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Abstract. In this paper, we present a preliminary idea about applying
multi-unit combinatorial auctions to an electric power allocation problem
when it includes sustainable power sources and it considers guaranteeing
stable continuous use of the supplied power. Multi-unit combinatorial
auction is a combinatorial auction that has some items that can bee seen
as indistinguishable. Theoretically, such mechanisms could be applied
for dynamic electricity auctions. We try to illustrate how such a mech-
anism can be applied to the actual electric power allocation problem
when we consider the situation that there are sustainable electric power
sources and guaranteeing stable continuous use of them. An approxima-
tion mechanism has been applied for a large-scale auction problem to
overcome its computational intractability.

1 Introduction

One of the main issues on using sustainable electric sources is to solve the mis-
matches of their production availabilities and consumption needs[13][1]. They
are dynamically changing in every time, depending on the consumers’ context,
weather conditions, etc. Furthermore, some may want to use energy produced
from sustainable ways rather than generated by ordinary ways. Of course it
might be due to their ideological preferences but sometimes it would be even for
economical reasons since, for example, having a badge that shows the certificate
of using a certain percentage of renewable energy4 will increase a chance to have
their customers.

On the other hand, there are some investigations and innovations on effective
and efficient resource allocations among many self-interested attendees. Combi-
natorial auctions [2], one of the most popular market mechanisms, have a huge
effect on electronic markets and political strategies. For example, Sandholm et
al. [18] proposed a market mechanism using their innovative combinatorial auc-
tion algorithms. Multi-unit combinatorial auction is expected to be used on
4 e.g., see http://wwf.panda.org/how you can help/live green/renewable energy/



many problems that includes quantitative or countable items[12]. Combinato-
rial auctions provide suitable mechanisms for efficient allocation of resources to
self-interested attendees [2]. Therefore, many works have been done to utilize
combinatorial auction mechanisms for efficient resource allocation. For exam-
ple, the FCC tried to employ combinatorial auction mechanisms for assigning
spectrums to companies [14]. Therefore, it is natural to consider applying an
auction-based approach to an electricity power usage allocation problem in a
situation that various sustainable electric power sources are widely used.

However, a naive auction-based approach will cause some serious problems
(e.g., dramatic up and down of prices due to lack of a proper mechanism to
stabilize)[17]. Furthermore, in such case, their bidding might be complicated
(e.g., a large number of bids would be necessary to represent them) so that it is
very difficult to apply it to a large-scale problem.

To overcome those issues, many approaches have been proposed. For example,
Zurel et al. proposed an heuristic approach that combines approximation of LP
and a local search algorithm[19]. Also we proposed a parallel greedy approach[6],
a performance analysis of algorithms[7][3], and its enhancement[8]. Recently,
Fukuta proposed a fast approximation mechanism that can be applied to a multi-
unit combinatorial auction which has very large amount of bids so that it cannot
be easily solved by existing Linear Problem(LP) solvers[5]. Also the mechanism
provided a pricing mechanism that is similar to VCG(Vickery-Clarke-Groves)
which increases incentives to tell the true valuations for bidders. However, there
is little empirical analysis about how such fast approximation mechanism can be
applied to the actual electric power allocation problem. Also, there is a need to
stabilize its dramatic vibration of prices through the time.

In this paper, we present a preliminary idea about applying multi-unit com-
binatorial auctions to an electric power allocation problem when it includes
sustainable power sources and it considers guaranteeing stable continuous use of
the supplied power. Also we briefly analyze how a fast approximation mechanism
for it can be applied to the problem.

2 Preliminary

2.1 Multi-unit Combinatorial Auctions

Combinatorial auction is an auction that allows bidders to place bids for a com-
bination of items rather than a single item[2]. The winner determination problem
on single unit combinatorial auctions is defined as follows [2]: The set of bidders
is denoted by N = 1, . . . , n, and the set of items by M = {m1, . . . , mk}. |M | = k.
Bundle S is a set of items: S ⊆ M . We denote by vi(S), bidder i’s valuation of
the combinatorial bid for bundle S. An allocation of the items is described by
variables xi(S) ∈ {0, 1}, where xi(S) = 1 if and only if bidder i wins bundle S.
An allocation, xi(S), is feasible if it allocates no item more than once, for all
j ∈ M .

∀j ∈ M
∑

i∈N

∑

S�j

xi(S) ≤ 1



¥30,000 ¥20,000 
¥40,000 

Different kind of items 

Bid for a bundle of items 

No partial allocation for the bundle 

Bid for single item 

An item cannot be assigned 
to  multiple winners 

Fig. 1. An Example of (Single-Unit) Combinatorial Auction

The winner determination problem is the problem to maximize total revenue for
feasible allocations X � xi(S).

max
X

∑

i∈N

∑

S⊆M

vi(S)xi(S)

Fig. 1 shows an example of single-unit combinatorial auction.
Note that we used simple OR-bid representation as the bidding language.

Substitutability can be represented by a set of atomic OR-bids with dummy
items[2].

When some items in auction can be replaceable each other, i.e., they are indis-
tinguishable, the auction is called multi-unit auction. Multi-unit combinatorial
auction is the case when some items are indistinguishable in a combinatorial
auction[2].

Multi-unit combinatorial auction can be applied to electricity allocation prob-
lems, environmental exhausting right assignment problems, and other problems
that considers quantitative or countable items in allocation problem[12].

Essentially, a multi-unit combinatorial auction problem equals to a single-
unit combinatorial auction problem when the corresponding bidders treated
some items as indistinguishable and placed substitutable bids for those items.
Therefore, when we use OR-bid representation, a multi-unit combinatorial auc-
tion problem can be transformed into a simple single-unit combinatorial auction
problem.

However, this expanding approach easily reaches an explosion of bids. For
example, when we assume there are three types of item a, b, and c are auctioned



and their stocks are 50, 100, and 200, respectively, a bid for bundle of item a, b
and c can be expanded to 50 ·100 ·200 = 1, 000, 000 of bids. This scale is far from
tractable one. Therefore, when we need to have approximate solutions in such
situation, it is demanded to realize an approximation algorithm that directly
handles a multi-unit combinatorial auction problem.

2.2 Extending Lehmann’s Approximation Approach

Lehmann’s greedy algorithm [11] is a very simple but powerful linear algorithm
for winner determination in combinatorial auctions. Here, a bidder declaring
< s, a >, with s ⊆ M and a ∈ R+ will be said to put out a bid b =< s, a >.
The greedy algorithm can be described as follows. (1) The bids are sorted by
some criterion. In [11], Lehmann et al. proposed sorting list L by descending
average amount per item. More generally, they proposed sorting L by a criterion
of the form a/|s|c for some number c, c ≥ 0, possibly depending on the number
of items, k. (2) A greedy algorithm generates an allocation. L is the sorted list
in the first phase. Walk down the list L, allocates items to bids whose items are
still unallocated.

The allocation algorithm can naturally be extended to multi-unit combina-
torial auction problems. However, they did not mention about the applicability
to multi-unit combinatorial auctions.

In [6],[7], and [8], we have shown that their hill-climbing approach outper-
forms SA[6], SAT-based algorithms[10], LP-based heuristic approximation ap-
proach[19], and a recent LP solver product in the setting when an auction has a
massively large number of bids but the given time constraint is very hard. How-
ever, the algorithm is designed for single-unit combinatorial auction problems so
it cannot be applied for multi-unit problems directly.

2.3 Winner Approximation and Pricing

It is crucial for a combinatorial auction mechanism to have proper pricing mech-
anism. In VCG(Vickery-Clarke-Groves) mechanism, prices that winners will pay
will be given as follows[15]. A payment pn for a winner n is calculated by

pn = αn −
∑

i�=n,S⊆M

vi(S)xi(S)

Here, the right part of the right side of the equation denotes the sum of all
bidding prices of won bids, excluding the bids that are placed by the bidder n.
The left part of the right side of the equation, αn is defined by

αn = max
∑

i�=n,S⊆M

vi(S)xi(S)

for a feasible allocation X � xi(S). This means that the αn is the sum of all
bidding prices of won bids when the allocation is determined as if a bidder n
does not place any bids for the auction.



In [15], Nisan et al. showed that optimal allocations should be used for VCG-
based pricing to make the auction incentive compatible (i.e., revealing true val-
uations is the best strategy for each bidders). Also, Lehmann et al. showed that
VCG-based pricing with approximate winner determination will not make the
auction incentive compatible even when it is assumed that all bidders are single-
minded(i.e., each bidder can only place single bid at each auction)[11].

To overcome this issue, Lehmann et al. prepared a special pricing mechanism
that can only be applied for their approximate greedy winner determination[11].
However, this pricing mechanism can only be applied to their allocation algo-
rithm but it cannot be applied to other approximation allocation algorithms.
Also the mechanism is incentive compatible only when single-minded bidders
are assumed[11].

The main problem in which VCG-based pricing is applied to approximation
allocation of items is that there are the cases that: (1) the price for a won bid is
rather higher than the bid price, and (2) the price for a won bid is less than zero,
it means the bidder will win the items and also will obtain some money rather
than paying for it[15]. In the situation of (1), it breaks individual rationality (i.e.,
the one will not pay a higher price than the placed bid when the one won the
bundle of items). Also the situation of (2) is not preferable for both auctioneers
and sellers.

2.4 Approximation for Multi-unit Combinatorial Auctions

In this section, we briefly describe the approximation allocation algorithm for
multi-unit combinatorial auctions proposed in [5], as follows.

The inputs are Alloc, L, and Stocks. L is the bid list of an auction. Stocks
is the list of the number of auctioned units for each distinguishable item type.
Alloc is the initial greedy allocation of items for the bid list.

1: function LocalSearch(Alloc, L, Stocks)

2: RemainBids:= L - Alloc;

3: sortByLehmannC(RemainBids);

4: for each b ∈ RemainBids

5: RestStocks:=getRestStocks({b}, Stocks);

6: AllocFromWinners:=greedyAlloc(RestStocks, Alloc);

7: RestStocks:=

8: getRestStocks(AllocFromWinners + {b}, RestStocks);

9: AllocFromRest:=

10: greedyAlloc(RestStocks, RemainBids − {b});
11: NewAlloc:=

12: {b} + AllocFromWinners + AllocFromRest;

13: if price(Alloc) < price(NewAlloc) then

14: return LocalSearch(NewAlloc,L,Stocks);

15: end for each

16: return Alloc



The function sortByLehmannC(Bids) has an argument Bids. The function
sorts the list of bids Bids by descending order of Lehmann’s weighted bid price.
The result are directly stored (overwritten) to the argument Bids. The func-
tion getRestStocks(Bids, Stocks) has two arguments : Bids and Stocks. The
function returns how many unit of items will remain after allocating the items
in Stocks to the list of bids Bids. The function greedyAlloc(Stocks, Bids) has
two arguments : Stocks and Bids. The function allocates the items in Stocks to
the list of bids Bids by using Lehmann’s greedy allocation, and then the winner
bids are returned as the return value. The function price calculates the sum of
bidding prices for bids specified in the argument.

The optimality of allocations got by Lehmann’s algorithm (and the following
hill-climbing) deeply depends on which value was set to the bid sorting criterion
c. Again, in [11], Lehmann et al. argued that c = 1/2 is the best parameter
for approximation when the norm of the worst case performance is considered.
However, the optimal values for each auction are varied from 0 to 1 even if
the number of items is constant. Therefore, an enhancement has been proposed
for this kind of local search algorithms by using parallel searches for multiple
sorting criterion c[6]. Although the proposed enhancement is primarily designed
for single-unit combinatorial auctions, this approach can be applied to the above
mentioned approximation algorithm for multi-unit combinatorial auctions. In
the algorithm, the value of c for Lehmann’s algorithm is selected from a pre-
defined list. It is reasonable to select c from neighbors of 1/2, namely, C =
{0.0, 0.1, . . . , 1.0}. The results are aggregated and the best one (i.e., that has the
highest revenue) is selected as the final result.

To realize a pricing mechanism that receives little effect from the winners bid
prices, we use the following algorithm. The inputs are Alloc, L, and Stocks. L
is the bid list of an auction. Stocks is the list of the number of auctioned units
for each distinguishable item type. Alloc is the initial allocation of items for the
bid list that is obtained by the previously defined LocalSearch function.

1: function transformToSWPM(Alloc, L, Stocks)

2: RemainBids:= L - Alloc;

3: sortByLehmannC(RemainBids);

4: clear(payment);

5: for each b ∈ Alloc

6: RestStocks:=getRestStocks(Alloc − {b}, Stocks);

7: AllocForB:=greedyAlloc(RestStocks, RemainBids);

8: NewAlloc:=Alloc-{b} + AllocForB;

9: if price(Alloc) < price(NewAlloc) then

10: return transformToSWPM(NewAlloc,L,Stocks);

11: else paymentb = price(NewAlloc) − price(Alloc − {b})
12: end for each

13: return (Alloc,payment)

The above algorithm computes the price to be paid for each winner bid. The
payment price for a winner bid b is denoted by paymentb, and it’s value is ob-



tained by price(NewAlloc) − price(Alloc − {b}). When the obtained payment
price is higher than the bidding price of the winner bid, the algorithm discards
the winner bid and place the items to AllocForB. To the end, the algorithm pro-
duces modified allocations Alloc and their payment prices payment that satisfies
budget constraints for bidders.

For simplicity of description, the above algorithm is written with single-
minded bidders assumption. To extend the algorithm without the assumption
can be realized by just replacing {b} with the all bids that come from the bidder
of {b}.

3 Applying to Electric Power Allocation

Producing power 

Uncertainty 

Mismatch to demands 

Different demands 

Power distribution 

Fig. 2. Mismatches among Electricity Generation and Consumption Needs

In this section, we present how an electric power allocation problem can be
transformed into a sequence of multi-unit combinatorial auctions5.

3.1 The Allocation Model

First of all, we would start from a very simple case.
5 A preliminary idea has been presented in [9]



Single power source, one time slot: Here we assume there is a single power
source and allocate electric power consumption rights in a small time unit t. In
this case, each bidder should place a bid that denotes the amount of necessary
electric power and the possible highest price to be paid for it. For example,
one can place a bid for the use of 50W in duration t with 0.04 Euro. This
case is identical to a multi-unit (single-item) auction. When there are multiple
preferences for different amounts of necessary electric power, e.g., 50W with 0.04
Euro but when it is for 40W the price becomes 0.02 Euro, such two bids can
be placed at once, but each of them should include a dummy virtual item id in
their bundle of items. Here, the dummy item id would be assigned to each bidder
and which stock is always one. Therefore, the bidder only wins each of them at
once but does not win both of them. This case is a simple case of a multi-unit
combinatorial auction.

Single power source, multiple time slots: In some cases, we may need
to use electricity continuously during a certain time period. For example, when
operating a cloth washing machine, it takes a certain time period for its operation
but the power supply should not be stopped during the operation time. In such
case, we can include multiple time slots in an auction. A right to use electricity
during multiple slots will be actually allocated when its first timeslot is reached to
the current. Then, the occupied electric power will be removed from the auction
in the next time. Otherwise the auction has the tentative winners but they will
not be the final winners and it will continue the auction to accept further bids
for unallocated electricity. This is a multi-unit combinatorial auction and also
partly behaves as an ascending auction6. In this paper, we call it a Multi-Round
auction approach.

Multiple power sources, single time slot: We can consider the difference of
power sources in bidding. For example, let there are two power sources pa and
pb at a time slot t. We can only place a bid for power source pa but not for pb

when pa is the preferable power source(e.g., a solar power generator) but pb is
not (e.g., a nuclear generator). Also we can place a bid for a mixture use of pa

and pb, e.g., 500W from pa and 50W from pb, within a single combinatorial bid.
This case is similar to a case in single power source, multiple time slots but it
places for different power sources in a same time slot. Also one can place a set
of combinations of such mixtures but at most only one mixture can be won, by
using a dummy item which is described before.

Multiple power sources, multiple time slots: This is the most complicated
case and it can be an extension of both Single power source, multiple time slots
case and Multiple power sources, single time slot case. For example, one can
place a bid for a period from t1 to t2 with the use of 500W from power source pa

and 20W from power source pb. Also in such biddings, the actual power usage
for each time slot can be varied rather than a simple combination of fixed values
for each power sources.

Note that, in the above model, we do not consider how the obtained revenue
should be distributed to the power suppliers. Also it is assumed that a power

6 An analysis about this type of auction has been presented in [4]



supplier has the responsibility to produce the certain power at the specified time
slot when it is allocated to consumers. When the power source cannot supply
sufficient power in the time slot, the power source should buy the power from
sufficient power sources via another auction. Therefore if there does not exist
enough power supply from sufficient power sources in the market at the moment
the power may not be supplied.

3.2 Example

Here we will give some examples for our approach. Since an important issue in
using sustainable power sources is their uncontorollability and uncertainty of
power generation levels(Fig.2), we will show how this issue can be captured in
and handled by our proposed allocation model.

10:00 10:30 11:00 11:30 12:00 

Fig. 3. Expected Power Generation Level in Each Time-Slot

Fig. 3 shows an example of the expected power generation levels at time slot
from 10:00 to 12:00 in each 30 minutes. For example, in a time slot between
10:00 and 10:30, we have 7 units of electric power supply. Since the level may
depend on its time, the supply level is 1 unit greater than the slot between 10:30
and 11:00.

Fig. 4 shows an example of winner determination result based on a combi-
natorial biddings to the expected power supplies. Here, we can place a bid for a
set of each 3 units at the slots from 10:00 to 12:00 (i.e., the red case). Of course
a bid for single time slot can be placed (e.g., the purple and the orange cases).
Here, in this case, when the first time slot reaches the current time, these units
are allocated to the winners for the slot (i.e., the purple and the red). Note that
the red bid is for a bundle of multiple time slots, the units for other bundled
time slots are also allocated to the red (Fig. 4:right).

Here, we consider what may happen when there is an update of expected
power supply levels. Fig. 5 shows an example of such situation. Here, in Fig.
5(left), 1) there is a decrease of unit between 11:00 and 11:30, and 2) another
bid (the blue one) appears. In this case, the green bid has no longer assigned
to use any units but rather the blue and another purple one obtained new al-
locations, since the total revenue of the auction is increased by doing so. Then,
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Fig. 4. Initial Bidding and Winner Determination

10:00 10:30 11:00 11:30 12:00 10:00 10:30 11:00 11:30 12:00 

Fig. 5. Reallocation Due to Changes of Expected Supply Levels

after reaching the time of the next slot (i.e., from 10:30 to 11:00), the units are
allocated to winners of the slot as we described before (i.e., Fig. 5:right).

In this way, the rights to use electricity power supplies are allocated to win-
ners of the current slot and their bundled units in other slots, repeatedly.

4 Discussion

4.1 The Way of Performance Evaluation

Since there is no standard benchmark setting to evaluate electric power allocation
performance that considers the consumers’ preferences of power sources, we need
to prepare a certain setting that reflects the important characteristics of the
allocation problem that are discussed in this paper.

To our best knowledge, in [12], a similar problem setting has been intro-
duced as a combinatorial auction problem. However, it does not consider such
consumer’s preferences of power sources since such problem setting was not real-
istic enough when [12] was published. Furthermore, there is little analysis about
the change of our life when we have a rich amount of such sustainable electric



energy sources. Therefore it is hard to prepare a set of realistic profiles that in-
corporates actual users’ and producers’ behaviors. As a first step, it is meaningful
to use a general evaluation dataset that somewhat reflects the characteristics,
e.g., multi-unit problem which large amount of bids, rather than preparing a
pseudo simulation of such a world.

For general evaluation of winner determination performance on combinatorial
auction, LeytonBrown et al. proposed CATS benchmark testsuite[12]. However,
even if multi-unit auction is referred in [12], CATS suite does not include any
data generation algorithm for multi-unit combinatorial auction. Therefore, we
extended the existing auction problem generation algorithm to support multi-
unit auctions by the following way.

Extending CATS standard dataset to multi-unit problems: Each
auction problem generation algorithm in CATS generates artificial bids for a
fixed size of items. The generated auction problems are single-unit combinatorial
auction problems where each item in the auction has only one stock and these
items are distinguished each other. When we consider each item has many stocks
in a small size auction, the allocation problem could be rather much easier than
that of single stocks since many conflicts (i.e., the situation that some bids placed
to a set that includes an identical item) among bids can be automatically solved
by allocating items to such conflicting bids. So, in the situation, many bids could
win the items and only a limited number of bids might fail to win the items.
However, when there are a huge number of bids in a single-unit combinatorial
auction, the problem could be complex enough even when we assume there are
a small number of stocks for each item in the auction. Here, as described in
the previous section, we extend the dataset produced by CATS workbench by
adding number of stocks for each non-dummy item in an auction. We call this
‘a number of stocks for each item’ approach.

This representation is also useful for representing items that can be shared
with a limited number of people. For example, when we represent a fact that
a radio frequency band can be shared by three devices at a time, the stocks
for the item (i.e., the number of shared users for the bandwidth) is set to 3 in
the auction. Also this representation does not have to generate a large number
of bids even when the number of stocks is large. Another representation could
be based on a representation of indistinguishable relationships among items but
this representation inevitably generates a large number of definitions for such
relationships. Therefore, we use ‘the number of stock for each item’ approach
here.

The actual preparations of datasets have been done as follows. We used the
bid distributions (i.e., the way to generate bids for items) that are defined and
usable for generating the auction problems with a specified number of bids. Here
we choose 20,000 bids for each auction so we choose the bid distribution L2, L3,
L4, L6, L7, arbitrary, matching, paths, regions, and scheduling7. We prepared
100 auction problems for each bid distribution for both the size of 20,000 bids

7 The reason why there are some missing number (e.g., L1, and L5,) is mainly the
difficulty of generating the necessary number of bids by such bid distributions[12].



in an auction. We used those settings to make the results comparable to other
papers[7]. The names for bid distributions are borrowed from [12]8. Here, to
keep the meaning of data generation algorithms, we choose fixed values for those
stocks (e.g., every item has 4 stocks). We chose a fixed value, 16 for these stocks9.

Note that, as mentioned before, in multi-unit auction problems, some bids
that could be treated as dominated bids(e.g., having a higher price of bid for
the same bundle of items) in single-unit auction problems could be winners of
the auction. Therefore, we did not eliminate such bids to generate the original
single-unit auction problems by CATS.

Compared algorithms: In [5], we have compared the following search
algorithms: greedyL(C=0.5) uses Lehmann’s greedy allocation algorithm[11] with
parameter (c = 0.5). HC(c=0.5) uses a local search in which the initial allocation
is Lehmann’s allocation with c = 0.5 and conducts the hill-climbing search[6].
HC-3 uses the best results of the hill-climbing search with parameter (0 ≤ c ≤ 1
in 0.5 steps)[6],[7]. MHC(c=0.5) and MHC-3 are the proposed multi-unit enabled
algorithms extended from HC(c=0.5) and MHC-3, respectively. greedyO means
a simple greedy allocation of the received bids by the input order.

In this paper, due to the limited space of the paper, we only show the com-
parison to greedyO, greedyL(c=0.5), and our approach(MHC-3-para-100ms). Since
the value in CPLEX was very low in the setting, we omitted it in the results.
Further analysis can be found in [5].

Comparison criteria: Since it is really difficult to obtain the maximum
revenue for an auction problem, we have compared algorithms with the values
computed by average revenue ratio[7]. We use the same approach to evaluate
performances of algorithms on single-unit auction problems.

Here, we use another approach that is based on the optimality ratio to the
best one in the average on each bid distribution.

Let A be a set of algorithms, L be a dataset generated for this experiment,
and revenuea(p) such that a ∈ A be the revenue obtained by algorithm a for a
problem p such that p ∈ L, the average revenue ratio ratioMa(L) for algorithm
a ∈ A for dataset L is defined as follows:

ratioMa(L) =

∑
p∈L revenuea(p)

maxm∈A(
∑

p∈L revenuem(p))

Here, we use ratioMa(L) for my comparison of algorithms on multi-unit auction
problems. We also showed actual computation time for obtaining the approxi-
mation allocations.

Evaluating pricing performance: In addition to above-mentioned
comparisons, we compared the performance of the proposed pricing mechanism.
Since the pricing mechanism itself may modify allocations, we compared the
algorithms in ratioM , and execution time to complete allocations and pricing.
8 For more details about each bid distribution, see [12]
9 Actually we conducted our experiments in four fixed values, 2, 4, 16, and 256 for the

number of stocks. Due to limited space of the paper, we only presented the results
for 16 stocks. Further detailed analysis can be found in [5]



Table 1. Detailed Pricing Performance on Multi-Unit Auctions (20,000bids-
256items,with dominated bids,stocks=16)

MHC-3-para-100ms greedyL(c=0.5) greedyO

L2 1.0000 (157) 0.9994 (57) 0.6932 (6057)
L3 1.0000 (744) 0.9988 (764) 0.7064 (36503)
L4 1.0000 (414) 0.9705 (23761) 0.8664 (66774)
L6 1.0000 (292) 0.9497 (7207) 0.7380 (34904)
L7 1.0000 (475) 0.9771 (364) 0.7886 (1091)

arbitrary 1.0000 (13273) 0.9577 (4071) 0.8883 (6483)
matching 1.0000 (19633) 0.9996 (22137) 0.9718 (118207)

paths 1.0000 (95337) 0.9969 (84245) 0.9889 (49906)
regions 1.0000 (26031) 0.9731 (14288) 0.9461 (18883)

scheduling 1.0000 (140) 1.0000 (51) 0.9663 (58)
average 1.0000 (15650) 0.9823 (15695) 0.8554 (33886)

(each value in () is time in milliseconds)

Preliminary experiment environment: We implemented algorithms
in a C program for the following experiments. The experiments were done with
above implementations to examine the performance differences among algo-
rithms. The programs were employed on a Mac with Mac OS X 10.4, a CoreDuo
2.0GHz CPU, and 2GBytes of memory.

4.2 Preliminary Analysis

Table 1 shows the performance ratioM of approximate winner determination
when the proposed pricing mechanism is applied for each approximate allocation
obtained by the shown approximate winner determination algorithms. Although
the actual execution time for the pricing mechanism deeply depends on the
number of winners in each auction problem, the average of total execution time
on MHC-3-para-100ms is rather faster than that on greedyO, and also it is slightly
faster than that on greedyL(c=0.5). Furthermore, the performance ratioM of
MHC-3-para-100ms is higher than the others. This shows that the combination
of MHC-3-para-100ms and the proposed pricing mechanism can work better than
other combinations on the experiment setting. When we apply our algorithm to
a sustainable electric power auction, we may obtain 17 percent of energy gain
compared to a simple fast-in fast-allocate mechanism(greedyO) and even about
2 percent better than sort-and-allocate approach(greedyL) although its average
computation time is slightly short. Note that this evaluation is only for starting
discussions and more sophisticated way of evaluation should be considered in
the future research.

4.3 Issues Left

As we described before, in the proposed auction model, we do not consider how
the obtained revenue should be distributed to the power suppliers. When we
consider this issue, the problem becomes to combinatorial exchange[16]. In this
paper we do not provide any idea to solve this issue.



Also in this model, it is assumed that a power supplier has the responsibility
to produce the certain power at the specified time slot when it is allocated to
consumers. This may not be realistic enough, for example, when a big accident
happens (e.g., a bid disaster removes a large amount of solar power stations). In
such cases, it would be very hard to buy a sufficient amount of electric power
from the market so the allocations for the consumers would be discarded.

Since the auction used in the model can be seen as a combination of one-
shot auction and ascending auction, it is difficult to present a strict theoretical
analysis for the auction. It would be more complex than that of ordinary online
auctions(i.e., typically they allocate only one item for each round but in the
proposed model many items can be allocated at once).

Also this does not reflect any regal issues and moral and ethical issues. The
model may enforce people who don’t have enough money to have little oppor-
tunity to obtain electricity when the total power supply level is low. Also the
model may produce the situation that a plant may blackout even when it would
produce serious environmental damages. The model does not consider such social
costs that should be paid by the society itself.

5 Conclusions

In this paper, we discussed about a preliminary idea and an analysis about a
dynamic electric power auction when there are sustainable power sources and
consumers have their preferences to use. We illustrated how such an auction can
be formalized as a variant of multi-unit combinatorial auctions when we only
consider the allocation of aggregated electricity. We discussed about a possible
performance based on a standard evaluation dataset which rather does not con-
sider actual power use scenarios. Also we discussed the potential advantages and
issues left in the presented analysis. Further analysis and implementations will
be presented in future work.

Acknowledgements

The work was partly supported by Japan Cabinet Founding Program for NEXT
Generation World-Leading Researchers(NEXT Program), and Grants-in-Aid for
Young Scientists(B) 22700142.

References

1. Carrasco, J.M., Bialasiewicz, J.T., Guisado, R.C.P., Leon, J.I.: Power-electronic
systems for the grid integration of renewable energy sources: A survey. IEEE Trans.
Industrial Electronics 53(4), 1002–1016 (2006)

2. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. The MIT Press
(2006)



3. Fukuta, N., Ito, T.: Periodical resource allocation using approximated combinato-
rial auctions. In: Proc. of The 2007 WIC/IEEE/ACM International Conference on
Intelligent Agent Technology(IAT2007). pp. 434–441 (2007)

4. Fukuta, N., Ito, T.: Approximated winner determination for a series of combina-
torial auctions. In: Proc. of 1st International Conference on Agents and Artificial
Intelligence(ICAART2009). pp. 400–407 (Jan 2009)

5. Fukuta, N.: Toward a vcg-like approximate mechanism for large-scale multi-unit
combinatorial auctions. In: Proc. IEEE/ACM/WIC International Conference on
Intelligent Agent Technology(IAT2011). pp. 317–322 (Aug 2011)

6. Fukuta, N., Ito, T.: Towards better approximation of winner determination
for combinatorial auctions with large number of bids. In: Proc. of The
2006 WIC/IEEE/ACM International Conference on Intelligent Agent Technol-
ogy(IAT2006). pp. 618–621 (2006)

7. Fukuta, N., Ito, T.: Fine-grained efficient resource allocation using approximated
combinatorial auctions–a parallel greedy winner approximation for large-scale
problems. Web Intelligence and Agent Systems: An International Journal 7(1),
43–63 (2009)

8. Fukuta, N., Ito, T.: An experimental analysis of biased parallel greedy approxi-
mation for combinatorial auctions. International Journal of Intelligent Information
and Database Systems 4(5), 487–508 (2010)

9. Fukuta, N., Ito, T.: Toward combinatorial auction-based better electric power al-
location on sustainable electric power systems. In: Proc. International Workshop
on Sustainable Enterprise Software(SES2011). pp. 392–399 (Sep 2011)

10. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: Proc. of the Proc. of 17th National Conference on Artificial Intelligence
(AAAI2000). pp. 22–29 (2000)

11. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in rapid, approxi-
mately efficient combinatorial auctions. Journal of the ACM 49, 577–602 (2002)

12. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proc. of ACM Conference on Electronic Com-
merce (EC2000). pp. 66–76 (2000)

13. MacKay, J.: Sustainable Energy - Without Hot Air. UIT Cambridge (2009)
14. McMillan, J.: Selling spectrum rights. The Journal of Economic Perspectives (1994)
15. Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. In: Proc.

of ACM Conference on Electronic Commerce. pp. 242–252 (2000), cite-
seer.ist.psu.edu/nisan00computationally.html

16. Parkes, D.C., Cavallo, R., Elprin, N., Juda, A., Lahaie, S., Lubin, B., Michael, L.,
Shneidman, J., Sultan, H.: Ice: An iterative combinatorial exchange. In: The Proc.
6th ACM Conf. on Electronic Commerce (EC2005) (2005)

17. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.: Agent-based control for
decentralized demand side management in the smart grid. In: Proc. 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems(AAMAS2011).
pp. 5–12 (May 2011)

18. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Cabob: A fast optimal algorithm
for winner determination in combinatorial auctions. Management Science 51(3),
374–390 (March 2005)

19. Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combina-
torial auctions. In: Proc. of the Third ACM Conference on Electronic Commerce
(EC2001). pp. 125–136 (2001)


