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ABSTRACT
Most real-world negotiation involves multiple interdepen-
dent issues, which makes an agent’s utility functions com-
plex. Traditional negotiation mechanisms, which were de-
signed for linear utilities, do not fare well in nonlinear con-
texts. One of the main challenges in developing effective
nonlinear negotiation protocols is scalability; it can be ex-
tremely difficult to find high-quality solutions when there
are many issues, due to computational intractability. One
reasonable approach to reducing computational cost, while
maintaining good quality outcomes, is to decompose the con-
tract space into several largely independent sub-spaces. In
this paper, we propose a method for decomposing a contract
space into sub-spaces based on the agent’s utility functions.
A mediator finds sub-contracts in each sub-space based on
votes from the agents, and combines the sub-contracts to
produce the final agreement. We demonstrate, experimen-
tally, that our protocol allows high-optimality outcomes with
greater scalability than previous efforts.

Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the method of decomposing the contract space into
several largely independent sub-spaces. We investigate whether
and how this approach can be applied to the method of de-
composing a contract space.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Multi-agent System

General Terms
Algorithms, Design, Experimentation

Keywords
Multi-Issue Negotiation, Interdependent Issues, Multi-agent
System
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1. INTRODUCTION
Negotiation is an important aspect of daily life and repre-
sents an important topic in the field of multi-agent system
research. There has been extensive work in the area of au-
tomated negotiation; that is, where automated agents nego-
tiate with other agents in such contexts as e-commerce[13],
large-scale deliberation[20], collaborative design, and so on.
Many real-world negotiations are complex and involve inter-
dependent issues. When designers work together to design
a car, for example, the utility of a given carburetor choice is
highly dependent on which engine is chosen. The key impact
of such issue dependencies is that they create qualitatively
more complex utility functions, with multiple optima. There
has been an increasing interest in negotiation with multiple
interdependent issues. [9, 17, 21, 22, 24]. To date, however,
achieving high scalability in negotiations with multiple in-
terdependent issues remains an open problem.

We propose a new protocol in which a mediator tries to
reorganize a highly complex utility space with issue inter-
dependencies into several tractable subspaces, in order to
reduce the computational cost. We call these utility sub-
spaces “Issue groups.” First, the agents generate interdepen-
dency graphs which capture the relationships between the
issues in their individual utility functions, and derive issue
clusters from that. While others have discussed issue in-
terdependency in utility theory[26, 2], these efforts weren’t
aimed at efficiently decomposing the contract space. Sec-
ond, the mediator combines these issue clusters to identify
aggregate issue groups. Finally, the mediator uses a non-
linear optimization protocol to find sub-agreements for each
issue group based on votes from the agents, and combines
them to produce the final agreement.

We also address a negotiation between Exaggerator Agents.
Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare. We employ the limitation of strong
votes to the issue-grouping method. We investigate whether
this approach can be applied to the method of decomposing
a contract space.
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The remainder of this paper is organized as follows. We de-
scribe a model of multiple interdependent issues negotiation
and the strength of interdependency between issues, and
the structure of interdependency graph. Next, we present a
clustering technique for finding issue sub-groups. We then
propose a protocol that uses this issue group information to
enable more scalable negotiations. We also describe the ef-
fect of Exaggerator Agents in multi-agent situations. We
present the experimental results, demonstrating that our
protocol produces more optimal outcomes than previous ef-
forts. Finally, we describe related work and present our
overall conclusions.

2. NEGOTIATION WITH NONLINEAR UTIL-
ITY FUNCTIONS

2.1 Multi-issue Negotiation Model
We consider the situation where N agents (a1, . . . , aN ) want
to reach an agreement with a mediator who manages the
negotiation from a man-in-the-middle position. There are M
issues (i1, . . . , iM ) to be negotiated. The number of issues
represents the number of dimensions in the utility space.
The issues are shared: all agents are potentially interested
in the values for all M issues. A contract is represented
by a vector of values ~s = (s1, ..., sM ). Each issue sj has a
value drawn from the domain of integers [0, X], i.e., sj ∈
{0, 1, , . . . , X}(1 ≤ j ≤ M). 1.

An agent’s utility function, in our formulation, is described
in terms of constraints. There are l constraints, ck ∈ C.
Each constraint represents a volume in the contract space
with one or more dimensions and an associated utility value.
ck has value wa(ck, ~s) if and only if it is satisfied by contract
~s. Function δa(ck, ij) is a region of ij in ck, and δa(ck, ij) is
∅ if ck doesn’t have any relationship to ij . Every agent has
its own, typically unique, set of constraints.

An agent’s utility for contract ~s is defined as the sum of the
utility for all the constraints the contract satisfies, i.e., as
ua(~s) =

P

ck∈C,~s∈x(ck) wa(ck, ~s), where x(ck) is a set of pos-

sible contracts (solutions) of ck. This formulation produces
complex utility functions with high points where many con-
straints are satisfied and lower regions where few or no con-
straints are satisfied. Many real-world utility functions are
quite complex in this way, involving many issues as well as
higher-order (e.g. trinary and quaternary) constraints. This
represents a crucial departure from most previous efforts on
multi-issue negotiation, where contract utility has been cal-
culated as the weighted sum of the utilities for individual
issues, producing utility functions shaped like hyper-planes,
with a single optimum.

Figure 1 shows an example of a utility space generated via a
collection of binary constraints involving Issues 1 and 2. In
addition, the number of terms is two. The example, which
has a value of 55, holds if the value for Issue 1 is in the range
[3, 7] and the value for Issue 2 is in the range [4, 6]. The util-
ity function is highly nonlinear with many hills and valleys.
This constraint-based utility function representation allows

1A discrete domain can come arbitrarily close to a ‘real’ do-
main by increasing its size. As a practical matter, many
real-world issues that are theoretically ’real’ numbers (de-
livery date, cost) are discretized during negotiations.

Figure 1: Example of a nonlinear utility space

us to capture the issue interdependencies common in real-
world negotiations. The constraint in Figure 1, for example,
captures the fact that a value of 4 is desirable for issue 1 if
issue 2 has the value 4, 5 or 6. Note, however, that this repre-
sentation is also capable of capturing linear utility functions
as a special case (they can be captured as a series of unary
constraints). A negotiation protocol for complex contracts
can, therefore, handle linear contract negotiations.

This formulation was described in [9]. In [17, 21, 22], a
similar formulation is presented that supports a wider range
of constraint types.

The objective function for our protocol can be described as
follows:

arg max
~s

X

a∈N

ua(~s). (1)

arg max
~s

ua(~s), (a = 1, . . . , N). (2)

Our protocol, in other words, tries to find contracts that
maximize social welfare, i.e., the summed utilities for all
agents. Such contracts, by definition, will also be Pareto-
optimal. At the same time, all the agent try to find contracts
that maximize their own welfare.

3. OUR NEGOTIATION PROTOCOL:
DECOMPOSING THE CONTRACT SPACE

It is of course theoretically possible to gather all of the indi-
vidual agents’ utility functions in one central place and then
find all optimal contracts using such well-known nonlinear
optimization techniques as simulated annealing or evolution-
ary algorithms. However, we do not employ such centralized
methods for negotiation purposes because we assume, as is
common in negotiation contexts, that agents prefer not to
share their utility functions with each other, in order to pre-
serve a competitive edge.

Our approach is described in the following sections.

3.1 Analyzing issue interdependency
The first step is for each agent to generate an interdepen-
dency graph by analyzing the issue interdependencies in its
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Figure 2: Interdependency Graph (50 issues)

own utility space. We define issue interdependency as fol-
lows. If there is a constraint between issue X (iX) and issue
Y (iY ), then we assume iX and iY are interdependent. If,
for example, an agent has a binary constraint between issue
1 and issue 3, those issues are interdependent for that agent.

The strength of an issue interdependency is captured by the
interdependency rate. We define the interdependency rate
between two issues as the number of constraints that inter-
relate them. The interdependency rate between issue ij and
issue ijj for agent a is thus Da(ij , ijj) = ]{ck|δa(ck, ij) 6=
∅ ∧ δa(ck, ijj) 6= ∅}.

Agents capture their issue interdependency information in
the form of interdependency graphs i.e. weighted non-directed
graphs where a node represents an issue, an edge represents
the interdependency between issues, and the weight of an
edge represents the interdependency rate between those is-
sues. An interdependency graph is thus formally defined as:
G(P, E, w) : P = {1, 2, . . . , |I|}(finite set),E ⊂ {{x, y}|x, y ∈
P}, w : E → R.

Figure 2 shows an example of an interdependency graph.

3.2 Grouping issues
In this step, the mediator employs breadth-first search to
combine the issue clusters submitted by each agent into a
consolidated set of issue groups. For example, if agent 1 sub-
mits the clusters {i1, i2}, {i3, i4, i5}, {i0, i6} and agent 2 sub-
mits the clusters {i1, i2, i6}, {i3, i4}, {i0}, {i5}, the mediator
combines them to produce the issue groups {i0, i1, i2, i6},
{i3, i4, i5}. In the worst case, if all the issue clusters sub-
mitted by the agents have overlapping issues, the mediator
generates the union of the clusters from all the agents. The
details of this algorithm are given in Algorithm1.

It is possible to gather all of the agents’ interdependency

Algorithm 1 Combine IssueGroups(G)

Ag: A set of agents, G: A set of issue-groups of each agent

(G = {G0, G1, ..., Gn}, a set of issue-groups from agent i is Gi =

{gi,0, gi,1, ..., gi,mi})
1: SG := G0, i := 1
2: while i < |Ag| do
3: SG′ := ∅
4: for s ∈ SG do
5: for gi,j ∈ Gi do
6: s′ := s ∩ gi,j

7: if s′ 6= φ then
8: SG′ := s ∪ gi,j

9: end if
10: SG := SG′, i := i + 1
11: end for
12: end for
13: end while

graphs in one central place and then find the issue groups
using standard clustering techniques. However, it is hard to
determine the optimal number of issue groups or the cluster-
ing parameters in central clustering algorithms, because the
basis of clustering for every agent can be different. Our ap-
proach avoids these weaknesses by requiring that each agent
generates its own issue clusters. In our experiments, agents
did so using the well-known Girvan-Newman algorithm[18],
which computes clusters in weighted non-direct graphs. The
algorithm’s output can be controlled by changing the “num-
ber of edges to remove” parameter. Increasing the value of
this parameter increases the number of issue dependencies
ignored when calculating the issue clusters, thereby result-
ing in a larger number of smaller clusters. The running time
of this algorithm is O(kmn), where k is the number of edges
to remove, m is the total number of edges, and n is the total
number of vertices.

3.3 Finding Agreements
We use a distributed variant of simulated annealing (SA)[11]
to find optimal contracts in each issue group. In each round,
the mediator proposes a contract that is a random single-
issue mutation of the most recently accepted contract (the
accepted contract is initially generated randomly). Each
agent then votes to accept(+2), weakly accept(+1), weakly
reject(-1) or reject(-2) the new contract, based on whether
it is better or worse than the last accepted contract for that
issue group. When the mediator receives these votes, it adds
them together. If the sum of the vote values from the agents
is positive or zero, the proposed contract becomes the cur-
rently accepted one for that issue group. If the vote sum is
negative, the mediator will accept the contract with proba-
bility P (accept) = e∆U/T , where T is the mediator’s virtual
temperature (which declines over time) and ∆U is the util-
ity change between the contracts. In other words, the higher
the virtual temperature, and the smaller the utility decre-
ment, the greater the probability that the inferior contract
will be accepted. If the proposed contract is not accepted, a
mutation of the most recently accepted contract is proposed
in the next round. This continues over many rounds. This
technique allows the mediator to skip past local optima in
the utility functions, especially earlier on in the search pro-
cess, in the pursuit of global optima.
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Algorithm 2 Simulated Annealing()

V alue(N): the sum of the numeric values mapped from votes to

N from all agents

1: S := initial solution (set randomly)
2: for t = 1 to ∞ do
3: T := schedule(t)
4: if T = 0 then
5: return current
6: end if
7: next := a randomly selected successor of current
8: if next.V alue ≥ 0 then
9: ∆E := next.V alue − current.V alue
10: if ∆E > 0 then
11: current := next
12: else
13: current :=next only with probability e∆E/T

14: end if
15: end if
16: end for

3.4 Exaggerator Agents
Any voting scheme introduces the potential for strategic
non-truthful voting by the agents, and our method is no
exception. For example, one of the agents may always vote
truthfully, while the other exaggerates so that its votes are
always “strong.” It has been shown that this biases the ne-
gotiation outcomes to favor the exaggerator, at the cost of
reduced social welfare [12]. What we need is an enhancement
of our negotiation protocol that preventing the exaggerator
votes and maximizing social welfare.

We guess that simply placing a limit on the number of
“strong” votes each agent can work well. If the limit is too
low, we effectively lose the benefit of vote weight informa-
tion and get the lower social welfare values that result. If
the strong vote limit is high enough to avoid this, then all an
exaggerator has to do is save all of its strong votes until the
end of the negotiation, at which point it can drag the media-
tor towards making a series of proposals that are inequitably
favorable to it. In the experiments, we demonstrate that the
limit of the number of “strong” voting is efficient of finding
high solutions.

4. EXPERIMENTAL RESULTS
4.1 Setting
We conducted several experiments to evaluate our approach.
In each experiment, we ran 100 negotiations. The follow-
ing parameters were used. The domain for the issue values
was [0, 9]. Each agent had 10 unary constraints, 5 binary
constraints, 5 trinary constraints, and so on. (a unary con-
straint relates to one issue, a binary constraint relates to two
issues, etc). The maximum weight for a constraint was 100
× (Number of Issues).

In our experiments, each agents’ issues were organized into
ten small clusters with strong dependencies between the is-
sues within each cluster. We ran two conditions: “1) Sparse
Connection” and “2) Dense Connection”. Figure 3 gives ex-
amples, for these two cases, of interdependency graphs and
the relationship between the number of issues and the sum
of the connection weights between issues. As these graphs

Figure 3: Issue Interdependencies

show, the“1) Sparse Connection”case is closer to a scale-free
distribution, with power-law statistics, while the “2) Dense
connection” is closer to a random graph.

We compared the following negotiation methods:

“(A) Issue-Grouping (True Voting)” applies the simulated
annealing protocol based on the agents’ votes, and performs
the negotiation separately for each one of the issue groups,
and combines the resulting sub-agreements to produce the
final agreement. All agents tell the truth votes. “(B) Issue-
Grouping (Exaggerator Agents)” applies the simulated an-
nealing protocol based on the agents’ votes with issue-grouping.
“All agent” tell the exaggerator votes. “(C) Issue-Grouping
(limitation)” is same situation with (B). However, the limi-
tation of ‘strong’ votes is applied. The number of limitation
of ‘strong’ votes is 250 which is the optimal number of lim-
itations in this experiments. “(D) Without Issue-Grouping”
is the method presented in Klein et.al[12], using a simulated
annealing protocol based on the agents’ votes without gen-
erating issue-groups.

In all these cases, the search began with a randomly gener-
ated contract, and the SA initial temperature for all these
cases was 50.0 and decreased linearly to 0 over the course
the negotiation. In case (D), the search process involved
500 iterations. In case (A)-(C), the search process involved
50 iterations for each issue group. Cases (A),(B),(C) and
(D) thus used the same amount of computation time, and
are thus directly comparable. The number of edges removed
from the issue interdependency graph, when the agents were
calculating their issue groups, was 6 in all cases.

We applied a centralized simulated annealing to the sum of
the individual agents’ utility functions to approximate the
optimal social welfare for each negotiation test run. Ex-
haustive search was not a viable option because it becomes
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Figure 4: Method of determining interdependency
graph

computationally intractable as the number of issues grows.
The SA initial temperature was 50.0 and decreases linearly
to 0 over the course of 2,500 iterations. The initial contract
for each SA run is randomly selected. We calculated a nor-
malized ”optimality rate” for each negotiation run, defined
as (social welfare achieved by each protocol) / (optimal social
welfare calculated by SA).

Our code was implemented in Java 2 (1.6) and was run on
a core 2-duo CPU with 2.0 GB memory under Mac OS X
(10.6).

4.2 Method of determining interdependency
graph

Figure 4 shows what the interdependency graph consists of
in an agent.

The method of determining the interdependency between
issues in the experiment is as follows.

(Step 1) Small issue-groups are generated by connecting a
part of the issues randomly.

(Step 2) The interface issues are decided randomly among
issues in each issue-group. The interface issues are for
connecting other small issue-groups. In small issue-
groups, only the interface issues can connect to other
issue-groups.

(Step 3) Each issue-group connects to other small issue-
groups. Specifically, all combinations of each issue-
group are searched for, and it is decided whether con-
nection or disconnection according to the possibility of
generating connections.

Figure 7: Number of edges to be progressively re-
moved (Clustering parameter) v.s. QF

4.3 Experimental Results
Figure 5 and 6 compare the optimality rate in the sparse
connection and dense connection cases. “(A) Issue-Grouping
(True Voting)” achieved a higher optimality rate than “(D)
Without Issue-Grouping”which means that the issue-grouping
method produces better results for the same amount of com-
putational effort. The optimality rate of the “(A) Issue-
Grouping (True Voting)” condition decreased as the num-
ber of issues (and therefore the size of the search space)
increased. “(B) Issue-Grouping (Exaggerator Agents)” is
worse than “(A) Issue-Grouping (True Voting)” because the
exaggerator agents generate reduced social welfares in multi-
agents situations. However, “(C) Issue-Grouping (limita-
tion)”outperforms“(B) Issue-Grouping (Exaggerator Agents)”,
therefore, the limitation of ‘strong’ votes is effective of im-
proving the social welfare reduced by the Exaggerator Agents.

The optimality rates for all methods are almost unaffected
by the number of agents, as Figure 6 shows. The optimality
rate for (A) is higher than (D) in the “1) Sparse Connec-
tions” case than the “2) Dense Connections” case. This is
because the issue grouping method proposed in this paper
can achieve high optimality if the number of ignored interde-
pendencies is low, which is more likely to be true in the “1)
Sparse Connections”case. Many real-world negotiations are,
we believe, characterized by sparse issue inter-dependencies.

We also assessed a quality factor measure QF = (Sum of
internal weights of edges in each issue-group) / (Sum of ex-
ternal weights of edges in each issue-group) to assess the
quality of the issue groups, i.e. the extent to which issue
dependencies occurred only between issues in the same clus-
ters, rather than between issues in different groups. Higher
quality factors should, we predict, increase the advantage of
the issue grouping protocols, because that means fewer de-
pendencies are ignored when negotiation is done separately
for each issue group. Figure 7 shows the quality factors
when the number of agents is 3 and 20, as a function of
the number of edges to be removed (which is the key pa-
rameter in the clustering algorithm we used).The number
of issues is 50 in the “1) sparse connection” case. “(a) Cen-
tral Method” is to gather all of the agents’ interdependency
graphs in one central place and then find the issue groups
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Figure 5: Comparison of optimality when the number of issues changes

Figure 6: Comparison of optimality when the number of agents changes

using the well-known Girvan-Newman algorithm[18]. “(b)
Our method” employs breadth-first search to combine the
issue clusters submitted by each agent into a consolidated
set of issue groups.

Comparing (a) with (b) in Figure 7, (b) proposed in this
paper outperforms (a). This is because that our method
is reflected by the idea of all agents to final issue-grouping
without fixing the clustering parameter as Figure8 showing.
QF becomes smaller when the number of edges to be pro-
gressively removed is larger. This is because the number of
issue-groups generated by each agent is higher as the num-
ber of edges to be progressively removed becomes larger.
The rapid decrease sometimes happens as the number of
edges to be progressively removed increases. These points
are good parameters for decomposing the issue-groups. In
real life, the utility of agents contains an adequate idea of
issue-groups, and agents can determine the optimal idea of
issue-groups by analyzing the utility spaces.

5. RELATED WORK

Even though negotiation seems to involve a straightforward
distributed constraint optimization problem [7, 19], we have
been unable to exploit existing work on high-efficiency con-
straint optimizers. Such solvers attempt to find the solu-
tions that maximize the weights of the satisfied constraints,
but do not account for the fact that the final solution must
satisfy at least one constraint from every agent.

Lin et al.[16] explored a range of protocols based on mu-
tation and selection on binary contracts. This paper does
not describe what kind of utility function is used, nor does
it present any experimental analyses, so it remains unclear
whether this strategy enables sufficient exploration of utility
space.

Klein et al.[12] presented a protocol applied with near opti-
mal results to medium-sized bilateral negotiations with bi-
nary dependencies, but was not applied to multilateral ne-
gotiations and higher order dependencies.

A bidding-based protocol was proposed by Ito et al.[9]. Agents
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Figure 8: Number of edges to be progressively re-
moved (Clustering parameter) v.s. The number of
issue-groups

generate bids by finding high regions in their own utility
functions, and the mediator finds the optimum combination
of submitted bids from the agents. However, the scalability
of this protocol is limited, and the failure rate of making
agreements is too high. By Fujita et al.[5], a representative-
based protocol for reducing the computational cost was pro-
posed based on the bidding-based protocol. In this method,
the scalability of agents was improved; however, the scala-
bility of issues was not sufficient. Fujita et.al[6] also focused
on the decomposing the contract space for highly scalable
negotiation, but the negotiation protocol and experimental
results are completely different.

Hindriks et al.[8] proposed an approach based on a weighted
approximation technique to simplify the utility space. The
resulting approximated utility function without dependen-
cies can be handled by negotiation algorithms that can ef-
ficiently deal with independent multiple issues, and has a
polynomial time complexity. Our protocol can find an op-
timal agreement point if agents don’t have in common the
expected negotiation outcome.

Fatima et al.[3, 4] proposed bilateral multi-issue negotiations
with time constraints. This method can find approximate
equilibrium in polynomial time where the utility function is
nonlinear. However, this paper focused on bilateral multi-
issue negotiations. Our protocol focuses on multilateral ne-
gotiations.

Zhang[27] presents an axiomatic analysis of negotiation prob-
lems within task-oriented domains (TOD). In this paper,
three classical bargaining solutions (Nash solution, Egali-
tarian solution, Kalai-Smorodinsky solution) coincide when
they are applied to a TOD with mixed deals but diverge if
their outcomes are restricted to pure deals.

Maestre et al.[21, 22, 23] proposed an auction-based pro-
tocol for nonlinear utility spaces generated using weighted
constraints, and proposed a set of decision mechanisms for
the bidding and deal identification steps of the protocol.
They proposed the use of a quality factor to balance utility
and deal probability in the negotiation process. This quality

factor is used to bias bid generation and deal identification,
taking into account the agents’ attitudes toward risk. The
scalability of the number of issues is still a problem in these
works.

Jonker et al.[10] proposed a negotiation model called ABMP
that can be characterized as cooperative one-to-one multi-
criteria negotiation in which the privacy of both parties is
protected as much as desired.

By Robu et al.[24], utility graphs were used to model issue
dependencies for binary-valued issues. Our utility model is
more general.

Bo et al.[1] proposed the design and implementation of a ne-
gotiation mechanism for dynamic resource allocation prob-
lem in cloud computing. Multiple buyers and sellers are
allowed to negotiate with each other concurrently and an
agent is allowed to decommitment from an agreement at the
cost of paying a penalty.

Lin et al. [14, 15] focus on the Expert Designed Negotia-
tors (EDN) which is the negotiations between humans and
automated agents in real-life. In addition, the tools for eval-
uating automatic agents that negotiate with people were
proposed. These studies include some efficient results from
extensive experiments involving many human subjects and
PDAs.

6. CONCLUSION
In this paper, we proposed a new negotiation protocol, based
on grouping issues, which can find high-quality agreements
in interdependent issue negotiation. In this protocol, agents
generate their private issue interdependency graphs and use
these to generate issue clusters. The mediator consolidates
these clusters to define aggregate issue groups, and inde-
pendent negotiations proceed for each group. We analyzed
the negotiation that one of agents may always vote truth-
fully, while the other exaggerates so that its votes are always
“strong.” We demonstrated that our proposed protocol re-
sults in a higher optimality rate than methods that don’t use
issue grouping, especially when the issue interdependencies
are relatively sparse. In addition, the limitation of “strong”
votes is effective of improving the reduced social welfare in
multi-agent negotiations between exaggerators.

In future work, we will conduct additional negotiation, af-
ter the concurrent sub-contract negotiations, to try to in-
crease the satisfaction of constraints that crossed issue group
boundaries and were thus ignored in our issue grouping ap-
proach. In the bilateral case, we found this can be done
using a kind of Clarke tax [25], wherein each agent has a
limited budget from which it has to pay other agents before
the mediator will accept a contract that favors that agent
but reduces utility for the others. We investigate whether
and how this approach can be applied to the multilateral
case.
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