..,5n—1) and o’ = (sp, s),...,$

'_1) be configurations and @) be any set of
processes. We denote the transition from o to ¢’ by o AP , when o changes to ¢’ by actions of
every enabled process in @ (or all the enabled processes in () make actions but no other processes
make actions). Reading states and executing actions are done atomically. We sometimes simply
denote o — o’ without specifying the set of processes Q.

A schedule is an infinite sequence Q = (1, (o, . .. of nonempty sets of processes. In this paper,

we assume that any schedule is weakly fair, that is, all processes appear infinitely often in any

schedule. If an infinite sequence of configurations E = 09, 01,02, ... satisfies o; er%ﬂ oj+1 (4 > 0),
then F is called an execution starting from og by schedule Q.

A schedule specifies the order of processes that are activated to execute their guarded actions.
In this paper, we consider an asynchronous distributed system where we make no assumption on

the speed of processes. This implies that all weakly fair schedules are possible to occur.

To evaluate the time complexity of protocols, we introduce (asynchronous) rounds for an exe-
cution F. Let £ = 0y, 01,02, ... be an execution by a schedule @ = @)1, @2, The first round of
E is defined to be the minimal partial execution og,01,..., 0} that satisfies P = Uj<;j<;@Q;. The
second and later rounds of E are defined recursively for the execution oy, og11, 012, - ..

2.2 Self-stabilizing protocols

Spanning tree construction considered in this paper is a so-called static problem, i.e. it requires the
system to find and hold a static solution. For clarity, we introduce output variables at each process
and consider a problem is defined by a specification predicate over the output variables of all the
processes. A configuration is said to be legitimate if the output variables of all the processes satisfy
the specification predicate, i.e., the system holds a solution of the problem.

A self-stabilizing protocol (for a static problem) is defined by two requirements, convergence
and closure. The convergence requires that the protocol eventually reaches a legitimate configu-
ration. The closure requires that every process never changes its output variables at a legitimate
configuration. This implies that the protocol remains at legitimate configurations once it reaches
a legitimate configuration. A self-stabilizing protocol is said to be silent if the states (including all
variables) of all processes eventually remain unchanged.

Problem specification The spanning-tree construction problem is defined as follows. Each
process v has an output variable prnt, to designate one of its neighbors as a parent. For the root
process 7, prnt, = L holds to denote that it has no parent. The specification predicate is satisfied
if and only if variables prnt, of all the processes form a spanning-tree of the distributed system.

2.3 Communication-efficiency

Let £ = 0g,01,... be an execution by a schedule Q = @Q1,Q2,.... For each process v € @, let
R!(E) be the set of v’s neighbors from which v reads some communication variables in the step
from o;_1 to 0;. Let Ry(E) = RL{(E)UR}(E)U---.

Definition 1 (¢-k-communication-efficiency) A protocol is O-k-communication-efficient if in
every ezecution E, there is a suffizx E' such that Z?:_ol |Ry, (E")| < k. O

Most of self-stabilizing protocols proposed so far are <-2m-communication efficient where m =
|L|: every process repeatedly reads some communication variables from all of its neighbors. Previous
works such as [2, 3, 4, 7, 11] say a protocol is communication efficient if only n — 1 unidirectional
communication links are used, and thus, such a protocol is ¢-(n — 1)-communication-efficient.

While the &-k-communication-efficiency focuses on the total number of communicating pro-
cess pairs, Devismes et al. [8] introduced the concept of <-k-stability with a local criterion of
communication-efficiency.

Definition 2 (<O-k-Stable) [8] A protocol is O-k-stable if in every computation E, there is a suffiz
E’ such that every process v satisfies |R,(E")| < k. O

Protocol 3.1 A communication-efficient self-stabilizing protocol Tree-R

communication variables of process v
dy: integer; /* distance from the root on the constructed tree

local variables of process v
prnt,: L or a neighbor of v; /* prnt, = u € N, if u is a parent of v.
consistent,: bool; /* consistent, = true iff v is locally consistent

actions of root process v(=r)
true — prnt, = L; d, = 0; consistent, := true;

actions of non-root process v(#rT)
switch (consistent,)
case true:
dy # dprnt, +1 — consistent, := false;
/* v reads only dpypt, from prnt,
case false:

true —
prat, == w (€ Ny) s.t. dy = min{d, | u € Ny};
dy = dprnt, + 1; consistent, := true;

/* v reads d,, from every neighbor u

3 Communication-efficient Spanning-Tree Construction

3.1 Protocol Tree-R on rooted networks

Protocol 3.1 presents a ¢-(n — 1)-communication-efficient and <&-1-stable self-stabilizing protocol
Tree-R for constructing a spanning-tree on arbitrary networks. The protocol assumes existence of
a unique Toot process, say r.

Protocol Tree-R is a silent protocol, that is, every process eventually stops changing its state. In
the final configuration, variables prnt of all the processes form a spanning-tree and d,, of each process
v stores the distance from the root r on the tree. The main idea for attaining the communication-
efficiency is that every process v other than r checks its consistency only by comparing its variable
d, with that of its parent.

In the protocols presented in this paper, we use switch statements on variable consistent, to
clarify the process behavior at legitimate configurations. In the legitimate configurations, variable
consistent, stores true and each process v executes the actions corresponding to the value true.
For example, in protocol Tree-R, non-root process v reads only dprpns, from prnt,.

Legitimate configurations of protocol Tree-R are defined as follows.

Definition 3 (Legitimate configuration) A configuration o of protocol Tree-R is legitimate if
o satisfies the following conditions.

1. For the root process v, prnt, = 1, d. = 0 and consistent, = true hold.

2. For every process v other than r, prnt, € Ny, dy = dprnt, + 1 and consistent, = true hold.
O

(a) Configuration o (b) Correcttreeat o

Figure 1: A correct tree of protocol Tree-R

The following lemma on the closure and the silence clearly holds.

Lemma 1 (Closure and silence) Once protocol Tree-ID reaches a legitimate configuration, it
remains at the configuration forever. O

To show the convergence, we introduce the concept of correct (partial) tree.

Definition 4 (Correct tree) Let o be any configuration of protocol Tree-R. We define a correct
tree T, at o as follows.

1. The root process r is included in Ty if and only if prnt, = L, d, = 0 and consistent, = true

hold.

2. A process v other than r is included in T, if and only if prnt, is included in T,, and prnt, €
Ny, dy = dprnt, +1 and consistent, = true hold. O

Figure 1 presents an example of a correct tree. In the figure, the process designated by variable
prnt,, of each process v is denoted by an arrow and the value of d, is described in the process. We
assume consistent, = true holds for v = r absolutely and for non-root process v if d, = dprns, + 1
holds. Figure 1 (a) presents a configuration, say o, and Figure 1 (b) presents the correct tree at o
by solid arrows.

Lemma 1 can be easily extended to the following lemma on the correct trees.

Lemma 2 (Stability of correct tree) Once a process, say v, is included in the correct tree Ty
at a configuration o, v never changes its state (i.e., the values of prnt,, d, and consistent,) after
o. g

Lemma 2 implies that the correct tree never shrinks as execution of protocol Tree-R proceeds.

Lemma 3 (Convergence) Starting from any configuration, protocol Tree-R eventually reaches a
legitimate configuration.

Proof It is sufficient to show that the correct tree eventually covers the whole network. Assume,
for contradiction, that the correct tree never covers the whole network. This implies from Lemma
2 that we have the final correct tree T', which does not cover the whole network. Let Pr and Pr
be sets of processes in T" and out of T respectively.

Let o be a configuration where the final correct tree is constructed. Consider any configuration
o' after o, and let dfﬁm be the minimum d, value among all the processes in Py at ¢’. No process

v € Py can assign its neighbor u € N, N Pr to prnt,; otherwise v becomes a member of the correct
tree, which contradicts the assumption that the correct tree never changes after o. This implies
that every process v € Py eventually chooses (or keeps) a process w € Py as its parent and assigns
(or keeps) a value greater than dgﬁm to d,. Consequently, the value of d, at every process v € Pp
grows unboundedly. This makes a process v € Py neighboring to a process in Pr eventually choose
u € Pr as its parent since u eventually becomes to have the minimum value of d,, among all the
neighbors of v. This implies that a process v € Py is newly involved into the correct tree, which is
a contradiction. O

Theorem 1 Protocol Tree-R is a self-stabilizing silent protocol for constructing a spanning-tree in
an arbitrary network with a unique root. It is O-(n — 1)-communication-efficient and <>-1-stable,
and its stabilization time is O(n) rounds.

Proof It is clear from Lemmas 1 and 3 that Tree-R is a self-stabilizing silent protocol for con-
structing a spanning-tree in an arbitrary network with a unique root. It is also clear that, in any
legitimate configuration, the root r never executes a read action and every process v other than r
reads only the state of its parent, and thus, the protocol is ¢-(n — 1)-communication-efficient and
&-1-stable.

At any configuration o, let d”" be the minimum value of d, among all the processes out of the
correct tree at 0. By an argument similar to that in the proof of Lemma 3, we can see that d7"
becomes larger than n—1 in the first 2n rounds of any execution. Note that each process v updates
d, only when consistent, = false holds, which can be executed at most every two rounds. This
implies that Tree-R reaches a configuration in 2n rounds where any process v out of the correct
tree has a greater value of d, than any process u in the correct tree, since the value of d, cannot
grow beyond n — 1 in the correct tree. In any execution from such a configuration, at least one
process is newly involved into the correct tree every two rounds until the correct tree covers the
whole network. Consequently, the stabilization time is at most 4n rounds. O

3.2 Impossibility on networks with process IDs

Protocol Tree-R assumes existence of a unique root process. Instead of the assumption, we some-
times assume for self-stabilizing spanning-tree construction that processes have distinct identifiers;
the process with the minimum (or maximum) identifier is elected as the root and the spanning-
tree is constructed using the root. Self-stabilizing spanning-tree construction is possible with the
assumption of distinct identifiers (but without a predetermined unique root) [1]. However, the
following theorem shows that <¢-o(m)-communication-efficiency is impossible to attain under the
assumption, where m is the number of links in the distributed system.

Theorem 2 Any self-stabilizing protocol for constructing a spanning-tree in a non-rooted network
with distinct process identifiers requires repeated communication between every pair of neighbors
even after convergence to a legitimate configuration.

Proof Assume for contradiction that there exists a self-stabilizing spanning-tree construction pro-
tocol A such that there exists a pair of processes in every network that never communicate after
the convergence. That is, in every execution, there exists a pair of processes such that they never
read the state of each other after a legitimate configuration.

Consider two networks 81 = (P1, L1) and Sy = (P, Ly) and assume that Py N P, = (). In the
executions of protocol A, there exists a pair of neighbors, say u; and vy in §; (resp. w2 and vy in

(a) NetworksS;and S, (b) Networks S

Figure 2: Network S constructed from &; and Ss

S»), such that the processes never communicate with each other after a legitimate configuration oy
(resp. 03).

Now consider a network & = (P, L) where P = P{UP; and L = ((L1ULg)—{(u,v1), (ug,v2)})U
{(u1,v2), (ug,v1)} (Fig. 2). Consider an initial configuration of S where processes in P; and P»
are at the same states as in o7 and o9 respectively. Each process of S behaves in the same way
as they are in 81 or Ss, and thus, this contradicts the assumption that protocol A constructs a
spanning-tree in an arbitrary network. |

3.3 Protocol Tree-ID on networks with process IDs

In this subsection, we first show that communication-efficiency is attainable if each process has a
unique identifier and initially knows the number n of processes in the network. Then, we briefly show
how to modify the protocol so that the protocol can work with an upper bound N (0 < N < 2n)
of n. It is easy to see that the proof of Theorem 2 does not hold if each process knows the network
size: the two configurations of the proof become distinguishable and the contradiction cannot be
derived.

Protocol 3.2 presents a <&-2(n — 1)-communication-efficient self-stabilizing protocol Tree-ID for
constructing a spanning-tree on arbitrary networks. The protocol assumes that each process v has
a unique identifier id, and knows the number n of processes in the network. Each process v has
variables root,, size, and CHLD, in addition to the variables used in protocol Tree-R. Variable
root, stores the root identifier of the tree v currently belongs to, CHLD, stores the children of v,
and size, stores the number of processes in the subtree rooted at v.

The strategy for attaining the communication-efficiency is the same as protocol Tree-R: every
process v other than r checks its consistency only by comparing its variable d, with that of its
parent. However, this strategy alone is not sufficient. Consider the initial configuration where
multiple trees exist, and variables prnt, and d, of every process are consistent. If there exists a
pair of processes that never communicate with each other, the processes may fail to detect existence
of other trees (in the same way as the case of the proof of Theorem 2).

To circumvent the difficulty, we make use of the number n of processes: the root finds the
number of processes in its tree and allows each process in the tree to communicate with all of its
neighbors until the tree covers the whole network. When a process finds another tree rooted at a
process with a larger identifier than its current root, the process changes its parent to join the newly
found tree. Consequently, the tree rooted at the process r with the maximum identifier eventually
covers the whole network, which is detected when size,, = n holds. The variable consistent, is used
to relay the information whether the tree covers the whole network or not.

After convergence to a legitimate configuration, each process reads the states of its children as
well as that of its parent, and thus, the protocol Tree-ID is ¢-2(n — 1)-communication efficient.

Definition 5 (Legitimate configuration) A configuration o of protocol Tree-ID is legitimate if
o satisfies the following conditions.

1. For the process, say r, with the maximum identifier in the network, root, = id,, prnt, = L
and d, = 0 hold.

2. For every process v other than r, root, = id,, prnt, € Ny and dy = dprne, + 1.

3. For every process u, CHLD, = {w € N,, | prnt,, = id,}, size, = the number of processes in
the subtree rooted at u, and consistent,, = true. O

The following lemma on the closure and the silence clearly holds.

Lemma 4 (Closure and silence) Once protocol Tree-ID reaches a legitimate configuration, it
remains at the configuration forever. O

Lemma 5 (Convergence) Starting from any configuration, protocol Tree-ID eventually reaches
a legitimate configuration in O(n) rounds.

Proof sketch Initially fake identifiers (or identifiers of non-existing processes in the network) may
be stored in variable root of processes. Such fake identifiers are removed in O(n) rounds since the
attached distances increase by at least one in every two rounds and the identifier is ignored when
the distance becomes n — 1. In the following, we consider execution after all the fake identifiers are
removed.

Once the process r with the maximum identifier is activated, variables root,, prnt, and d, are
set to id,, L and 0 respectively and remain unchanged afterward. It follows that any tree rooted
at a process, say s, other than r cannot contain all the processes, and thus, s sets consistents to
false in O(n) rounds and keeps it as long as prnt, = L. When the false value is relayed to
a process, say u, u sets variable root, to the maximum identifier stored in root of its neighbors.
From this fact, we can show that root, = id, holds at every process u in O(n) rounds. On the
other hand, by an argument similar to that for the fake identifiers, we can show that all the cycles
formed by variables prnt are removed in O(n) rounds. Thus, in O(n) rounds, the protocol reaches
a configuration, say o, where root, = id, holds at every process u and variables prnt of all the
processes form no cycle; i.e., prnt of all the processes form a spanning-tree rooted at r.

After configuration o, each process u may change the value of prnt, when the value of dp,
becomes n — 1. This implies that there exists the gap of distance (i.e., d, > dprnt, + 1) at some
process v on the path from the root r to prnt,. Since the minimum value of gap-causing distance
(i.e., dprne, in the above case) increases by one in every two rounds, such gaps disappear in O(n)
rounds. Thus, the protocol reaches a configuration in O(n) rounds after which no process changes
the value of prnt,. When the value of prnt, is fixed at each process u, it is clear that the protocol
reaches a legitimate configuration in O(n) rounds. O

In protocol Tree-ID, every process repeatedly reads the states only from its parent and children
at a legitimate configuration, thus, the protocol is ¢-2(n—1)-communication-efficient. The following
theorem is immediately derived from Lemmas 4 and 5.

Theorem 3 Protocol Tree-1ID is a self-stabilizing silent protocol for constructing a spanning-tree in
arbitrary networks where each process has a distinct identifier and knows the number n of processes
a priori. It is &-2(n — 1)-communication-efficient and its stabilization time is O(n) rounds.

Protocol 3.2 A communication-efficient self-stabilizing protocol Tree-ID

constants of process v
id,: identifier; /* identifier of v
n: integer; /* the number of processes in the network

communication variables of process v
prnt,: identifier or L; /* prnt, = id, (u € N,) if u is a parent of v.
root,: identifier; /* identifier of the root
d,: integer; /* distance from the root on the constructed tree
size,: integer; /* the number of processes in the subtree rooted at v
consistent,: bool; /* consistent,, = true iff v is locally consistent

local variables of process v
CHLD,,: subset of neighbors of v; // set of v’s children

actions of process v
switch(consistent,)
case true
((prnt, = L and (root, # id, or d, # 0 or size, # n)) or
(prnt, # L and (root, < id, or root, # 100tyrms, O dy 7# dprne, + 1))or
Ju € CHLD,[prnt,, # idy] or sizey, # Y _,ccnrp, S26u + 1 or
consistentym; = false)
— consistent, := false;
case false
true —
root, := max({root, | u € Ny,d, <n—2}U{id,});
if root, = id, then
prat, == L; d, :=0;
else if (prnt, # L and r0ot,mi, = root, and dpm, < n — 2)
dy = dprntv +1
else
prat, = id, s.t. d, = min{d,, | w € N, root,, = root,};
dy 1= dprntv +1;
CHLD, :={u € N, | prnt,, = id,};
sizey = Y .comLp, S1%6u + 1;
if ((prnt, = L) and (size, = n)) or
((prnt, # L) and (consistentym, = true))) then
consistent, :=true;

10

Protocol Tree-ID utilizes the number n of processes to detect completion of spanning-tree
construction. Until the spanning-tree is constructed, every process communicates with all of its
neighbors to detect another existing tree. When the root r detects the completion, it transfers each
process to the communication-saving mode by announcing the completion using variable consistent.

When each process initially knows the identifiers of all the neighbors instead of n, ¢-2(n — 1)-
communication-efficiency is attainable: by broadcasting the process identifiers in the constructed
tree, each process need not communicate with neighbors connected by non-tree links. Thus, at a
legitimate configuration, each process communicates only with its parent and children.

Protocol using an upper bound of the network size Protocol Tree-ID uses the exact number
n of processes in the network, however, it can be modified to work with an upper bound N of n
satisfying n < N < 2n.

The key observation for the modification is that only a single tree can contain the majority of
the processes. This leads us to the following strategy for attaining communication-efficiency: to
reduce the communication after convergence, a process reads the states only from its parent and (a
subset of) its children when it belongs to a tree (called a major tree) consisting of N/2 processes or
more. On the other hand, to detect another tree, a process reads the states from all the neighbors
when it belongs to a tree (called a minor tree) with less than N/2 processes. When a process in a
minor tree finds a major tree in its neighbors, the process changes its parent to join the major tree.

In the modified protocol, each process has the same variables and executes almost the same
code as protocol Tree-ID. The outline of the modification is as follows.

1. To transfer processes into the communication-saving mode, we should detect that a major tree
is formed, instead of detecting that spanning-tree construction is completed: the condition
size, = n (resp. size, # n) for consistency (resp. inconsistency) at a root v (such that
prat, = 1) is modified to size, > N/2 (resp. size, < N/2).

2. Every process has possibility to become the root of the spanning-tree while the process
with the maximum identifier necessarily becomes the root in protocol Tree-ID: the condi-
tion root, < id, for inconsistency at a non-root process v is removed.

3. When a process v finds a major tree in its neighbors, v should join the major tree: when
process v changes the value of root,, it adopts the value of root, if consistent, =true holds
at a neighbor w (which implies u is contained in the major tree). If such a neighbor does not
exist, a larger identifier has higher priority as in protocol Tree-ID.

By the above strategy, we can design a <-2(n — 1)-communication-efficient self-stabilizing pro-
tocol for the spanning-tree construction.
Remark 1: Distinct from protocol Tree-ID, variable CHLD, does not store all the children of v
but stores a subset of the children. This is caused as follows. Let v be a process in the major tree
and have set consistent, to true. Let u be its neighbor in another tree. When w finds v, it joins
the major tree by setting prnt, to id,. But v reads the states only from its parent and processes
in CHLD,,, v cannot detect the new child u and cannot add u to CHLD,,.
Remark 2: Some self-stabilizing (but not communication-efficient) protocols for spanning-tree
construction (e.g., [5]) use an upper bound N of the number n of processes. The upper bound
is utilized to detect fake identifiers and cycles (formed by variables prnt) that exist in the initial
configuration. The protocols work with any upper bound N.

Distinct from these protocols, we make restriction on N such that N < 2n. This restriction is
necessary to attain the communication-efficiency. Actually by an argument similar to that in the

11

proof of Theorem 2, we can show that the communication-efficiency is unattainable when N = 2n:
every pair of processes have to communicate repeatedly and forever. In this sense, the restriction
of N < 2n is the weakest for attaining communication-efficiency.

4 Conclusions

We introduced <-k-communication-efficiency as an efficiency measure of self-stabilization after con-
vergence. We investigated possibility of the communication-efficiency in self-stabilizing spanning-
tree construction, and showed the positive and negative results.

The spanning-trees constructed by the presented protocols are not breadth-first-trees or depth-
first-trees, while most of self-stabilizing (but not communication-efficient) protocols construct breadth-
first-trees or depth-first-trees. By an argument similar to that in the paper, we can show that <-
O(n)-communication-efficiency is unattainable for constructing these restricted spanning-trees. One
of our extended work will contain the characterization of spanning-trees that allow communication-
efficient solutions.

Acknowledgements We are grateful to Sébastien Tixeuil and Stéphane Devismes for their help-
ful discussions.

References

[1] Afek, Y., Kutten, S., and Yung, M.: The local detection paradigm and its applications to self-
stabilization, Theoretical Computer Science, Vol. 186, Issues 1-2, pp. 199-229 (1997).

[2] Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S.: Stable leader election, Proceedings
of the 15th International Symposium on Distributed Computing, pp.108-122 (2001).

[3] Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S.: On implementing omega with
weak reliability and synchrony assumptions, Proceedings of the 22rd ACM Symposium on Principles of
Distributed Computing, pp.306—-314 (2003).

[4] Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S.: Communication-efficient leader
election and consensus with limited link synchrony, Proceedings of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing, pp.328-337 (2004).

[5] Arora, A. and Gouda, M.G.: Distributed reset, IEEE Transactions on Computers, Vol.43, No.9,
pp.1026-1038 (1994).

[6] Biely M. and Widder J.: Optimal message-driven implementations of omega with mute processes, ACM
Transactions on Autonomous and Adaptive Systems, Vol.4, No.1, pp.4:1-4:22 (2009).

[7] Delporte-Gallet, C., Devismes, S., and Fauconnier, H.: Robust stabilizing leader election, Proceedings of
the 9th International Symposium on Stabilization, Safety, and Security of Distributed Systems, pp.219—
233 (2007).

[8] Devismes, S., Masuzawa, T., and Tixeuil, S.: Communication efficiency in self-stabilizing silent proto-
cols, Proceedings of the 29th International Conference on Distributed Computing Systems, pp.474—481
(2009).

[9] Dolev, S.: Self-stabilization, MIT Press (2000).

[10] Géartner, F.C.: A survey of self-stabilizing spanning-tree construction algorithms, Technical Report
I1C/2003/38, Swiss Federal Institute of Technology (2003).

[11] Larrea, M., Fernandez, A., and Arevalo, S.: Optimal implementation of the weakest failure detector for
solving consensus, Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems, pp.52—59
(2000).

12

