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ABSTRACT

We propose correct and efficient algorithms for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model.
It is argued that the agents that use the model can be classi-
fied in to two extreme kinds: sensitive and insensitive. When
the negotiation is between a sensitive agent and many in-
sensitive agents, the optimal contract can be computed cor-
rectly and efficiently by avoiding Exhaustive Matching.

General Terms
Automated Negotiations

Keywords
Utility models, Multi-Issue Negotiations

1. INTRODUCTION

Automating negotiations over multiple and interdependent
issues is potentially an important line of research since most
negotiations in the real world have interdependent issues.
When a service provider negotiates on “When”to provide its
service, its utility for a certain time period (e.g. T1=8a.m-
10a.m) is dependent on the day of the week (Monday-Sunday).
It might have high utility for T1 on Mondays, but low utility
for T1 on Sundays. The issues, time of the meeting and day
of the meeting cannot be negotiated independently.

We propose correct and efficient algorithm for locating the
optimal contract of negotiating agents that represent their
utility space with the constraints based utility space model
proposed in [4]. The model is used to represent utility space
of agents negotiating over multiple and interdependent is-
sues. Some researchers [1, 2, 3, 5] have proposed algo-
rithms(protocols) for locating the optimal contract. The
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proposed algorithms have their own merits, but they all fall
under the classification of heuristic algorithms when evalu-
ated solely from the view point of locating the optimal con-
tract correctly. The optimal contract is the contract that
has the maximum total utility. Total utility for a contract
is the sum of the utility of each agent for the contract.

Exhaustively Matching (EM) the entire utility space of the
agents is the only correct method of searching the optimal
contract. If the utility space of agents is assumed to be
generated randomly, then there is no method of making EM
efficient (faster) and still guarantee correctness. Therefore
we make intuitive assumptions about utility space of agents
that can be readily implemented by the basic building block
of the model - integer interval.

1.1 Constraints Based Utility Space Model

In the model, for agents negotiating on I number of issues,
an I dimensional coordinate system is created. An axis is
assigned to each issue. Each issue will have up to V number
of issue values. We represent these values by integers ranging
from 0 to V-1. Since the issues are interdependent, we will
have VT number of possible issue value combinations which
are called contracts. An example of a contract is [0,2,4]. 0
is the issue value for I1(Issue 1) , 2 is the issue value for 12
etc.

The utility of a contract is the sum of the weights of all
constraints satisfied at it. The constraint in Figure 1 has
a weight of 55. Contracts that have the values 4 and 5 for
issue 1, and the values 3, 4, 5 and 6 for issue 2 satisfy this
constraint. An agent creates its utility space by defining
multiple such constraints. Figure 2 shows a utility space
created by using more than 100 constraints.

2. BIDDING BASED ALGORITHM

Most previous works that used the constraints based util-
ity space model use the bidding based deal identification
method. Bids are high utility regions of the utility space of
an agent. In a nutshell, bidding is the process of identifying
and then submitting these high utility regions to a mediator
agent. The mediator agent matches the bids to find those
that have intersections and maximize the total utility. It
was first proposed in [4]. Since then, some researchers have
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Figure 1: A 2 issue Constraint

Figure 2: 2 issue utility space

improved the method to address various concerns.

The threshold adjusting algorithm [1] makes agents bid in
multiple rounds rather than once. In each round the thresh-
old value is lowered. The threshold value is the minimum
allowable utility value of a bid. The bidding is stopped at
the round a deal is found. This has the advantage of limiting
the amount private information revealed to a third party.

The representative based algorithm [2] improves scalability
of the bidding based algorithm by making only few agents
called representatives participate in the bidding process. Scal-
ability refers to the number agents that can be supported
by the negotiation system. When the number of issues in-
creases, the number of bids each agent has to make in order
to effectively sample its utility space also increases. This in
turn increases the time taken by the mediator to search an
intersection of the bids that maximizes the total utility. If
only the representatives are allowed to participate in the bid-
ding process, then negotiations with large number of agents
can be supported.

When the contract space is large, the failure rate (when
no bids from agents intersect) of a negotiation increases.
The iterative narrowing protocol [3] reduces failure rates by
narrowing down the region of the contract space that the
agents generate their bids from. It is especially effective
when the constraints of each agent are found being clustered
in some of regions of the contract space, rather than being
scattered all over the contract space.
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Measures that reduce high failure rates that arise when agents
use narrow constraints was discussed in [5]. The product of
a bid’s utility and its volume was used as a criteria to se-
lect it to be submitted to the mediator or not. Usually high
utility valued bids tend to be small in volume and therefore
the chance that they will intersect with other agents’bids
is minimal. Adding the volume criteria for selecting a bid
for submission makes the deal identification process more
effective.

The problem is that the bid that contains the optimal con-
tract may not be submitted by at least one of the agents.
This might be because either that bid has low utility for that
agent, or the bid generation mechanism “missed”it. Hence,
there is always the chance that the optimal contract is not
found.

3. EXHAUSTIVE MATCHING

The only way we can guarantee that the optimal contract
is computed correctly is by making the agents submit their
entire utility space to the mediator. Then the mediator Ex-
haustively Matches(EM) the utility spaces. The problem is
that the computational time cost of this algorithm grows ex-
ponentially. If the number of issues of a negotiation grows

from I to I + 1, then the contract space grows from V7 to
1+1
Vv .

To reduce the time required to search for the optimal con-
tract, we have to look for patterns in the utility space of
agents that could be exploited to avoid EM. But observing
Figure 1 and Figure 2 reveals that based on the number
of constraints, their positioning and weight, utility spaces
can be of various types and very unpredictable. The only
predictable nature of them is that they are all based on con-
straints. Not just any constraint but integer interval based
constraints.

3.1 Single Issue Version of The Model

The constraint in Figure 1 is a two dimensional integer in-
terval of [4..5]x[3..6]. An example of a constraint in a nego-
tiation over three issues would be [2..5]x[1..3]x[6..9]. If we
were to define a single issue version of the model , then an
example of a constraint would be [1..3].

Since the single issue version is easy to understand we will
use it for analysis and experiments from here on wards. Since
integer intervals are the basic building unit of the model we
expect lessons learned from studying the single issue version
of the model will be applicable for the multi issue version of
it.

Figure 3 shows an agent that has 3 constraints :( C1, C2,
C3). Its utility for the issue value 5 is: Weight (C2) +
Weight (C3) = 10420 = 30. Figure 4 is Figure 3 redrawn
by summing the weights of each constraint. S0, S1...,S6
are called Steps of the utility function. Notice that Steps
are also integer intervals. Also notice that, in a one issue
utility space the issue values themselves are contracts of the
negotiation. For example, in Figure 4, Step 4(S4) contains
the contracts 4 and 5.

To avoid EM, we have to make assumptions about utility



space of agents. To do that we still focus on integer intervals.
This time the Steps are considered.

Figure 3: Many single issue constraints

Figure 4: Single issue utility space

3.2 Sensitive and Insensitive Agents

By focusing on the width of the Steps in the utility space
of an agent, we can ask some interesting questions. If an
agent’s utility space is dominated by Steps that are wide,
what does that say about the agent? What about when an
agent’s utility space is dominated by Steps that are narrow?

A Step contains consecutive contracts that the agent has
equal utility for. Let’s assume that consecutive contracts
are more similar to one other than contracts that are far
apart. Then, the fact that the agent has equal utility for
some consecutive contracts indicates that, the agent neglects
the small difference between the contracts. Based on this,
we can classify agents to two extreme kinds: sensitive and
insensitive. Here, the word, sensitive is used as it would be
used for a sensor. A sensitive sensor is capable of registering
small differences of the sensed signal.

Let’s define a branch to be a portion of the contract space
. For example, part of the contract space in Figure 4 con-
taining the contracts 0 to 3 ( [0..3]). In a branch, a sensi-
tive agent will have four Steps. One for each contract. An
insensitive agent will have one Step that contains all the
contracts.(Currently we assume that the end points of the
branches of all agents are the same and known).

Consider negotiation for scheduling a meeting of 30 minutes
duration. A busy person is sensitive about every 30 minute
interval. While he is relatively free at 10:30 a.m., he might
have very important meeting at 11:00 a.m.. Therefore, he
would not like to have the meeting at 11:00 a.m. (Figure 5).
Hence, a busy person’s utility space will be made of narrow
width Steps. A free (not busy) person groups his time with
large intervals (Figure 6). Hence, his utility space will be
made up of wide Steps.
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Figure 5: A busy person

Figure 6: A free(not busy) person

4. COPE ALGORITHM

The COPE algorithm can locate the optimal contract more
efficiently than EM when the COPE condition is satisfied.
In Figure 7, a branch of a utility space is shown for four
agents (Ag. h, i ,j and k). The optimal contract could be
found by taking Step C of Ag. h (the Step with the highest
utility) and matching it with the steps of Agents i,j and
k. We call this method of computing the optimal contract
COPE. Since the agents i,j and k have just one Step in the
branch, just using the maximum Step of Ag. h is sufficient
to correctly compute the optimal contract. For a branch the
COPE condition is satisfied if,

1. Only The first agent in the matching lineup is sensitive;
that is, it has many narrow width Steps.

2. The rest agents in the matching lineup have one wide
Step which contains all the contracts in the branch.

Figure 7: COPE Algorithm



S. FASTCOPE ALGORITHM

The COPE condition imposes stringent requirements on util-
ity spaces of agents. One that could be relaxed is the require-
ment that the sensitive agent has to be the first in the match-
ing line up. FASTCOPE algorithm is designed to compute
the optimal contract efficiently even when the position of
the sensitive agent is not known before hand. FASTCOPE
algorithm extends COPE by rearranging the agents so that
COPE condition is created before matching. The steps in
the algorithm are:

e Step 1: Identify the sensitive agent.

e Step 2: Rearrange the agents. That is, place the sensi-
tive agent in the first position of the matching lineup.

e Step 3: Execute COPE on the rearranged agents.

To identify the sensitive agent, FASTCOPE samples the first
Step of each agent for the branch and reads its width. The
Step from the sensitive agent will have narrower width than
the insensitive agents.

6. EM VS COPE VS FASTCOPE

We compared the efficiency of EM, COPE and FASTCOPE
experimentally. The result is shown in Figure 8. As ex-
pected COPE and FASTCOPE have higher efficiency than
EM. COPE (20%) means, 20% percent of the branches sat-
isfy the COPE condition. The rest violate it by not having
the first agent as the sensitive one. When COPE is applied
on branches that do not satisfy the condition, it makes no
efficiency improvement. FASTCOPE rearranges the agents
and applies COPE to compute the optimal contract for the
branch.

The experiments were done at sensitivity ratios of 1:1000,
1:100, 1:10 and 1:5. For example sensitivity ratio of 1:5
means, the entire contract space is divided into branches
that contain 5 contracts each. In a branch only one agent
is sensitive and it will have 5 narrow width Steps. Each of
the remaining agents will have one wide Step. When the
total number of the contracts in the negotiation is 10000,
there will be 10000/5 , 2000 branches. In figure Figure 8,
for each algorithm, the average of the running time costs of
the algorithm at the four sensitivity ratios is shown. The
number of agents in the negotiation was 4.
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Figure 8: EMvsCOPEvsFASTCOPE
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7. CONCLUSION AND FUTURE WORKS

This paper reports a preliminary work for designing efficient
algorithm that compute the optimal contract correctly for
agents that use the constraints based utility space model.
The integer interval was identified to be the basic building
unit of the model, and it was used to define the single is-
sue version of it. It was argued that , the agents that use
this model can be classified to two extreme kinds:sensitive
and insensitive. COPE; an algorithm that computes the op-
timal contract for a branch correctly and efficiently when
the first agent is sensitive and the others are insensitive is
proposed. FASTCOPE extends COPE by relaxing the re-
quirement that the sensitive agent has to be the first agent
in the matching lineup.

Although FASTCOPE is efficient it imposes stringent re-
quirements on the utility of space of agents. We aim to re-
lax these requirements and increase the applicability of the
algorithm. These include:In a branch, allowing more than
one agent to be sensitive. Allowing some insensitive agents
to have exceptional narrow width Steps. Allowing agents to
independently branch their utility space. That is handling
the case where the end points of the branches from each
agent are not exactly the same (overlap).

Another future work is to extend the algorithm developed
for the single issue version of the model to work for multiple
issue version of it.
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