
Multi-Relational Pattern Mining Based-on
Combination of Properties with Preserving

Their Structure in Examples

Yusuke Nakano and Nobuhiro Inuzuka

Nagoya Institute of Technology,
Gokiso-cho, Showa, Nagoya 466-8555, Japan

nakano18115115@gmail.com, inuzuka@nitech.ac.jp

Phone: +81-52-735-5050, Facsimile: +81-52-735-5473

Abstract. We propose an algorithm for multi-relational pattern mining
through the problem established in WARMR. In order to overcome the
combinatorial problem of large pattern space, another algorithm MAPIX
restricts patterns into combination of basic patterns, called properties. A
property is defined as a set of literals appeared in examples and is of an
extended attribute-value form. Advantage of MAPIX is to make patterns
from pattern fragments occurred in examples. Many patterns which are
not appeared in examples are not tested. Although the range of patterns
is clear and MAPIX enumerates them efficiently, a large part of patterns
are out of the range. The proposing algorithm keeps the advantage and
extends the way of combination of properties. The algorithm combines
properties as they appeared in examples, we call it structure preserving
combination.

1 Introduction

This paper studies multi-relational pattern mining obeying the line of Warmr[2,
3]. Warmr generates and tests candidate patterns with a pruning technique
similar to Apriori[1]. In spite of the cut-down procedure it has the exponentially
growing space of hypothesis with respect to the length of patterns and the num-
ber of relations. Another algorithm Mapix restricts patterns into conjunctions
of basic patterns, called properties. A property is an extended attribute-value
form consisting of literals that refer to parts of objects and a literal that de-
scribes a property of or a relation among the parts. For example for a person
(or his/her family) a basic pattern consists of referential literals (or an extended
attribute), for example “one of his/her grandchildren”, and a descriptive literal
(or an extended attribute value), for examples “it is male” and then it describes
a basic property, for example “this person has a grandson”.

Mapix finds patterns made of properties appeared in samples relying on type
and mode information of relations. The search can be seen as a combination
of bottom-up and top-down search, it constructs properties from samples in a
bottom-up way and tests patterns combining the properties in a top-down way.

The properties of Mapix and their conjunctions are natural but the range
in which Mapix generates patterns is still narrow. There seems another nat-
ural range of patterns to be generated. We propose another way to combine



properties. For example, for a person of a family, “having a son” and “having a
granddaughter” are properties and by combining them we may have “having a
son and a granddaughter”. But it may not represent a real situation of the family
precisely, in which it may happen that “having a son who has a daughter”.

We propose an algorithm by using a structural combination[4] of basic pat-
terns. We propose to use preserved structure in a sample and give a simple
algorithm. Our algorithm generates patterns in a larger pattern space.

2 Patterns and Mapix Algorithm

Datalog is used to represent data and patterns. Datalog clauses are of the form
∀(h ← b1 ∧ . . . ∧ bn) without functors, where ∀F means all variables in F are
universally quantified and ∀ is omitted when understood. For c = h ← b1∧. . .∧bn,
head(c) denotes the head atom h and body(c) denotes the body conjunction
b1 ∧ . . . ∧ bn. A fact is a clause without body. A substitution is described by
θ = {v1/t1, . . . , vn/tn} for variables vi and terms ti. Pθ for a formula P means
replacing every variable vi with ti.

For our mining task a Datalog DB R is given and one of extensional relations
is specified for a target (It corresponds to the concept key of Warmr). A fact of
the target relation is called a target instance.

A query is a clause without head ← b1∧ . . .∧ bn, equivalently an existentially
quantified conjunction ∃(b1 ∧ . . . ∧ bn), where ∃Q means all variables in Q are
existentially quantified. When a formula is clearly meant to be a query ∃ is
dropped. A query q is said to succeed wrt R when R |= ∃q.

The following gives patterns, among which we are interested in frequent ones.

Definition 1 (pattern). A pattern is a Datalog clause whose head is of the
target predicate. For a target instance e and a pattern P , P (e) denotes a query
∃(body(P )θ) where θ is the mgu (most general unifier) of e and head(P ). When
P (e) succeeds we say that e possesses P .

Definition 2 (frequent pattern). The frequency of P is the number of target
instances which possess P . P is frequent if its frequency exceeds supmin ·N , where
supmin is a given minimal support and N is the number of all target instances.

Example 1 (running example). Let us consider a DB Rfam on families (Fig. 1).
It includes four relations, parent(x, y) meaning x is a parent of y, female(x) for
a female x, male(x) for a male x, and grandfather(x) meaning x is someone’s
grandfather. We use gf, p, m, f for the relations for short. We also abbreviate
person01 as 01. Let gf be a target.

Then, for example the following formula is a pattern.

P = gf(A) ← m(A) ∧ p(A,B) ∧ f(B)

For a target instance ϵ = gf(01), P (ϵ) denotes a query,

P (ϵ) = ∃((m(A) ∧ p(A,B) ∧ f(B))θ) = ∃(m(01) ∧ p(01, B) ∧ f(B)).



grandfather

person01

person07

person12

person19

person20

parent

person01 person02

person02 person03

person02 person04

person03 person05

... ...

male

person01

person05

person07

person10

...

female

person02
person03
person04
person06

...

Fig. 1. The family DB Rfam, including grandfather, parent, male and female, of which
grandfatheris a target. The persons with ∗ are female and others are male.

where θ is the mgu of ϵ and head(P ). The query P (ϵ) succeeds by an assignment
{B 7→ 02} then e possesses P . ⊓⊔

Many ILP algorithms assume modes for predicates to restrict patterns. Some
arguments of a predicate have a role as input (denoted by +) and some as output
(−). We give parent(+,−), male(+), and female(+) to the predicates in Rfam.

We distinguish between two classes of predicates. Predicates with at least
one ⟨−⟩-arg. are called path predicates, e.g. parent(+,−), which have a role like
a function generating a term from others. Predicates without ⟨−⟩-arg. are called
check predicates, e.g. male(+) and female(+), which have a role describing a
property of given terms. An instance of a path/check predicate in DB is called
a path/check literal. We do not give mode for target predicate.

Using these concepts Mapix extracts basic patterns, called properties, from
DB and generalize them to basic patterns, called property items.

Definition 3 (property). A property of a target instance e wrt DB R is a
minimal set L of ground atoms in R satisfying

1. L includes exactly one check literal, and
2. L can be given a linear order where every term in a ⟨+⟩-arg. of a literal in

L is occurred in some precedent literals in the order or e.

Definition 4 (variablization). For a ground formula α a formula β is a vari-
ablization of α when

1. β does not include any ground term, and
2. there exists a substitution θ = {v1/t1, · · · , vn/tn} that satisfies

(a) α = βθ and (b) t1, . . . , tn in θ are all different terms in α.

We assume to use new variables never used before when variablizing.

Definition 5. For a set L = {l1, · · · , lm} of ground literals and a target instance
e var(e ← L) denotes a variablization of e ← l1 ∧ . . . ∧ lm.



Table 1. Properties and property items of ϵ = gf(01).

pr0={m(01)} it0=gf(A)←m(A)
pr1={p(01,02),f(02)} it1=gf(A)←p(A,B)∧f(B)
pr2={p(01,02),p(02,03),f(03)} it2=gf(A)←p(A,B)∧p(B,C)∧f(C)

({p(01,02),p(02,04),f(04)})
pr3={p(01,02),p(02,03),p(03,05),m(05)} it3=gf(A)←p(A,B)∧p(B,C)∧p(B,D)∧m(D)
pr4={p(01,02),p(02,04),p(04,06),f(06)} it4=gf(A)←p(A,B)∧p(B,C)∧p(B,D)∧f(D)

When L is a property of e, var(e ← L) is called a property item of e. Possessing
P by e and a query P (e) are defined as in Definition 1.

Example 2. L={p(01,02),p(02,03),f(03)} is a property of ϵ=gf(01). Then it =
var(ϵ←L)=gf(A)←p(A,B)∧p(B,C)∧f(C) is possessed by ϵ, i.e. Rfam |= it(ϵ). ⊓⊔

Then, Mapix algorithm is as follows:

1. It samples an appropriate number of target instances from a target relation.
2. For each sampled instance it extracts property items hold on DB.
3. It executes an Apriori-like level-wise frequent pattern mining algorithm by

regarding the satisfaction of a property item as possession of it.

As discussed in [5] the size of sampled instances in step 1 can be constant with
respect to the the size of all examples.

Example 3. Table 1 shows property items produced from gf(01). Only these are
frequent for min sup 60% even if we sample all instances, when another infrequent
property items gf(A) ← p(A,B) ∧ p(B,C) ∧ m(C) is extracted from gf(20).

In step 3 Mapix combines property items by a simple conjunction. For
example it2 (means having a granddaughter) and it4 (means having a great-
granddaughter) are combined to the following pattern, which we write as ⟨it2, it4⟩,

⟨it2, it4⟩ = gf(A)←p(A,B)∧p(B,C)∧f(C)∧p(A,D)∧p(D,E)∧p(E,F )∧f(F ),

which means having a granddaughter and a great-granddaughter but neither
having a child who has a daughter and a granddaughter nor having a grand-
daughter who has a daughter. We call such a conjunction a property itemset.

3 Ideas and an Algorithm

We propose an algorithm based on Mapix in order to produce rich combinations
of properties. It keeps efficiency by seeing only combination appeared in samples.

In order to explain our idea, we introduce the shadow of a property item,
which is a set of properties that produce the property item.

Definition 6. For a database R and a property item it, the set defined bellow is
called the shadow of the property item,

shadow(it,R) = {‘e ← L’ ∈ T × 2R | L is a property and var(e ← L)∼it},

where T is the target relation in R, 2X is the power set of a set X, and P∼Q
means P and Q are θ-equivalent, i.e. P θ-subsumes Q and Q θ-subsumes P .



Example 4. For Rfam and it2, the shadow of it is

shadow(it2, Rfam) = {
gf(01) ← {p(01, 02), p(02, 03), f(03)}, gf(01) ← {p(01, 02), p(02, 04), f(04)},
gf(07) ← {p(07, 08), p(08, 09), f(09)}, gf(12) ← {p(12, 13), p(13, 15), f(15)},
gf(12) ← {p(12, 14), p(14, 16), f(16)}, gf(19) ← {p(19, 20), p(20, 21), f(21)},
gf(19) ← {p(19, 20), p(20, 22), f(22)}, gf(20) ← {p(20, 21), p(21, 24), f(24)} }

Definition 7 (combinable property itemset). A property itemset ⟨iti1 , . . . ,
itin⟩ is combinable, if there exist a target instance e and

⟨e ← pri1 , . . . , e ← prin⟩ ∈ shadow(iti1 , R) × . . . × shadow(itin , R),

such that
∩

j=1,...,n(terms(prij ) − terms(e)) ̸= ∅, where terms(p) is the set of
all terms in p. ⟨e ← pri1 , . . . , e ← prin⟩ is called a combinable shadow tuple.

Definition 8 (combined property item). When a property itemset is =
⟨iti1 , . . . , itin⟩ is combinable and ⟨e ← pri1 , . . . , e ← prin⟩ is a combinable shadow
tuple of it,

var(e ←
∪

j=1,...,n prij )

is called a combined property item produced from is. A property item that is not
combined is called atomic.

Example 5. A property itemset ⟨it2, it4⟩ is combinable, because the shadow of
it2 (see the example above) and the shadow of it4

shadow(it4, Rfam) = { gf(01) ← {p(01, 02), p(02, 04), p(04, 06), f(06)},
gf(07) ← {p(07, 08), p(08, 09), p(09, 11), f(11)},
gf(19) ← {p(19, 20), p(20, 21), p(21, 24), f(24)} }

have five combinable shadow tuples

⟨gf(01)←{p(01,02), p(02,03), f(03)}, gf(01)←{p(01,02), p(02,04), p(04,06), f(06)}⟩,
⟨gf(01)←{p(01,02), p(02,04), f(04)}, gf(01)←{p(01,02), p(02,04), p(04,06), f(06)}⟩,
⟨gf(07)←{p(07,08), p(08,09), f(09)}, gf(07)←{p(07,08), p(08,09), p(09,11), f(11)}⟩,
⟨gf(19)←{p(19,20), p(20,21), f(21)}, gf(19)←{p(19,20), p(20,21), p(21,24), f(24)}⟩,
⟨gf(19)←{p(19,20), p(20,22), f(22)}, gf(19)←{p(19,20), p(20,21), p(21,24), f(24)}⟩

and they produce the following two combined property items.

it2-4 = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ f(D).
it2-4’ = gf(A) ← p(A,B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ f(E).

it2-4 means having a granddaughter who has a daughter and it2-4’ means hav-
ing a child who has a daughter and a granddaughter. Every tuple produces a
combined property item equivalent to one of the above. All frequent combined
property items produced from Rfam are shown in Table 2.



Table 2. All frequent property items and combined property items in Rfam for min
sup=60%.

it0 = gf(A) ← m(A).
it1 = gf(A) ← p(A, B) ∧ f(B).
it2 = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C).
it3 = gf(A) ← p(A, B) ∧ p(B, C) ∧ p(C, D) ∧ m(D).
it4 = gf(A) ← p(A, B) ∧ p(B, C) ∧ p(C, D), f(D).
it1-2 = gf(A) ← p(A, B) ∧ f(B) ∧ p(B, C) ∧ f(C).
it1-3 = gf(A) ← p(A, B) ∧ f(B) ∧ p(B, C) ∧ p(C, D) ∧ m(D).
it2-3 = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ m(D).
it2-3’ = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ m(E).
it2-4 = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ f(D).
it2-4’ = gf(A) ← p(A, B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ f(E).
it3-4 = gf(A) ← p(A, B) ∧ p(B, C) ∧ p(C, D) ∧ f(D) ∧ p(B, E) ∧ p(E, F ), m(F ).
it1-2-3 = gf(A) ← p(A, B) ∧ f(B) ∧ p(B, C) ∧ f(C) ∧ p(C, D) ∧ m(D).
it1-2-3’ = gf(A) ← p(A, B) ∧ f(B) ∧ p(B, C) ∧ f(C) ∧ p(B, D) ∧ p(D, E) ∧ m(E).
it2-3-4 = gf(A) ← p(A, B)∧p(B, C)∧f(C)∧p(C, D)∧f(D)∧p(B, E)∧p(E, F )∧m(F ).
it2-3-4’ = gf(A) ← p(A, B)∧p(B, C)∧p(C, D)∧f(D)∧p(B, E)∧f(E)∧p(E, F )∧m(F ).

With atomic property items combined property items work to make other
patterns by conjunction. For example, it1 and it2-4 make the following pattern,

⟨it1, it2-4⟩ = gf(A) ← p(A,B)∧ f(B)∧p(A, C)∧p(C,D)∧ f(D)∧p(D, E)∧ f(E),

which means having a daughter and a granddaughter who has a daughter. ⊓⊔

Here we propose a new algorithm for all frequent patterns made from con-
junction among atomic and combined property items extracted from samples:

1. It samples target instances from a target relation.
2. For each sampled instance it extracts atomic property items hold on DB.
3. By using an Apriori-like level-wise algorithm it enumerates all frequent con-

junctions of the atomic property items.
4. It produces all combined property items from the frequent combinable con-

junction.
5. Again by the level-wise algorithm it enumerates all frequent conjunctions of

atomic and combined property items.

The detail of the algorithm is given in Table 3.

4 Experiments and Concluding Remarks

We have done two experiments. The first one was with Rfam, where we aim to
see the varieties of patterns extracted. Table 3 shows the numbers of patterns
enumerated and runtime for our algorithm as well as Mapix and the algorithm
in [4] according as the minimum support threshold is changed. Our algorithm
produced more patterns than others. There was no duplication in the patterns
enumerated by three algorithms in the sense of θ-equivalence.



Table 3. A proposing algorithm.

input R : a DB; T : target relation; supmin: the min. sup. threshold;
output Freq: the set of patterns whose supports are larger than supmin

1. Select an appropriate size of subset T ′ ⊆ T ;
2. Items := ø; P := ø; Freq:= ø;
3. For each e ∈ T ′ do P:=P ∪ {e ← pr | pr is a property of e}
4. For each ‘e ← pr’ ∈ P do
5. If ∃I ∈ Items, I∼var(e ← pr) then S[I]:=S[I] ∪ {e ← pr};
6. else I ′ = var(e ← pr); S[I ′]:={e ← pr} ; Items:=Items ∪ {I ′};
7. k:=1; F1

1 :={⟨I⟩ | I ∈ Items and supp(I) ≥ supmin}; Freq:=F1
1 ;

8. While F1
k ̸= ø do

9. Ck+1:=Candidate(F1
k ,F1

k ); F1
k+1:={IS ∈ Ck+1 | supp(IS) ≥ supmin};

10. Freq:=Freq ∪ F1
k+1; k:=k+1;

11. Combined := Candicomb(Freq);
12. k:=1; F2

1 :={⟨I⟩ | I ∈ Combined and supp(I) ≥ supmin}; Freq:=Freq ∪ F2
1 ;

13. While F2
k ̸= ø do

14. Ck+1:=Candidate(F1
k ,F2

k ); F2
k+1:={IS ∈ Ck+1 | supp(IS) ≥ supmin};

15. Freq:=Freq ∪ F2
k+1; k:=k+1;

16. Return Freq;

Candidate(F1
k ,F2

k ):
input F1

k ,F2
k : sets of frequent property itemsets of a level;

output Ck+1 : the set of candidate property itemsets of the next level where at least
a property itemset is used from F2

k ;
1. Ck+1 := ø
2. For each pair ⟨⟨I1, . . . , Ik⟩, ⟨I ′

1, . . . , I
′
k⟩⟩ ∈ F2

k × {F1
k ∪ F2

k}
where I1 = I ′

1, . . . , Ik−1 = I ′
k−1, and Ik < I ′

k do
3. Ck+1 := Ck+1 ∪ {⟨I1, . . . , Ik−1, Ik, I ′

k⟩};
4. For each IS ∈ Ck+1 do
5. If k = 1 and (I≼I ′ or I ′≼I), where IS = ⟨I, I ′⟩ then remove IS from Ck+1;
6. For each I ∈ IS do if IS − {I} ̸∈ F1

k ∪ F2
k then remove IS from Ck+1;

7. Return Ck+1;

Candicomb(Freq):
input Freq : the set of frequent property item sets made of atomic items;
output Combined : the set of combined property items produced from

all property itemsets in Freq;
1. Combined := ø;
2. For each ⟨I1, . . . , In⟩ ∈ Freq for n ≥ 2 do
3. For each ⟨e1 ← pr1, . . . , en ← prn⟩ ∈ S[I1] × · · · × S[In] do
4. If e1 = . . . = en and

∩
j=1,...,n

(terms(prj) − terms(ej)) ̸= ø then

5. Combined := Combined ∪ {var(e1 ←
∪

j=1,...,n
prj)};

6. For each I ∈ Combined do
7. If ∃I ′ ∈ Combined, I ′ ̸= I ∧ I ′∼I then Combined := Combined − {I};
6. Return Combined;

The second experiment was with the data of Bongard. Fig. 2 shows the num-
bers of patterns and runtime when the number of examples to extract properties



Table 3. Experiment with Rfam. All ex-
amples were used.

min sup 20% 40% 60% 80%

Mapix #patterns 55 31 23 11
[5] time (sec) 0.04 0.01 0.01 0.01

algo. #patterns 0.44 0.15 0.05 0.02
in [4] time (sec) 6.23 0.45 0.06 0.03

our #patterns 4601 1063 109 17
algo. time (sec) 9.55 0.54 0.08 0.01 Fig. 2. The numbers of patterns and run-

time as the number of sampled examples in-
crease in Bongard.

changes. These are the average of 10 times execution. We used all examples to
count frequency but sampled limited number examples to extract properties. By
80 examples our algorithm produced the same set of patterns (802 patterns) as
the case using whole 392 examples. The 802 patterns had no duplication. Among
802 patterns 99 have at most 5 literals, 533 have 6 to 10 literals, 145 have 11 to
15 literals and 25 are longer than 15. The longest pattern has 19 literals. Fig. 2
also shows the grow of runtime according to the sample size.

Our algorithm enumerates larger range of patterns, made of property items
and combined property items in which property items are combined as in exam-
ples. The algorithm in [4] uses structural combination but it has limitation. It
treats property items only in a single example then it composes all examples as
an artificial large example. In stead of our shadow the algorithm keeps the con-
junction of all equivalent property items because the conjunction is equivalent
to each property item. By the method patterns becomes larger. Our algorithm
overcome these limitation by the shadow and simple algorithm, but has the large
time complexity to the size of examples sampled. In fact it took 6556 seconds for
Bongard when it samples all examples. The sufficient size of examples, however,
can be suppressed because it depends only on the minimum support threshold.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. VLDB,
pp. 487–499, 1994.

2. L. Dehaspe and L. De Raedt. Mining association rules with multiple relations.
ILP97, pp.125–132, 1997.

3. L. Dehaspe, and H. Toivonen. Discovery of frequent Datalog patterns. Data Mining
and Knowledge Discovery, Vol. 3, no. 1, pp. 7-36, 1999.

4. N. Inuzuka, J. Motoyama, S. Urazawa and T. Nakano. Relational pattern mining
based on equivalent classes of properties extracted from samples. PAKDD2008, pp.
582–591, 2008.

5. J. Motoyama, S. Urazawa, T. Nakano and N. Inuzuka. A mining algorithm using
property items extracted from sampled examples, ILP2006, pp.335–350, 2007.


