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ABSTRACT
There has been an increased interest in automated negotiation sys-
tems for their capabilities in reaching an agreement through negoti-
ation among autonomous software agents. In real life problems, the
negotiated contracts consist of multiple and interdependent issues
which tend to make the negotiation more complex. In this paper, we
propose to define a set of similarity measures used to compare the
agents’ constraints, their utilities as well as their certainties over
their possible outcomes. Precisely, we define a decision value-
structure which gives a reasonable condition under which agents
having similar decision structures can form a group. We think
that a collaborative approach is an efficient way to reason about
agents having complex decisional settings, but show similarities in
their constraints, preferences or beliefs. Agents will tend to col-
laborate with agents having the same decisional settings instead of
acting selfishly in a highly complex and competitive environment.
Therefore, formed groups will benefit from the cooperation of its
members by satisfying their constraints as well as maximizing their
payoffs. Under such criterion, the agents can reach an agreement
point more optimally and in a collaborative way. Experiments have
been performed to test the existence of the decision value-structure
as well as its capability to describe an agent’s decision structure.
Moreover, the decision value-structure was used for group forma-
tion based on measuring the agents similarities.
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1. INTRODUCTION
Automated negotiation is a process by which a group of autonomous
agents interact to achieve their design objectives. The agents will
attempt to reach an agreement and satisfy their contradictory de-
mands through a bargaining process. In an agent-mediated sys-
tem, an important aspect of the solution is the way in which the
agents negotiate to propose contracts to each other, under specific
requirements and constraints. In real life situations, agents have
to take into consideration multiple attributes simultaneously dur-

ing the bargaining process, such as the quality, quantity, delivery
time, etc. ([7]). In this paper, we propose to define a new approach
to tackle the complexity of utilities with interdependent attributes
by providing a new model for multi-attribute utility representation,
which takes into consideration the possible interdependencies be-
tween attributes. In the real world, we believe that people who
have similar decisional structures could reach an agreement more
smoothly. In this paper, we propose also a new criterion for po-
tential consensus under a number of assumptions, related to the
decisional structure of the agent, defined as a Constraint-Utility-
Belief space. In fact, adopting a cooperative behavior during the
negotiation process may improve the performance of the individ-
ual agents, as well as the overall behavior of the system they form,
by achieving their own goals as a joint decision [6]. To put this
straightforward, we assume that our model is based on the follow-
ing assumptions. In real life, we believe that people who have simi-
lar beliefs (certainties) relative to a specific situation, as well as the
same preferences (utilities) over the same common outcomes (at-
tributes), could reach a reasonable agreement more optimally and
smoothly, than if they had different certainties or preferences over
different outcomes. To support this claim, we first describe the dif-
ferent aspects of the decisional structure of an agent as a Constraint-
Utility-Belief space. Most importantly, we define a unique decision
value-structure for each agent, which gives a reasonable criterion,
under which agents’ decisional structures can be compared. We
point out that in the case of similar decision value-structures, the
agents can form groups, as an initial step before making coalitions
which satisfy their constraints and maximizes their payoffs. There-
fore, the agents can reach an agreement point more efficiently and
in a collaborative way. We argue that the advantage of such ap-
proach is that the agents having strongly different decisional struc-
tures i.e. different decisional value-structures, do not need to co-
operate. Instead, they can find agents having similar settings, and
form groups.
At this end, in the case of multi-attribute negotiation we must de-
fine the main components needed by an agent to make decisions.
There have been several works in the context of multi-attribute ne-
gotiation for its importance in commerce as well as in social inter-
actions. Different approaches and methods were proposed to an-
alyze multi-attribute utilities for contracts construction. [12] pre-
sented the notion of convex dependence between the attributes as
a way to decompose utility functions. [9] proposed an approach
based on utility graphs for negotiation with multiple binary issues.
[2] proposed also a model inspired from Bayesian and Markov
models, through a probabilistic analogy while representing multi-
attribute utilities. The same idea was firstly introduced by [11]
through the notion of utility distribution, in which utilities have
the structure of probabilities. Most importantly, a symmetric struc-
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ture that includes both probability distributions and utility distribu-
tions was developed. In another work by [8], a similar concept was
introduced by the notion of Expected Utility Networks which in-
cludes both utilities and probabilities. [3] proposed a model which
takes into consideration the uncertainties over the utility functions
by considering a person’s utility function as a random variable, with
a density function over the possible outcomes.
The remainder of the paper is structured as follows. Section 2 pro-
vides a formal definition of our model based on the notion of De-
cisional Structure of an agent with all its components. Section 3
describes a method used by the agent to construct his proposals
or contracts, based on his decisional structure. In section 4, we
elaborate a possible usage of the decisional structure as a group
formation criterion through a set of similarity metrics. In section
5, we generalize the use of those metrics by the Decisional Value-
Structure function as a method to compare agents’ decisional struc-
tures. The experiment and the analysis of the model are described
in section 6. In section 7 we present the conclusions and outline the
future work.

2. DECISIONAL STRUCTURE
In the following section we will provide an overview of our theo-
retical model used for the representation of an agent’s decisional
structure. In fact, by decisional structure, we refer to the overall
settings or information used by the decision maker i.e. the agent, to
elaborate his strategies and make his decisions. In other words, the
decisional structure of an agent can be considered as the decision
space of the agent representing all his possibilities. Therefore, we
will initially focus on a microscopic representation of an agent i
regardless from his environment or the other agents. The macro-
scopic view will be developed in the next sections in the case of
group formation. An agent i will define a unique tuple (1) repre-
senting his decisional structure.

Agent i 7−→ (Gi, Ui, Bi) (1)

This tuple will be characterized by the attributes and constraints of
the agent i, represented by a Directed Acyclic Graph Gi [2] . The
preferences of the agents will be represented by the utilities Ui of
the agent. The agent’s beliefs or certainties will be represented by
the probability distributions Bi. The tuple can be described in the
equations (2).

Gi = (Vi, Ei) (2a)

Vi = {vij ∼ aij}nj=1, a
i
j = (x1, ...xmj ) (2b)

Ei = Vi × Vi = {dj}md
j=1 (2c)

Ui = {ui
j}nj=1 (2d)

Bi = `i = {`ij}nj=1 (2e)

= { `ij [pi,j,1 : xi,j,1, . . . pi,j,m : xi,j,mj ] }
n
j=1 (2f)

The static structure of the agent in (2a), defines the attributes (2b)
and the dependencies (2c) between them, represented as a Directed
Acyclic Graph Gi. In (2b), each vertexvij of the graph corresponds
to an attribute aij i.e. an outcome or a prospect. An attribute aij
is defined as a vector of the possible values that can be taken by
aij . In the discrete case aij (2b) and in the continuous case aij ∈
[x1, xmj ]. In (2c), constraints are represented by the arcs {dj}md

j=1 ⊂
Gi, and connect the vertices representing dependent attributes. But,
it can be used to compute the utilities by mirroring the same de-
pendence structure as a conditional dependence between the util-
ities [11]. This dependence structure could be updated dynami-

cally during a negotiation process when the agents are collabora-
tive. In (2d), utility functions Ui of the agent i represented as a
function-vector {ui

j}nj=1. In our model, we assume that the deci-
sion maker i.e. the agent follows the axioms of normative utility
functions (

∑
j u

i
j = 1) [13]. Furthermore, we assume that the used

utility functions have the properties of non-satiation (u′ij(x) > 0)
and risk aversion (u′′ij(x) < 0) [5]. Each utility function ui

j is de-
fined over a domain Dj related to the possible values taken by the
attribute aj as in (3).

ui
j : Dj → [0, 1] (3)

Another important aspect of our utility functions is that they are de-
fined in term of dependencies as conditional utilities, and therefore
embody the notions of conditional probabilities and probability in-
dependence [11]. In our model, we use this representation for the
computation of the utilities in respect to the functional dependen-
cies. We refer the reader to the work proposed in [2] and related to
conditional utilities and the conditional independence. In (2e), the
belief or the certainty structure Bi of an agent i characterized by
all the lotteries {`ij}nj=1 (2f) where each lottery `ij is associated to
the attribute aij , according to the probability distribution pi,j over
the outcomes xi,j,k ∈ aij with

∑nj

k=1 pi,j,k = 1. The lotteries of
an agent i over the set of attributes aij can be represented by the
lottery (4).

`ij [pi,j,1 : xi,j,1, . . . , pi,j,n : xi,j,n] (4)

The probabilities pi,j are the subjective probabilities [1] of the
agent i and represent his certainties about the possible outcomes.
Each probability associated to an attribute, can be seen as a random
variable over the possible values of an attribute [3].

3. UTILITY MAXIMIZATION
3.1 Contract Representation
An agent i will represent a contract ~Ci as a vector of attributes
~Ci = ( ai1, . . . , a

i
j , . . . , a

i
n ) , where each attribute corresponds to

a vertex vij ∈ Vi as we mentioned in (2b). Therefore, finding the
optimal contract ~C∗ having the highest utility among the contracts
~Ci∈N , corresponds to solving the objective function (5) [4].

~C∗ = argmax
~C

∑
i∈N

ui( ~Ci) (5)

However, we assume the existence of a number of constraints, de-
scribing the relations or interdependencies (2c) between the at-
tributes [2] . In other words, to compute the utility of a single at-
tribute, we must take into consideration the other attributes. Mean-
while, we will associate a specific utility function ui to each at-
tribute ai, with i as an attribute index. The overall utility of a con-
tract ~C can be represented in the equation (6).

u( ~C) =
∑
ai∈~C

ui(ai/{aj 6=i}) (6)

It is obvious that none of the overall attributes are needed to com-
pute the utility of a single attribute. It means that based on a graph-
ical representation of the interdependencies (2c), we will only use
the connected attributes. The edges di representing the constraints
or dependencies between attributes. Since the dependencies will
exist only between the connected vertices, each vertex ai will de-
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Table 1: Conditional Utility functions
Utility ui Conditional Utility ui/{uj}7j=1

u1 u1

u2 u2

u3 u3/{u1, u2}
u4 u4

u5 u5/{u3, u4}
u6 u6

u7 u7/{u4}

pend on its parent vertices giving the equation (7).

u( ~C) =
∑
ai∈~C

ui(ai/π(ai)) (7)

Where π(ai) is the set of all the parents of the vertex ai. This repre-
sentation means that in order to compute the utility of the attribute
ai we need to use the attributes π(ai) and their corresponding util-
ity functions. Therefore, the objective function (5) can be written
as ~C∗ = argmax~C u(

~C). The final equation is described as in
(8)

~C∗ = argmax
~C

∑
ai∈~C

ui(ai/π(ai)) (8)

3.2 Example of Contract Construction
Suppose we are dealing with contracts with a number of attributes
equal to 7. The goal is to find the optimal contract ~C∗ satisfying
the interdependencies between the attributes. Each agents will or-
ganize his attributes and constraints in a specific way defined by the
Directed Acyclic Graph in Figure 1.
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Figure 1: Constrained attributes

As we can see in Figure 1, the DAG will represent the contract
from a statical viewpoint i.e. the structure and the interdependen-
cies between the attributes. Moreover, a utility function ui has to
be associated to each vertex vi, in order to compute the utility of the
corresponding attribute ai. Based on the graph in Figure 1, the
interdependency relations between attributes will yield the same
dependencies among the utility functions as shown in Table 1.
In the concrete case, an attribute aj can have different values and
therefore will be represented by a vector ai = {xj ∈ Di}

mj

j=1

Maximizing an utility function ui is finding the value x∗ ∈ Di

representing the maximal extrema of ui such as in (9).

ui(x
∗) ≥ ui(xk) ∀k ∈ [1,mj ] (9)

Thus, we are interested in maximizing the sum of the increasing
functions Ui. Therefore, the optimal contract can be written as
a vector ~C∗ = ( a∗1, . . . , a

∗
i , . . . , a

∗
n ), where a∗i is the maxima

of ui. The optimal contract’s utility is computed according to the
equation (10).

u( ~C∗) =
∑
i∈N

ui(a
∗
i /π(a

∗
i )) (10)

3.3 Agent’s Optimal Contract
The algorithm Optimal_Contract is used to find the optimal
contract based on the attributes (2b), the utilities (2d), and the in-
terdependencies among the attributes (2c).

Algorithm: Optimal_Contract
Input: DAG Gi of the Agent i
Output: Optimal Contract C∗

1 begin
2 Topologic ordering of ai according to π(ai) ;
3 for k ← |π(ai)|min to |π(ai)|max do
4 foreach ai satisfying |π(ai)| = k do
5 Find a∗i satisfying

ui(a
∗
i ) ≥ ui(xj), j ∈ [1,mi], xj ∈ Di ;

6 end
7 end
8 C∗ ← ( a∗1, a

∗
2, a
∗
3, . . . , a

∗
i , . . . , a

∗
n ) ;

9 return C∗

10 end
Algorithm 1: Optimal contracts finding

Based on our example in Figure 1, the vertices ai will be sorted
according to the number of parents i.e. the in-degree deg−(ai),
which will describe the number of constraints of the related at-
tribute.
An attribute ai with deg−(ai) = 0 is called a free attribute, as the
corresponding utility is computed only by using the attribute ai’s
utility function ui without any reference to other utility functions
or other attributes. Similarly, an attribute with deg+(ai) > 0 is
a non-free attribute or dependent and is subject to deg+(ai) con-
straints. The topological sort of the attributes ai within Gi is based
on the deg−(ai).

4. GROUP FORMATION
4.1 Group formation metrics
The nonlinearity and the complexity of the agents preferences is ba-
sically due to the different constraints they are trying to satisfy, as
well as their utilities and the way probabilities are affected. Gen-
erally, our approach tends to capture and analyze the similarities
between the agents constraints, utilities and beliefs. Being part of
the same group means that all its members have close constraints,
utilities and certainties. Therefore, it is important to define the sim-
ilarity functions, to be able to compare between two agents’ de-
cisional spaces and decide whether they can be part of the same
group or not.

4.2 Metric related to the Graph
We define the measure sim as the degree of similarity between two
graphs G1 and G2. In other words, how much the agents whose
graphs G1 and G2 share constraints and how close they are in term
of vertices and edges. The similarity measure is calculated by mul-
tiplying the Jaccard indexes relative to the vertices and the edges
sets.
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This similarity measure can be definied by (11).

sim : G×G→ [0, 1] (11a)
sim(G1, G2) = JV (V1, V2)× JE(E1, E2) (11b)

=
|V1 ∩ V2|
|V1 ∪ V2|

× |E1 ∩ E2|
|E1 ∪ E2|

(11c)

The extreme value sim(G1, G2) = 0 means that the agent 1 and
the agent 2 do not have the same attributes nor share common
constraints, whereas sim(G1, G2) = 1 means that they have ex-
actly the same attributes and the same constraints. Therefore, it
might be interesting to consider these similarities’ measures be-
tween agents’ DAGs as a way to form groups and maybe think of
potential coalitions. Under these hypothesis, each agent i has a vec-
tor SGi = {sim(Gi, Gk)}k 6=i containing all the similarity values
between his graph Gi and the other agents’ graphs Gk. Using this
vector, the agent can selected the set of agents having similar struc-
tures (attributes, constraints). This can be a first step for a future
collaboration between the agents being part of the same group.

4.3 Metric related to the Utilities
As mentioned in 2., the utility functions have the properties of non-
satiation and are risk aversion . Under these hypothesis, we assume
that the behavior of these functions can be used to compare the
utilities of two agents. Let’s consider two utility functions ui :
Di → [0, 1], uj : Dj → [0, 1] and the domain D = Di ∩Dj . If
we suppose that ui and uj are similar (ui ∼ uj), then (12) holds.

ui ∼ uj =⇒ ∀x ∈ D,∃ε, |ui(x)− uj(x)| ≤ ε (12)

The main purpose of comparing utility functions is finding a simi-
larity measure enabling us to say whether two agents have the same
preferences over the same outcome (attribute) or not. We can pro-
pose a way to compare two agents’ utilities by comparing their ac-
cumulated wealth for the same outcome x. In this case, we have
to consider the utility value as if it was a cumulative distribution
function. Comparing two agents’ utilities ui and uj is comparing
their integrations from the last preferred outcome xmin up to the
outcome x. Therefore (13) holds.

ui ∼ uj =⇒
∫ x

xmin

(ui(x)− uj(x)) dx ' 0 (13)

The comparison measure of two utility functions ui and uj up to
an outcome x will be defined as in (14).

sim(ui, uj) =

∫ x

xmin

(ui(x)− uj(x)) dx (14)

We notice that both utilities have the same type i.e. correspond to
the same outcome (domain). Therefore comparing the overall n
utilities Ui and Uj of two agents i and j can be determined as in
(15).

sim(Ui, Uj) =

n∏
k=1

sim(ui
k, u

j
k) (15)

4.4 Metric related to Beliefs
The agents have different certainties when it comes to decide about
the outcomes and their related preferences. Therefore, we think
about a way to compare these certainties defined as lotteries. Two
agent i and j will share the same certainties (beliefs) for an outcome
ak, if their respective probability distributions pik and pjk over ak
are close or similar. A possible way to consider this similarity is to

use the cross entropy. Assuming that for a certain attribute ak =
(x1, ...xmk ) and for two lotteries `ik and `jk relative to two agents
i and j, each lottery will correspond respectively to a probability
distributions pik and pjk over ak. Therefore, we can define the cross
entropy of pik and pjk as in (16).

sim(pik, p
j
k) =

mk∑
l=1

pik(xl) log[p
j
k(xl)] (16)

Generally, each agents i has a vector of lotteries `i over the n at-
tributes and defined as his certainty structure Bi as in (2e) and (2f).
We can define a similarity measure comparing two agent’s certainty
structures Bi and Bj as in (17).

sim(Bi, Bj) =

n∑
k=1

sim(pik, p
j
k) (17)

5. DECISIONAL STRUCTURE VALUE FUNC-
TION

After defining the agent’s metrics we will focus on how to ex-
ploit them in order to satisfy the common constraints as well as
the possible similarities between the agents’s belief and utilities.
For example, the agents sharing the same constraints (same graphs
structure) and having the same beliefs (same probability distribu-
tions over the outcomes) could form groups by opening and shar-
ing their utility functions according to a specific strategy. As in
(1), the tuple (Gi, Ui, Bi) of an agent i describes his constraints,
preferences and beliefs in a way that identifies the agent from the
other agents’ configurations. However, if the values Gi, Ui and
Bi represent in a unique way their corresponding agent, it is pos-
sible to construct a bijective function f which maps each agents
tuple (Gi, Ui, Bi) to a unique real value dsvi ∈ [0, 1] identifying
the agent in a unique way. This function can be assimilated to an
Hilbert Space Filling Curve [10] or can be constructed by a bi-
nary expansion of real numbers. This function can be described by
the definition (18).

f : DJ ×DU ×DP → [0, 1] (18a)
f(gi, ui, pi) = dsvi (18b)

The domains DJ , DU and DP of f are equal to [0,1]. We will
develop in the next section the proper use of this function f in the
context of group formation and agents clustering. The function
f must be injective i .e. for two agents i and j having different
settings (gi, ui, bi) and (gj , uj , bj) we will have (19).

(gi, ui, bi) 6= (gj , uj , bj) =⇒ f(gi, ui, bi) 6= f(gj , uj , bj) (19)

It is possible to prove not only the existence of an injection from
[0, 1]3 to [0, 1] but also a bijection. In fact, that bijection exists and
it can be proven using the Cantor-Bernstein-Schroeder theorem as
following :

i. There is an injection g satisfying (20).

g : [0, 1]→ [0, 1]3 (20a)
g(x) = (x, 0, 0) (20b)

ii. It is possible to define an injection h : [0, 1]3 → [0, 1] given
by representing the tuple (x, y, z) in binary and then inter-
lacing the digits before interpreting the result in base 10,
yielding the image of (x, y, z). Using binary for the rep-
resentation of the strings is a way to avoid the 9’s with the
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dual representation in base 10 and therefore, preserving the
injection.

iii. Based on i . and ii . , we can apply the Cantor-Bernstein-
Schroeder theorem, which states that if there are two injec-
tions g and h as in (21a) and (21b),

g : A→ B (21a)
h : B → A (21b)

Then there is a bijection f between A and B. Hence, it is
possible to find f satisfying the condition (19).

An interesting usage of the function f is in a mediated negotiation
where a mediator is gathering bids from the agents and trying to
find the optimal contract. In fact, f provides to the mediator a way
to group the agents based on their similarities without the need for
the agents to open their utility spaces or their constraints. In this
situation, the mediator can establish a feedback mechanism to up-
date his constraints according to the settings of the agents. The
convergence to the optimal solutions, ensuring social welfare, will
be based upon the agents’ feedback as well as the initially estab-
lished mediator’s constraints. Each agent i has only to provide the
decisional structure value (dsv) which can be seen as a fuzzy in-
dicator about the agent’s Constraint-Utility-Belief Space ([0, 1]3).
Once these values are collected, the mediator can analyze and pre-
dict the possibilities of consensus reaching and the convergence to
final contract. This is done before starting any utility space sam-
pling or any computationally consuming task, used for example in
[4].
The main advantage of using the dsv is to avoid bidding when the
bids are likely to yield a complex and nonlinear utility space. Fur-
thermore, having nonlinear space tends to make the consensus find-
ing process complex, especially when there is a mediator. In fact,
the mediator has to collect the bids and explore a highly nonlin-
ear utility space in order to find the Pareto optimal contracts [4].
Instead, we can find an appropriate grouping of the bids based on
certain criteria (including similarity measures) defined by the deci-
sional structure values of the agents.
As we mentioned above, f is bijective, as the agents do not need
to open their utilities nor their belief nor their constrains. Instead,
they can know exactly how close and how similar their decision
structures are and hence to decide whether to go for a collaborative
strategy or act regardless from the others. The closeness degree be-
tween two agents stands upon the monotonicity of f when mapping
to [0,1]. The function f can capture enough information that allows
a meaningful clustering of agents based on their common interests
: Constraints, Attributes, Utilities, Belief, Certainty, etc.

6. EXPERIMENTAL ANALYSIS
In the following experiments, we provide a method for group for-
mation based on the similarity between the decisional values of the
agents. We also provide an application of the decisional structure
in the design of vectors called vectorial design.
Given the set C = {di}Ni=1 of all the decisional structure values
(dsv) of the agents, we propose to partition C into k disjoint clus-
ters using the K-Means algorithm. Finding the optimal partitioning
of C corresponds to finding the k clusters as in (22).

C∗ = argmin
C

k∑
i=1

∑
dj∈Ci

‖dj − δi‖2 (22)

Each cluster or group Ci is centered around a specific structure
value δi which refers to the agent having the decisional structure
that is more likely to describe the common features of the group
Ci.
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Figure 2: Agents’ dsv values

Figure 2 illustrates a process of grouping of 45 agents, based on
their decisional structure values i.e. dj . We propose to partition
these agents into 6 groups each of which is characterized by a group
centroid δi. The resulting groups can be described by their corre-
sponding centroids which are represented in Figure 2 in blue, on
the right axis.

The decisional structure values δi were generated based on the
function f defined in 5., which was applied on the Gi, Ui and
Bi variables of the 45 agents. The corresponding DSVs must be
unique for each agent. Under such hypothesis, the injectivity of
the function f will stand and there will be no risk for collisions i.e.
two different agents, having different decisional structures but hav-
ing the same DSV. Based on the original tuples Gi, Ui and Bi, we
found that the agents being part of a group (Cj , δj) had close con-
straints, utilities and probabilities. This result was evaluated firstly
by comparing the similarities between two agents decisional struc-
ture values dsvi and dsvj based on the distance d = |dsvi−dsvj |.
Secondly, we measured the distances dg = sim(Gi, Gj), du =
sim(Ui, Uj) and db = sim(Bi, Bj), defined in 4. We found that
the distance d is related to the distances dg, du and db. The result
confirms the characteristics of the bijective function f defined in
5., and its ability to describe uniquely an agent’s decisional struc-
ture.
In Figure 3, we can see that there is a number of agents grouped
around the same dsv value. In this case, the agents 2, 3, 4, 5 and 9
can be grouped into a cluster G based on the assumption that they
have common decisional structures. According to this information,
and whenever its shared to the overall agents (1 to 10), the agents
not being part of G can choose to join this group or not. In case
they accept to join, it is probable that they should start adapting
and updating their constraints, preferences and beliefs similarity to
the initial agents of G.

Generally, The decisional value structures are constructed based on
the graphical constraints, utilities and beliefs. As we can see in
Figure 4, the red curve represents the graphical constraints val-
ues, the utilities are represented by the green curve, and the blue
values represent the beliefs. The overall similarity is represented
by the black curve. For example, we can see that the agent 1 and

37



Constraints Proximity

Agents (i)

A
tt

ri
b

u
te

s
-C

o
n

s
tr

a
in

ts
 V

a
lu

e
 (

G
i)

20.71485

23.81804
24.9369825.0417525.34014
26.21356

28.23004

31.58884

39.37796

56.09729

1 2 3 4 5 6 7 8 9 10

Figure 3: Dominant Group

Table 2: Agents’ vectors values
Agents x1 x2 V alues
A1 0.12 0.96 0.05683
A2 1.87 1.83 0.68083
A3 1.34 1.45 0.38637
A4 1.41 1.57 0.44097
A5 2.32 2.92 1.36735
A6 2.39 3.01 1.4523

the agent 6 have close DSVs, and this can be seen based on the
closeness in the red, green and blue curves i.e. the graphical con-
straints points, utilities and belief points.

A concrete application of such method of comparison is the case
of vectorial design, where a user designs graphically a vector. A
vector can represent an object, a product, or more generally a multi-
attribute contract. As an example, 6 agents are designing 6 different
vectors. For the sake of simplicity, we can think about the vector
as a 2-points vector with components x1 and x2. In Table 2 we
can see that for each two values x1 and x2 we can represent the
design vector by a unique value, locating the agents design in the
overall designed vectors. This will give an idea about the degree of
closeness between the designed vectors. The degree of closeness of
the agents’s vectors can be provided as a shared information to the
overall agents while they are designing their vector. In fact, sharing
such information dynamically and in real time can give the agents
an idea on how their vectors are located in the group, and how
to change their vector accordingly. This information can be rep-
resented as in Figure 5, and is available to each agent. On the x
axis, we have the agents’s indexes from 1 to 6 represented by 6 bars,
and on the y axis we represent their corresponding values. When-
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ever an agent changes his vector, the representation in Figure 5
will change accordingly. Such method of collaborative design will
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Figure 5: Proximity of the designed vectors

give the agents the possibility to orient their design based on the
overall group’s preferences, ensuring social welfare. It is possi-
ble to extend the simple vector represented by x1 and x2 to a more
complex vector. Another example of vectorial design is represented
in Figure 6 where 7 agents are designing 7 vectors. At differ-
ent times, each agent Ai will provide a vector VAi = (Xi1, Xi2),
where Xij are real values. During the design process, each agent
Aj can visualize the similarities between his design and the other
agents Ak 6=j as in Figure 7. Therefore Aj can update his vector
according to the evolution of the other agents’ designs.

The represented values in Figure 7 correspond to the designed
vectors represented in Figure 6. We can can see that the vectors
VA6 and VA5 are graphically close in Figure 6, therefore their
corresponding values in Figure 7 will be also close (1.30555 and
1.4523). The same comparisons can be done to the other vectors,
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Figure 6: Vectors representation

Figure 7: Decisional Values representation

allowing the agents to see the likelihood and the convergences of
the global design.

7. CONCLUSION
The contributions of this paper are two-fold. On the one hand, we
proposed a theoretical model to reason about multi-attribute con-
tracts representation taking into consideration the attributes’ inter-
dependencies. On the other hand, we provided the notion of de-
cisional structure value as a main criterion for agents’ decisional
settings comparison. The defined structure-value captures the main
similarities between the agents’ decisional settings. We have shown
that it is possible to represent such decisional setting as a Constraints-
Utilities-Belief space. Furthermore, we provided an example of
usage of such value in the case of group formation based on the
degree of similarity between the agent’s decisional spaces.

As a future work, we would like to consider the performances of
the method used to generate the decisional structure value. More-
over, we would like to elaborate a complete negotiation process, by
defining a concrete protocol based on the formed groups. For ex-
ample, we can develop the case where the agents being part of the
same group can open and share their utility functions.
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