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Abstract. In the recent years, there has been an increase in the number of 
accidents involving chemical and industrial plants. In most of the cases, the 
inadequate performance of alarm system has become a significant cause of 
industrial incidents and serious accidents. In general, alarm systems design can 
be divided into two processes, which are selecting alarm source signal and 
determining alarm limit. Authors have proposed the alarm source signal 
selection method. In this paper, we would like to focus on how to determine 
alarm limit using statistical method and evaluate this alarm design method 
through study case. 
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1 Introduction 

In the recent years, there has been an increase in the number of accidents involving 
chemical and industrial plants. In most of the cases, the inadequate performance of 
alarm system has become a significant cause of industrial incidents and serious 
accidents. 

 A poorly designed alarm may cause the event of a small incident turning into a 
more serious incident which led to major accident. For example, the Three Mile 
Island accident [1] that occurs in 1979 in Pennsylvania was a minor event that turns 
into major accident resulted from operator’s confusion due to an alarm flood—too 
many alarms were activated at the same time on the operator’s screen in the operator 
room at the time of the incident. From this incident, we can learn that alarm which 
was supposed to guide the operator on how to respond to upset in plant did not serve 
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its purpose, backfired and caused confusion to the operator, which led to injury, loss 
of life, equipment and property damage, fines and harm to company reputation.  

Therefore, in order to prevent such accident, better design of alarm is needed to 
detect fault or abnormality in plant, alert, inform and guide [2] [3] the operator during 
plant upset. In general, alarm systems design can be divided into two processes, 
which are selecting alarm source signal [4] [5] and determining alarm limit. In this 
paper, we would like to focus on how to determine alarm limit using statistical 
method and evaluate this alarm design method through study case. 

Liu and Noda (2009) [6] proposed a human-model-based evaluation in which 
alarm limits are defined as 2% margin from a variable normal fluctuation range. 
According to Brooks, Thorpe and Wilson (2004) [7] there has been no general 
method available to calculate values for alarm limits either in single-or multi-variable 
cases and this is the root cause of the poor performance of alarm systems today and 
hence of the low regard in which operators hold them. According to Izadi et al. (2009) 
[8] alarm limits that are set close to instrument limits are used to protect the 
equipment and avoid hazardous situations. Alarm limits that are set at a certain 
confidence range are meant to keep the operation at normal and often optimal 
conditions. 

2 Selection of Alarm Source Signals 

Takeda et al. (2010) [4] [5] proposed an alarm source signal selection method 
based on a two-layer cause-effect model. The model represents the cause and effect 
relationships between the deviations of state variables, such as process variables and 
manipulated variables, from normal fluctuation ranges. It is represented by a directed 
graph, where two types of nodes are defined. 

 
i+: Upward deviation of state variable i from normal fluctuation range  
i−: Downward deviation of state variable i from normal fluctuation range 
 
In the two-layer cause-effect model shown in Fig. 1, a single direction arrow links 

the deviation of a state variable and its affected state variable. The letters F and L 
indicate flow rate sensor and valve positions, respectively. 

An evaluation method for plant alarm system derives the sets of the state variables 
with the direction of their deviation from the normal fluctuation range. The derived 
sets are theoretically guaranteed to be able to qualitatively distinguish all assumed 
malfunctions in a plant when alarm limits are adequately set to those state variables. 
In this study, to evaluate distinguishability of the derived sets, alarm limits are 
determined by statistical information. 
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Fig. 1. Example of two-layer cause-effect model. 

3 Alarm Limit Setting and Assumption of Abnormal State 

3.1 Measured Value with Noise 

In any chemical plant, data measured from instrument usually contains noise. The 
measured value is expressed by Eq. (1). 

 Xo = X + N (1) 

Where X is true value, N is noise and Xo is measured value. In this paper, it is 
assumed the noise as normal random noise. Using normal distribution theory in 
statistic, abnormal state data distribution is assumed to be a deviation of mean from 
the normal steady state data distribution. But, the variance of the abnormal state data 
distribution is assumed to be equal to that of the normal steady state data distribution 
(Fig. 2).  

 

 
Fig. 2. Distributions with equal variance but difference means. 
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3.2 Alarm Limit Setting 

To detect the abnormal high (or low) state, the high (or low) alarm limit is set. 
When measured value exceeds the high (or low) alarm limit, the alarm is woken up to 
inform operators that the plant is in abnormal state. The operators will diagnose the 
cause of the abnormal state and take countermeasure. The alarm limit should be 
determined not to generate undesired alarm. The undesired alarm means alarm 
generation in normal steady state, or missed alarm generation in abnormal state. The 
former is called false alarm, and the later is called missed alarm [8]. The undesired 
alarm constraint is usually expressed the number of times per month or day. From the 
number of alarm source signals in the plant and the sampling period of the alarm 
source signals, the concept of probability distribution and critical region is used to 
determine alarm limit. For a probability distribution, outside region of a value is 
called critical region. When there is one critical region at one side of a probability 
distribution, test using the region is called one-tail test. When there are two critical 
regions at both sides of a probability distribution, test using the two regions is called 
two-tail test. 

Assume that there are Na alarms in a plant, and these alarm source signals are 
sampled per Sp minute. All sampled values in a month at the plant are 60•24•30•Na / 
Sp=43,200 Na / Sp samples. Assume that false alarm should be under Sf times per 
month, and then each alarm source signal’s critical region for one-tail test should be 
under Sf / (43,200 Na / Sp). Alarm limit is determined to meet the critical region. 
Assume Df as distance between the mean of normal steady state and alarm limit.  

3.3 Abnormal State Data Distribution Model 

On the other hand, assume that missed alarm should be under Sm times per month, 
and then each alarm source signal’s critical region for one-tail test of abnormal state 
should be under Sm / (43,200 Na / Sp). The mean of abnormal state should differ from 
alarm limits to meet the critical region. Assume Dm as distance between the mean of 
abnormal state and alarm limit. Then, to meet false alarm constraint and missed alarm 
constraint, the distance Da between the mean of normal steady state and that of 
abnormal state should be over Df + Dm.  

3.4 Example 

For example, assume that data distribution is normal distribution, Na is 100, Sp is 1 
minute, Sf is 3 times per month, and Sm is 5 times per day. It is assumed that Sf and Sm 
are desired for operators. During long normal state, operators may a few false alarms 
for a month. In abnormal state, operators may not allow missed alarm for short time. 
All sampled values in a month at the plant are 4.3e6 samples. The critical region for 
false alarm is 6.9e-7. Then Df becomes about 5σ of the distribution as shown in Fig. 3. 
All sampled values in a day at the plant are 1.4e5 samples. The critical region for 
missed alarm is 3.5e-5. Then Dm becomes about 4σ of the distribution, and Da 
becomes about 9σ.  
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Fig. 4. Example plant of two-tank system. 

For each malfunction, normal steady state was sampled for 10 minutes, and 
abnormal state was sampled for 590 minutes with normal distribution noise. Fig. 5 
shows the two-layer cause-effect model of the example plant. To distinguish the 
above 5 malfunctions, 688 types of alarm source signals sets were selected by using 
of proposed algorithm. For demonstration, a set of all alarms from 10 source signals 
(F1+, F1-, F2+, F2-, F3+, F3-, F4+, F4-, L1+, L1-, L2+, L2-, V1+, V1-, V2+, V2-, 
V3+, V3-, V4+, V4-) and a minimum set of 6 alarms from 3 source signals (F1+, F1-, 
F4+, F4-, V4+, V4-) were selected among these sets. The limits for these alarms were 
set to submit following constraints.  

 
─  False alarm should be under 3 times per month. 
─  Missed alarm should be under 5 times per day. 
 
To meet the above constraints, the limits were 5σ of the measured noise and the 

averages of assumed abnormal state were distanced 9σ from the average of steady 
state. These limits were decided by using above mentioned abnormal state data 
distribution model based on normal distribution. When the value of a state variable 
exceeded the corresponding alarm limit, the corresponding alarm was generated. 
Candidates of causes of alarms were estimated based on two-layer cause-effect 
model. The estimation is called fault diagnosis. 
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Fig. 5. Two-layer cause-effect model of example plant. 

5 Results and discussion 

The case for a set of all alarms is called case 1, and the case for a minimum set of 6 
alarms is called case 2. Tables 1 and 2 show simulation results for each case, 
respectively. In these tables, FD means fault diagnosis. 

5.1 Results for Generated Alarms 

For each case, false alarm is not generated because of short steady state. For the 
beginning of abnormal state of Mal-3, missed alarm was generated because of process 
dynamics. Generated alarms were met assumed false alarm and missed alarm 
constraint. First alarms are summarized for each case. For case 1, Mal-4 and Mal-5 
had 3 first alarms. For case 2, Mal-4 and Mal-5 had 2 first alarms. The other 
experiments had only 1 first alarm. Total number of alarms of case 2 was about 1/3 of 
that of case 1. For example, 3,258 alarms were generated from 10 source signals for 
Mal-1, whereas 1,061 alarms were generated from 3 source signals. By alarm 
selection, many waste alarms were eliminated. First alarm is very important 
information to aware operators as early as possible. Except Mal-3, first alarm time 
was 11 minutes for case 1 and 2. These results means that case 2 didn’t exclude 
important alarms except Mal-3.   
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5.2 Results for Fault Diagnosis 

Fault diagnosis results for generated alarms were almost identified the occurred 
malfunctions. Candidates of Tables 1 and 2 mean candidates of cause of abnormal 
state. The candidates were selected from assumed malfunctions using consistency 
among malfunctions and alarms. For example, 590 identified fault diagnosis were 
equal to 590 sampling for the abnormal state of almost experimental. Exceptionally, 
for first 9 alarms of Mal-3 of case 1, it was impossible to diagnose fault of candidates 
using generated alarms. The first 9 alarms were inconsistent because of process 
dynamics. Thus, more alarm variables led more difficulty of adequate alarm limit 
setting. For case 2, all selected alarms were consistent. Especially, for Mal-3, first FD 
of case 2 was earlier than that of case 1. For Mal-4 of case 1 and 2, incorrect 9 alarms 
were generated by process simulator problem, then it was impossible to diagnose fault 
of candidates using these alarms. These results show that diagnostic distinguishability 
by alarm selection was almost equal to that by all alarm source signals. 

Table 1. Simulation result for a set of all alarms. 

 

Table 2. Simulation result for a minimum set of 6 alarms. 

 
  

Malfunctions
Source
signals

Time
[min]

Source signals Counts Candidates
Time
[min]

Identified Impossible

Mal-1 F1+ 11 F1+, F2+, F3+, F4+,
L1+, L2+

3258 P1[+] 11 590

Mal-2 F1- 11 F2-, F2-, F3-, F4-,
L1-, L2-

3272 P1[-] 11 590

Mal-3 F2- 11 F2-, F3-, F4+, L1-,
L2+

2909 F2[-] 20 581 9

Mal-4 F4+, V4+,
L2-

11 F2-, F3-, F4+, F4-,
L1-, L2-, V4+

3460 V4[+] 11 581 9

Mal-5 F4-, V4-,
L2+

11 F2+, F3+, F4-, L1+,
L2+, V4-

3469 V4[-] 11 590

First FD Total FDTotal AlarmFirst alarm

Malfunctions
Source
signals

Time
[min]

Source
signals

Counts Candidates
Time
[min]

Identified Impossible

Mal-1 F1+ 11 F1+, F4+ 1061 P1[+] 11 590
Mal-2 F1- 11 F1-, F4- 1064 P1[-] 11 590
Mal-3 F4+ 18 F4+ 583 F2[-] 18 583
Mal-4 F4+, V4+ 11 F4+,F4-,V4+ 1180 V4[+] 11 581 9
Mal-5 F4-, V4- 11 F4-, V4- 1180 V4[-] 11 590

First alarm First FD Total FDTotal Alarm
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6 Conclusion 

Using two-layer cause-effect model, alarm source signals were selected from 
available alarm source signals to distinguish assumed fault origins. To evaluate the 
selected alarm source signals, numerical experiments were performed. To generate 
alarms, the limit for each alarm source signal is determined to meet constraints about 
false alarm and missed alarm. The experimental results show that many waste alarms 
were eliminated, and diagnostic performance by alarm selection was almost equal to 
that by all alarm source signals. 

References 

1. Rubinstein, E. and Mason, J.F.:An analysis of Three Mile Island. The accident that 
shouldn't have happened. The technical blow-by-blow, IEEE Spectrum, pp.33–42, 
November (1979) 

2. Hollifield, B., Habibi, E.: The Alarm Management Handbook, PAS (2006) 
3. Engineering Equipment and Materials Users’ Association (EEMUA); ALARM 

SYSTEMS - A Guide to Design, Management and Procurement Publication 
No.191 2nd Edition, EEMUA, London (2007) 

4. Takeda, K., Hamaguchi, T., Noda, M., Kimura, N. and Itoh, T.:Plant Alarm Signal 
Selection on the Basis of Two-Layers Cause-Effect Model, Kagaku Kougaku 
Ronbunshu, Vol. 36, No. 6, pp.582–588 (2010) 

5. Takeda, K., Hamaguchi, T., Noda, M., Kimura, N. and Itoh, T.:Use of Two-Layer 
Cause-Effect Model to Select Source of Signal in Plant Alarm System, LNAI, Vol. 
6277, pp.381–388 (2010) 

6. Liu, X., Noda, M., Nishitani, H.:Evaluation of plant alarm systems by behavior 
using a virtual subject, Journal of Computers and chemical engineering, Vol.34, 
pp.374–386 (2010) 

7. Brooks, R., Thorpe, R., Wilson,J.:A new method for defining and managing 
process alarms and for correcting process operation when an alarm occurs, Journal 
of Hazardous Materials, Vol. 115, pp.169–174 (2004) 

8. Izadi, I., Shah, S.L., Shook, D.S. and Chen,T.:An Introduction to Alarm Analysis 
and Design,  International Federation of Automatic Control, pp.645–650 (2009) 
 


