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A quantum field theory of a charged scalar field with self-interactions in a Robertson-Walker metric is considered.
The structure of the Hilbert space of the state vectors in this theory is investigated; and taking account of the change
of the Fock space, a method of calculating physical quantities is constructed and its diagrammatic version is given.
By practical calculation to second order in the coupling constant, it is shown that the theory is renormalizable and
renormalization constants are identical to those in the theory in Minkowski spacetime,

I. INTRODUCTION

In recent years, quantum field theory in curved
spacetime has been actively investigated and its
importance has been recognized, especially in cos-
mology and astrophysics. Although the gravitation-
al field should probably be treated as a quantized
field in the final form, and many people have at-
tempted to do this, several difficult problems are
encountered. It has not been shown how to treat
the nonlinearity of the gravitational field in quan-
tum theory, and the linearized weak gravitational
field is not renormalizable in the usual sense.

It is expected that treating the gravitational field
as a classical c-number field and studying quan-
tum field theories in that curved spacetime is
significant at least in the case that (the expecta-
tion value of) the curvature of spacetime is suf-
ficiently small compared with the Planck length.
Much of the work on quantum field theories in
curved spacetime done so far has been restricted
to the free field theories with no interactions be-
tween quantized fields; recently, there have been
some investigations of interacting fields, in par-
ticular, the question of renormalizability.!™

In the present paper, we shall consider a quan-
tum field theory in a time-dependent classical
gravitational field. Generally, in a nonstationary
external field, quantum fields will lose the con-
cept of “particle.” Let us suppose that in the
sufficiently distant past and future the gravita-
tional field becomes stationary, that is,

gux) ~gheud(x), as t— - (+x),

and interactions between quantized fields are
adiabatically switched off. In that case one can
construct the Fock spaces of “in” and “out” states.
They represent the same Hilbert space and are
connected by a unitary transformation if the degree
of freedom of the system is finite; however, this
is not the case if the degree of freedom is in-
finite, which is the case we shall consider in this
paper. One must bear this fact in mind in con-
structing a method of calculation. It is rather

difficult to obtain the Green’s functions for a
quantized field which is interacting nontrivially
with a classical gravitational field, and a rigorous
discussion of the Feynman-Dyson diagrammatic
method, taking into account the change of the Fock
space, has not yet been given. In this paper, we
shall resolve the above problems, taking a charged
scalar field in the spatially flat Robertson-Walker
metric as an example. In this case the spatial
components of momentum are conserved quanti-
ties, and it is easy to see in what situation the
particle picture reappears.

This paper is organized as follows. In Sec. II
we consider a given problem and present a pre-
scription for treating the problem. We first
construct a suitable Hamiltonian and then define
creation and annihilation operators of the “instan-
taneous particle”, which instantaneously diagonal-
ize the quadratic part of the Hamiltonian. In Sec.
III we consider a time-dependent quantum-me-
chanical system of two degrees of freedom and
represent the transition matrix element by a
functional integral in the coherent-state form.
In Sec. IV the results obtained in Sec. III are
extended to quantum field theory and we con-
struct a diagrammatic method for perturba-
tion expansion. Section V is devoted to a discus-
sion of the ultraviolet divergences of a theory
which is renormalizable in flat spacetime, and
it is explicitly shown that, at least to second order
in the coupling constant, the theory is renormaliz-
able, although individual graphs contain divergenc-
es which cannot be eliminated by renormalization.
Section VI is devoted to a conclusion and discus-
sion.

II. CONSIDERING THE PROBLEMS

Although our method is applicable to any theory
in curved spacetime, we consider a charged
scalar field in the spatially flat Robertson-Walker
metric. In our convention

g“I’:cz(t)n“u, (2.1)

diagnuv =(+: It R ") 3
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and the Riemann-Christoffel tensor is defined by

_ A N
R%,,5=08,1, — 8,156 + 5T, — T3 55 -

The Lagrangian density of the system is given by
£(x) =g""*(g""8, 40,0 -m*¢ ¢’ - ERP ")
+£’I(gu.w ¢’ ¢T)7 (2.2)

where £,(g,,, ¢, ¢") is the interaction part of the
quantized field and generally may not be invariant
under the conformal transformation (£, also
contains counterterms which are necessary for
renormalization and m?® and £ are renormalized
quantities). As a matter of convenience, in the
remainder of the discussion we take the following
rescaled fields ¥(x) and 3'(x) to be dynamical
variables, instead of ¢(x) and ¢*(x),

d(x) =c(Bp(x). (2.3)

The Lagrangian density is written in terms of
the rescaled field as follows:

£(x) =n*"8 Yo" —m>c*YyY' + (§ - E)RYy'
+£im(c:¢’¢f)’ (24)

where an irrelevant total-divergent term has been
discarded, and

£le,¥,9N=8(g,,,c Y, cY). (2.5)

From Eq. (2.4), in the case of the massless theory
with conformal coupling, i.e., m?=0 and £ =%,
the particle picture survives and is found to be
the collective motion of the rescaled fields ¥(x)
and P'(x).

The canonical conjugate momenta of (x) and
¥'(x) are given as usual by

m(x)= 822:) =j'(x), (2.6a)

() = a;;)' i), (2.60)
and the canonical commutation relations are

[900), 1(9) o =i6° & -F) , (2.72)

'), 7(3) 0.0 =86°X - F) (2.70)
and

all others commute at equal time. (2.7¢)

These relations are equivalent to those obtained
from the original Lagrangian (2.2), regarding
¢(x) and ¢'(x) as dynamical variables. From the
Lagrangian (2.4), y(x) is the charged scalar field
which has a time -dependent mass M?(¢) = m*c?(¢)
+(&- 2)R(t)c*(¢) and exists in flat spacetime.
If the effective mass M?(¢) becomes negative, the
Fock-space vacuum for (x) and #'(x) becomes
unstable and the state which contains particles

and antiparticles coherently has lower energy
than the vacuum, and the invariance under the
global phase transformation,

P(x) = et*P(x),
Px) = ey (x),

is spontaneously broken. This effect is very
interesting from the point of view of elementary
particle physics, especially in the case that 3(x)
couples to gauge fields. However, in this paper
we do not consider a situation such as this and
assume M?()=0 for all #. In the case (£ — 2)R>0,
the scalar curvature plays a role of the cutoff of
infrared divergences for massless theory.

From Egs. (2.4), (2.6a), and (2.6b), we obtain
the Hamiltonian in the Heisenberg picture,

)= [ @x3c,0)

=f Bx(mp +rtPt - £)

= I @x{rmt +8 8,97
+c*[m® + (& - HIR Jpy'
=L, 9,9N}. (2.8)
It is easily verified that the Heisenberg equations
#f(x) = [9(x), Hy(1)], (2.92)
im(x) =[m(x), H ()] (2.9D)

are equivalent to the equations of motion which
are obtained from the Lagrangian (2.4). As the
system exists in the time -dependent external
field, the Hamiltonian in the Schrédinger picture
is different from that in the Heisenberg picture,
and is given by

Hs(1) =f Ex{rs@)HE) +8 s (X)8 b (X)
+c(O[m* + (& - PROWs X5 X)

=&, {c®),vs(X), 5 @)}, (2.10)

where
PsX) =U, ) (U2, 1) (2.11a)
7s(X) =U(t, t,)m(x)U* (2, ,) (2.11b)

and U(¢, t,) is defined as the solution of the follow-
ing integral equation:

t
Ut t) =1 -1 f Hs() Ut t,)ar . (2.12)
tO
Here we introduce the creation and annihilation

operators, noticing that spatial momentum is
conserved,
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¥s(Xx)= ( )uzf (t T [a(k)e‘k X 1pt(k)e ik ‘]

(2.132)
7s(X) = ( ) f Pri [wk(t(’)] [a*(k)e Hex_ b(k)et® ’]

(2.13b)
where

wilty) = [k? +m3c(t,)
+(& = DR (t,) c2(t) ] 2

[remember that we have assumed w,*(#)=0 for
all ). From the commutation relations (2.7a)-
(2.7¢), we obtain

[a(),a'®)]=06(k D),
[a(k),a®)]=0,

(2.14)

(2.15a)
(2.15b)

1
#s0= dak{i[(wk(to) 80 41 @) +0*(- b~
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[b(k),6'®)] =6 -P) , (2.15¢)
[6(k),b()]=0, (2.15d)
[a(k),b(®)]=0, (2.15e)
[a(k),b'(®)]=0. (2.15¢)

The creation and annihilation operators in the
Heisenberg picture,

a4, 1) =U(t, t)Ja@®U (2, 2,) ,
bulk, 8) =U(t, )0 (R, ) ,

also satisfy the commutation relations similar
to (2.15a)—(2.15f), as the time translational
operator U(¢, 4,) is unitary. The Hamiltonian in
the Schridinger picture is written in terms of
a(k),b(k) and their Hermitian conjugates as

(2.16a)
(2.16b)

k)]

+(“’* (t)-wk(to))[a(k)b( £) +at®)p'(- k)]]}-fV[c(t),a(E),...,b'(ﬁ)]

(2,)

= f Pl NED[a'®a®) +b(~B)b(-B)]+Fo@)[a@b(-E) +a'®b(-F) )

+V[e(),a®),...,b'@)],
where
wal?) =[k? +M2(t)]‘/ 2, (2.182)
Eyf)= Zw "0 L::(Z‘; +w,,(t°)] , (2.18b)
[(w:*(2)
Fy(t)= 2w T _w:( ) —wk(to)] ) (2.18c)
and
VIew),a0),... b1 (p)] = [ &x2,lelt), bsl), ¥b(x).
(2.184d)
Here, instead of treating the self-interaction

terms directly, we introduce source terms and
use the same notation Hg(¢#) for the Hamiltonian
of the system with source terms, i.e.,

£ =&, +n(x)Pp(x) +N(x)p(x) , (2.19)

Hs(t)=Hsolt) - | @xinvs® +T0sb@)]

= Hoolt) - [ @Ry, Da® +7(E, Ha'®)

k, Dp1(®)],
(2.20)
where £,(x) and Hs,(#) are the Lagrangian and

+¥(-K, )b (&) +y (-

(2.17)

—

Hamiltonian, respectively, of the free field with
time -dependent mass and

- _ 1 3/2 1 13
Y(k,t)=(§;) fdstn(x)e“ .

(2.21)

We now define the creation and annihilation
operators of the “instantaneous particle,* which
diagonalize the quadratic part of the Hamiltonian.
This is performed by the Bogoliubov transforma-
tion

as(k, ) =a(k) coshd (#) - b'(~ k) sinho,(#) ,
(2.22a)
Bs(-K, £) =b(—K) cosh8,(#) —a'(k) sinhe,(z),

where (2.22b)

Ex(t)
[EZ@) -F2(O] "2

. —F4(2)
sthG,,(t) = [Ekz(t) _;kz(t)]l—/f.

coshf,(f) =
(2.23)

In terms of as(k,?), Bs(~k,#), and their Hermitian
conjugates,
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Hs(t) =f dskJCs(x)

= [@rorOlab, Das, 0+85(-k, 0Bs(-E,]
— (&, )e’* Ofas(k, ) +BL(~k, )]
-7k, e’ Oal(k, ) +8s(-k, O,
(2.24)
where we have omitted irrelevant c-number
terms. The operator which generates the
Bogoliubov transformation (2.22a) and (2.22b)
is explicitly given by
V(k, 1) = exp{0(A[b"(-K)a' &) ~a @b (- D)
=exp{0,()[B5(~k, Dab(, 2)

—as(k,1)Bs(-k, 1]} (2.25)
and

w0 ()" [ a ot
v=(5)" [ e

where ¥ ®(x) and 9 °*(x) are the asymptotic in field
and out field, respectively, and w,,(%) = wx(— =)
and w,,;(k) =wg(+=). In the subsequent sections,
we shall discuss a prescription to compute the
amplitude from |f)eF,, to |g)eF,

III. PATH INTEGRAL IN THE COHERENT-STATE
FORM AND THE BOGOLIUBOV TRANSFORMATION

Just as we have constructed the problem into
a suitable form in the previous section, we shall
investigate it by using functional integral tech-
niques. As a preliminary step, we consider in
this section the quantum-mechanical system with
two degrees of freedom. From the nature of this
problem, it is both suitable and crucial to use
the path-integral method in the coherent-state
form, which was first contrived by Schweber.*
For readers who are not familiar with this tech-
nique, we shall pursue the discussion in such a
way that the reader need not refer to any litera-
ture.

Omitting the momentum suffix 2, the Hamilto-
nian under consideration is

Hs(t) =w(t)[E@)(@'a +b"b) +F (1)(ab +a'd")]
-v(®)(a+b") -7()(a* +b)
=w@)[ab@das() +Bs()Bs(D)]
—y()e® “las(d) +85(2)]
-7 (e Plak(t) +Bs(2)]. (3.1)

(k)]1/2{°‘ () exp[ - i, (k)x° +ik - ] +Biat(k) expliw,  (k)x° — ik - “X]},

as@®, ) =VE, da@®V(E,1),
Bs(-K, ) =V(E&, )b(-K)V(K, 7).

(2.26)

Although each V(&, ) is a unitary operator, in
the case where the degree of freedom of the sys-
tem is infinite, the operator V(¢)=II,V(%,t) be-
comes nonumtary and the Fock spaces of the
instantaneous particle at different times are not
connected by a unitary transformation. Suppose
that the gravitational field becomes stationary in
the sufficient past and future and interactions be-
tween quantized fields adiabatically switch on at
an early time and switch off at a late time, then
in and out Fock spaces, ¥, and &, are con- »
structed by the creation and annihilation operators
of “in particle” and “out particle,” a"‘(k) Bn(k),
a*(k), and g°(k),

(2.27a)

(k)]1/2 {a* (k) exp[ = 1wy (k)x° + ik « X] + B (K)exp[iw (k)2 — ik« °X]}, (2.27b)

I

The creation and annihilation operators of the
instantaneous particle in the “Heisenberg picture”
are defined by

ay(t)=Ut, t,)as(DU(, t,) , (3.2a)
Bu(t) =U'(t, t,)Bs()U(t, t,) , (3.2b)

and they satisfy the following commutation rela-
tions:

[ag(®),al(H]=1, (3.3a)

[Bu(®), BH(e] =1, (3.3b)
and

all the others commute . (3.3¢)

Therefore, we can construct the “vacuum” and
“n-particle” state as usual. The “no-particle”
state at time ¢, |0;9, is defined by

ay(?)[0;£=0,
Ba()|0;9 =0,

and the “n-particle and m -antiparticle” state is

1 n \ m
nym; ) =[°‘%7(L?]- [B”r(}f)! [0;9. (3.5)

The eigenstate of the annihilation operators, a,(z)
and B(#), is called the (instantaneous) coherent
state, that is,

ayt)|Z,, 2550 =2,12,,24;0), (3.62)
Bult) |24, Zg500=2,|2,,24;0) (3.6b)

(3.4)
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where we note that Z, and Z; take all complex
values, and this state vector is explicitly given by

|Za;Zs;t> =eXp[ZaaI,(t) +ZBﬁL(t)]IO; t)
s = gn ogm
" 2 2 T o I 3.7)
and

(Z,,243t|Z 4,243 0 =exp(Z1,Z, +Z4Z,).  (3.8)

The coherent states are not orthonormal, but they
span a complete set. Then for any state vectors
|7) and |g),

<f|g>: f dzadzudzﬂﬁﬂ<2a,zﬂ ,Z_anzﬂrl
X <f|2ayzﬂ><2a32_6 |g)
=fdzadiadzadzee"Z«""Zﬂ'Z(lea,Zaxza’Za|g>

- a2y @)1, 202,20, @9
J

F[Z,,Z;,¢t
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where

an(2) =@"fle-'z'2, Z=x+iy.

The problem is reduced to computing the follow-
ing transition matrix element:

F[Z,24,1";Z,,24,t)=(Z4, 2}; 1" |24, 24, ),

(3.10)

which is also a functional of ¥(¢#). Here, we sub-
divide the time interval (#,¢”) into N segments,

Ne=¢t" -, t,=t +ne.

From the completeness of the state vectors
|Z,,2,;t), we have

Za,ZB,t']=fdu1-.. fde_l(Z;,Z‘;;t" |Z,(N=1),Z,(N -1);" =€)+

xX$Z,(1),Z4(1); ¢ +€|Z,Z,, 1),

where

(3.11)

f iy =f dZ o (n)dZ o (n)dZs(n)dZ4(n) exp[— |Z4(n) |? = |Z4(n) |*].

The transition amplitude between the coherent states which separate the infinitesimal time interval is

obtained as follows. Neglecting the terms of order €2,

F[ga,gﬂyt+€;gonzs,t]=<§a’zﬂ;t+€ |Eouza;‘t>

=@, Loyt e |Ut+e, DVt +e, ) [T, 5 t+€)

=(T,, L t+e | [l —ieH y(t+€)]

where we have defined®
Uty t,) = U_l(tz’ 1)Uy, 1)

and

Vit t,)= eXp{[e(tx) - 9(t2)][311(t1)a:1(f1) - a}{(ﬁ)ﬁy(h)]} .
From Eq. (3.1) and the definition of the coherent states,

Flto,85,t+€;80, 8, t]= exp{-ie[w(t)(toEq +EsEs) —¥(D)e® A(E, +E5) = V(D) L, + )

gexp[_iEheff(ga’zayga’EB; t)]<za’zﬂ; t+e |Ea7-£5; t+€> B

where the effective Hamiltonian is defined by

{1 +e8 (DBt +€)ak(t+€) — ay(t+€)By(t+€)]}|E,, Eyst+e), (3.12)
+ié(t)(§a§8 —Ea‘—g-a)]KEa’EB; t+e |szsi t+€>

(3.13)

(3.14)

hes(at, a, B, B; 1) = w(t)a'a + B8) - ¥(t)e? o +BY) —¥(£)e” *Xa' + B) +ib(t) (a8t - aB) .

We note that it is a Hermitian operator. Making use of Eqs. (3.11) and (3.13), the transition matrix is ex-

pressed in terms of the path integral,
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F[Za,ZB,t”;Za,ZB, t’]= f du,ee-diy.,exp[Z,Z (N -1) +ZéZS(N—1)
—ﬁheﬁ(zaiza(N_1)’ZA,ZB(N—1);t”— €)+ e

+Z4(1)Z, +25(1)Z; —teh ((Z,(1),Z,,Z,(1),Z,; )]+ O(€)

a* ()2, B¥ (t")=2y R ”
= [da*da]f . [ap*dglexp{za*(")a(t") +a*()a(#)
a(t')=Zy B(t')=2g

+B*(2")B(2") + B*(¢)B(¢) ]}

xexp{i j; f dt[%;[a*(t)a(t)—a*(t)d(t)
+B*(DB() - B*(W)B(1)]
—hola*(®), alt), B*(#),B (t);t)]} , (3.15)

where it must be remarked that the path integral [{#{%«[da*da] should be evaluated over the paths
a*(t) and a(#) which satisfy the boundary condition a(#)=Z, and a*(¢”)=Z, [a*(f) and a(¢) are complex
conjugate to each other, apart from the boundary values], and similarly for p*(¢) and B(¢).

Since the effective Hamiltonian & ,(a*(#), a(#), 8*(¢), B(#); #) is a quadratic polynomial of a*(z), a(f)B*(?),
and B(#), the functional integral (3.15) can be evaluated if the solution of the stationary phase is known.
However, it is difficult to solve this equation of motion which contains an arbitrary function ¢(¢), therefore
we expand Eq. (3.15) in powers of 8(f). Later it will become clear that this expansion brings out the
vertices of particle production and annihilation. Adding the additional source terms for the expansion of
the last two terms in Eq. (3.14), Eq. (3.15) is expressed as

: ' ¢ Z Z, )= g 5 62 6 ’ ’ T T
F[Zauzayt 9Za,ZB,t]—exp{j‘: dto(t)[d{(t)ﬁ&(t)—5C*(t)5£*(t)]}G[ZN’ZB’t”’Z“’ZB’t] ’ (3-16)

where

Ol 24, Zst"; Zos Zyp )= [ Lda*da] [ [ap*ap) expilax (") (") +a*(®)au(t) + BEB") + B+ )B()

xexp{z' f' dt [zi,(& X — @ @ +B*B = BB) — w(t)(a *a +B*B)
¢ z
+[y®)e®? - ¢@Na?) + [7(£)e®) = £ *(1)]a *(2)
+[y()e®®) — £X(2)1B*(t) +[7(t)e®® - E(t)]ﬁ(t)]} . (3.17)
We shall calculate G Z,,, Z%;,t"; Z,,, Z4,t'] by obtaining a set of paths aX(t), ay(t), B%(t), and By(t) which

give the stationary value of the integrand of Eq. (3.17), and they are a set of classical solutions of the fol-
lowing equations of motion:

%a ®) +iw@®a @) - i7E)e®® - X)) =0, (3.18a)
:ll_ta *1t) —iwE)a*@) +dy@)e®® - @) =0, (3.18b)
;—tﬁ(t) +iw ()BE) = {7@)e®® - £x(t)] =0, (3.18¢)
d%ﬁ*(t) —iw@)B*@) +ily(@)e®® - £(t)] =0, (3.18d)

with the boundary conditions
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a(t)=2Z,, a*t")=2z,,

BU)=Z,, B =Zp. (819
Equations (3.182)—(3.18d) and (3.19) are easily solved and the solutions are

as(t) = exp i jt Lot [ Zest [ adztien -l em(i [ o(sias) ], (5.200)

azt)=exp| 1 [ i wmdf][wz [ du[y<u)e9<">—c(u>]exp( / ‘"w(s)ds)], (3.20b)

bt =exp [~ [ war|[Zy+i [ adrtde®™ - gl exp(; [ w(s1as)], (3.200)

ﬁs’s(t)=exP[—i J g w(T)dT][Z'B'*'i [ ¥ty 0)e®® - ()] exp(i f ‘"w(sms)] . 5.200

Substituting these solutions into Eq. (3.17), we obtain
‘II

G[Z I " Z—a,Z—B,tl]zexp [(Z&Za+2é-Z-B)exp(—if w(T)dT)
t'

n

+iZ0, j:”du[?(u)ee‘“’ - £*u)] exp(— zf w(s)ds)

+iZg, f: dul y(u)e®® — ¢ (u)] exp (—ij: w(s)ds)

"

+iZ duly w)e®® — £¥(u)] exp <—- ift ’ w(s)ds)
&’ .

u

"

+iZ, [ dulvte®® - sl exp(~i [ o()as)

t

—f dtf duGXD(—zf w(s)ds)[y(t) PO — )7 @)e®™ - £*w))

f‘”

We denote the interaction of this system by the potential V{a', a, 8", b] which, we assume, is invariant
under the following two discrete transformations:

a-—bt (3.22a)

dt f duexp(~i [ w(s)ds)[y(t)ee"’—&(t)][)'(u)ee""—E*(u)]] (3.21)

and
at—b. (3.22b)

Then the final form of the transition matrix is

UlZ,, Z/s,t"; Z,, Zs,t'] = €xp —ift"dtV[lL _1_5_]
ar“ gt y» L B e éy(t) Zﬁ—f(t)

e . 6 52
xe"p{ f, at G(t)[ag(t JOE(E) ~ L1 )0EMC )]}

XG[ZY, 2%, t"3Zy, Zg,t'] all sources set to zero. (3.23)
As stated in Sec. II, if
c(t)-—{c' ast~ ==, (3.24)
c, ast—+o,

in and out Fock spaces can be constructed, and the S-matrix element is defined as usual by
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If; in)eF,, |g; out)eF.,

(3.25)
Se =(g; out|f; in).
Making use of U[ Z},, Zs,t"; Z,, Zg,t'], the S-matrix element S,, is expressed as follows:
S = Mim fdu(Z')f az)g; out| Zg, Z;t"X Zg, Zst"| Zyy Zg; ' X245 Zg; ' f5 in) (3.26)

"> 4o

and the behavior of the wave functions (Z,, Z,; #'| f; in) and (Z%,,Z4,¢" | g; out) is very simple in the limit
' = - and #” - +o, respectively. This is because, from the discussion given above, the operators a ,(t),
By(t) and their Hermitian conjugates diagonalize the Hamiltonian in the Heisenberg picture H,(f), and their
equations of motion become

2 o (F,1)= i,y K, 1),
as t - = (+®) (3.27)

2L (K, 1)= ~ 0,184 K, ).

Therefore we obtain
oty (K, £) = 'O (K) exp[ iy, (g, (k)]
By (K, 1)~ B2 () exp[ =i, ous ) (B)E] ,

up to an irrelevant constant phase factor (and the factor coming from wave-function renormalization).

as = =9 (+») (3.28)

IV. QUANTUM FIELD THEORY AND THE DIAGRAMMATIC METHOD

The transition matrix in quantum field theory is derived by extending the manipulation in Sec. III to the
system having many degrees of freedom. From Eqs. (2.17) and (2.20), the Hamiltonian of the system
under consideration is

Hg(t)= f R, ) {E,(¢)[a' K)a(K)+ bt (=K)b(=K) ]+ F,(¢)[a(K)b(~K)+ a' (K)b' (=K)]}
= [y (K, t)a(®)+ 7K, t)at (K)+ 7(=K, )b (&) + ¥ (=K, )b (K)])
= {0 O0NE, Ve, 0+ BYE, 084, 0] -y &, e o e (F, )+ B(-E, )]

—7(&, 1)’ [, 1)+ Bs(K, )]} - 4.1)

From Egs. (2.25) and (4.1), and using (3.21) with the formula (3.16), the transition matrix of the system
with the external source is given as

1 (e i2Y . i ) #]= 3 # J 52 52
FlZ24,(®),2,(), 7,7, (&), Z,(K), ¢ ]—exp{(fd kL dtok(t)[ﬁg(_ﬁ’t)é.g(ﬁ’t.)-6§*(_E,t)6£*(g’t)]

t. t“ - -
xexp{ d3k[—f dt du‘7(k,t)e"k“’7(k,u)e9““’exp(—i
t

. ¢

l ‘ wy(T)dT

‘II tl u
at [ duy(&,u)e®* WK, t (—' >
+j; ft uy(k,u)e®* WXk, t) exp f; wy(T)dT
t” t t
dt | duv(k,u)e®* ¢k, ¢ <-' )
+ft' £ u¥(k,u)e (k,t)exp zfu wy(7)dT

t" t - - u
+ f dt duY(k,u)eok""g*(—k,t)exp(—i f w,(r)dr)
t’ t 14
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¥ ]:" dtf,.td“ V(K,u)ex @ £(=K, 1) exp('ij; ‘ wk('r)d‘f)

_ft""dtf;du §(E,t)§*(ﬁ,u)exp<_iJ;twk(T)dT>
_f:" dt ’jdu g(—E,t)g*(—E’u)exP('i./:w,,(‘r)d-r)

"

+Z (E)Za (k) exp (—i J;, w,,('r)df)

+iZ} (K) ft dul7(K,u)e’*™ - ¢*(k,u)] exp(—if w,,(-r)d'r)
t’ u
+iZa(l?)ft" duly(K,u)e®*™ - ¢(k,u)] exp(—ifuwk('r)d'r)
¢ :

+Z}(-K)Z4(~K) exp (—i f

¢

wy(T )d'r)

”

vz B [ duly e - exFalem(~i [ wyrur)

”78('1?)[,,“ du[T(E,u)e"k‘“’—E(-E,“)] exp(—i j: w,,(-r)dv-)]}. (4.2)

In Eq. (4.2), line 2 represents what we will call the propagator, lines 3-8 represent pair production and
annihilation, and lines 9-14 represent the external line.

In a subsequent discussion, we consider the theory with the following interaction as an example (besides
counterterms),

£A,00), 6(0), ' ()= =3 g[S WP, (4.3)

which is renormalizable in flat spacetime. The interaction (4.3) is invariant (at the classical level) under
the conformal transformation

Zup(x) = Q%x)E,,(x),
P(x)~ Q2 x)P(x) ,
and

Lanlc ), Y)Y ()= = [V )P (4.4)

In this case, the transition matrix U[Z}(k),Z§(k),t"; Z 4 (k),Z4(R),t'] is given by

- - - - t"
U[Z&(k),Zé(k),tu;Zm(k),Zg(k),t']=exp{—i jt' dtv[li 6_7(%_1‘)% %ﬁt)]}

x F[Z4(K),Z4(K),t"; Z, (K),Z4(K),t'] (4.5)
where
_1_616_2‘_1]3]3 3[33"*"*
V[i 57(E,t)’i67(§,t)]—4(27r)3 sk, dszdka Ak 0% (k, + k, =k, —k,)
1 1 1 1

x i[zwkl(to)]llz ":[2“"142(':0)]1/2 i[thS(to)]’/z i[z"-’k,,(to)]u2

o 4.6
% or(k,,t)or(k,,£)o7(k;,2)67(k,,t) ’ (4.6

and we set ¥(k,#)=7(D,¢)=0 in Eq. (4.5) after the calculation. Since we have obtained the prescription to
compute the _Erans@fion matrix, we finally give the S matrix. As we stated following Eq. (3.26), the wave
function (%, (k), %5(k),#’|f) of in state [f)< F,, is simple in the limit #'~ —= and is given as
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(R (K), Gy(®); ' |f) ~ f A y(Ra (K), By(K); in|e '™ | Z, (K), Z,(K); in)
t'—> -

X (Za(E),ZB(E); in[f) ,
where
H“'=f a*k wh(_oo)(aéﬂ"a%n_'_ i‘:'n?Bin) ,
and
|24 ), 2,); in)=24 (R)|2,(8), 25(8); in)
B 24 (8), Z5(8); in)=Z5(8)| 24 (8), Z,(8); im),

(4.7)

(4.8)

(4.9a)
(4.9b)

and similarly for out state |g)& Fou. Then the S-matrix element (Z} (I}'),ZB(E); out|Z, k),Z B(E); in) is given

by
S[24(K),Z4(K); Z (K),Z,4(K)]

= tim [ auen) [ dno@u),Z,@); out| e [7,), TE); out)

trh o>+
t> =0

X (T (K), T (K)3 27| R (K), Ry (K); 27
X (% (K), G (K); in| '™ | Z, (K), Z,(K); in) .

(4.10)

The matrix élement of the evolution operator of the free oscillator system in the coherent states is easily

obtained, and

@' | exp[(~iwa'a)t]|Z)=exp(Z'Ze " t),

therefore, S[Z},Z}4; Z,,Z,] is different from U[Z},Z4,t";Z, ,Z4;1'] only in the external line part, i.e.,

lines 9-14 in Eq. (4.2), and

S[Z& ,Zé; Za !ZB]= lim U[Z&(E)eiwk(nn)t" ,Zé(i)eiwk(“n)t" ,t”', Za (l'{')e-imk(-.o)gl,ZB(k’)e-iwk(-n)t:,t,] .

Making use of Eqs. (4.2), (4.4), (4.5), and
(4.10), one can calculate S-matrix elements, the
two-point function, etc., but it is rather compli-
cated to use directly these equations. Fortunately
these equations can be compiled into diagrammatic
rules, noticing that

ea,,(t)=[%:(_(tt2)2]uz , (4.12)
. _ M)
=200 (4.13)

and they are given in Fig. 1. In Figs. 1(c) and
1(d) are typical diagrams of pair production and
pair annihilation, and thus from Eq. (4.13) a par-
ticle with smaller momentum has more of a
chance to be produced and annihilated. From Eq.
(4.13) and the Feynman rules in Fig. 1, we note
that if the gravitational field becomes asymptotic-
ally static at sufficiently distant past and future,
such as Eq. (3.24) (this must be satisfied for the
asymptotic field to be introduced), the vertices of
particle production and annihilation vanish in these

(4.11)

T
regions. However, if, for example, we take c?(¢)

as an expansion factor, the interaction between
the particle and the external field remains non-
vanishing in the regions where the gravitational
field becomes static. This means that the con-
cept of in (or out) particle defined by expanding
the theory in terms of c2(¢) is not a suitable one.

V. THE RENORMALIZATION

In Secs. II-IV we constructed the method of cal-
culation of perturbation expansion. In this sec-
tion, making use of this method, we shall investi-
gate the ultraviolet divergences and the renormal-
izability of the theory which is renormalizable in
Minkowski spacetime. By simple power counting,
it is easily verified that the ultraviolet divergences
will appear only in the diagrams of the two- and
four-point functions, besides the amplitude from
the in vacuum to the out vacuum. We shall inves-
tigate in a practical manner the divergences to
second order in the coupling constant A.
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A. One-loop level: renormalization of mass where
and the coupling constant
-~ - 3/2 L.
The two-point function (the Feynman propaga- zp(t,k)=(%) f d*x e Xp(x) . (5.2)
tor) is defined by
Gplt, s; B)={outs vacl TWY(? K)I(s, )]l in; vac) In the zeroth order in the coupling constant 1,
A (out; vaclin; vac) diagrams which contribute to the propagator are
1 2 52 readily obtained from the Feynman rules in Fig. 1
=[i[2wk(to)]w] 5y (K, s)o7(K, ) and Eq. (5.1), and they are given in Fig. 2. It is
i easily proved that they do not involve any diver-
X1nS[Z4,Z4; Zo,Z4] ’ (5.1) gences. For example, the contribution from the
24=24=Z 42 =0 graphs of Figs. 2(b) and 2(c) is

1
[eraph 200+ 2(0)]= 55770y

<[ au [é.<u>e(t —)(s —u)exp(~i / oyr)r —i ) ay(rar )

u u
— 0,(u)0(u —)B(u — s) exp (—i f Wy (T)dT =i f w,(r)m)] . (5.3)
t s
f
One can expect that the integral over time « in is a square-integrable function.
the above equation exists if Making use of the Feynman rules, we estimate
. M‘(u) the divergence in the one-loop diagram given in
0,(u)= T 20) Fig. 3. To regularize the integral over the mo-
_" mentum, we use the dimensional method. Intro-
_ M?3(u) ducing a parameter p of mass dimension, the in-
T T4k MP(u)] teraction part of the Lagrangian in D -dimensional
K S u
———>—— (a) propagator
t s
Ik k

- exp( il {Wynratl)

A (¢)pair production

t

— 8 B(s-1) B(u-t)

. (S
x exp(~i [ wdT)dt—i Stwk(nd't)
(b) vertex

t
i S (ky+ Ike—Iks—lks) 1 Ik(d) pair annihilation
(2w ) L 2Wgft) 2w 2w 1) 2w )

S u

+ 8t 6(t-s)8(t-u)
ot
xexp(-i [‘wdndt-i jtwk(‘t)d't)
u S

FIG. 1. The Feynman rules, the diagrammatic version of Eqs. (4.2), (4.5), (4.6), and (4.11), showing (a) the propaga-
tor that comes from line 2 in Eq. (4.2), with the arrow indicating the flow of charge; (b) the self-interaction vertex
which comes from Eq. (4.6); and (c) and (d) the vertices of pair production and annihilation. The dashed line merely
indicates that time ¢ is earlier (or later) than » and s, and it does not mean directly an external field. That comes
from lines 3-8 in Eq. (4.2). The factor of external lines is easily calculated from Eqs. (4.2) and (4.11).
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,"—~>-~s+/"‘\\\/

(a) (“:)

+ ————

(d)

FIG. 2. Graphs which contribute to the two-point
function in zeroth order in the coupling constant.

spacetime is
Lin ———[¢(x)2/)'(x)]2 (5.4)

where €=4 -D, and divergences will appear in the
form of poles as € - 0. The contribution from the
graph of Fig. 3 is

graph 3=¢Apu¢ f duf P Go(t,u;K)GS (u,u;s p)

XGF(M,S‘,k), (5'5)
where G%(¢, s;K) is a “free” propagator

sexpl=il [, oxrar ]
2i[w, (¢t )wy(s)]V? :

In Eq. (5.5), we must estimate the following inte-
gral:

Go(t,s;K)= -

(5.6)

D-1
Il:ixu‘f (2”—)5.16%(%“;5)

dD-l
[ G

25w, (u)
oo d° 1
=M @Y 5= hm)+ 3

871' M (u)[ +3 1n4 2( )—2)’]+0(€) (5.7)

where 7 is Euler’s constant. In our discussion so
far, mass parameter m? was considered to be the

P

5 >

t u 'S

FIG. 3. The one-loop correction for the two-point
function.

physical mass. However, for convenience, in the
discussion of the ultraviolet divergences, we use
the minimal-subtraction scheme. The renormali-
zation constants of mass, the coupling constant,
and the wave function are introduced as usual,
that is,

A
Bror=11"8, Y68, ¥ = M Yol =7 (Go¥h)®

= nuvzzauzl)reavlp:e —ZMMZZZIIJ,,.@(/):G

A’ €
~SZ AP, (5.8)
where the subscript zero on any quantity denotes
that it is a bare quantity, and we expand the re-
normalization constants in the power of the re-
normalized coupling constant A as

z,=1+le;"w, j=M, x, and 2. (5.9)

The counterterm of the mass renormalization in
first order in the coupling constant is given from
Eq. (5.7),

Al
£(M)_ ___éF E Mz(t)¢¢t

== 2Z M2yt . (5.10)

We also calculate the graphs for the exact prop-
agator with the vertices of pair creation and (or)
pair annihilation in first order in the coupling con-
stant. Some of these graphs are given in Fig. 4,
and it is proved that they are all finite quantities
without ultraviolet divergences. For example,
the contribution from the graphs of Figs. 4(a) and
4(b)

[graphs 4(a)+ 4(b)]=ilf duf dvf (—‘g%cg(t,u;i)cg(u,s;k’) [G(v —u)exp(—Zif" w,(-r)dr)

-0 -v)exp<_zifu"w,(r)df)] 2‘22’(2) (5.11)

From Eq. (4.12) the following integral in the above equation,

7=-f (%5 [9(1) -u)exp<"zz' f ., wp(f)df> ~ 0 -v)exp ('2i f “”(”df)] Sw:‘(.f)(zzz(v) ’
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is finite. It is also verified that the graphs with
more creations and annihilations of pairs, e.g.,
Fig. 4(c), are all finite. This fact is very impor-
tant and the renormalization of mass in this
theory is identical with that in Minkowski space-
time.

We turn to the investigation of the four-point
function. In one-loop order, only the graphs
given in Fig. 5 have divergences, and we first
evaluate the graph of Fig. 5(a),

IN A TIME-DEPENDENT... 377

FIG. 4. One-loop corrections for the two-point
function with pair creation and/or annihilation.

=i a’lk - = - -
graph 5(a)=(7;W(—z>\u‘)f duf dvfWG%(t,u;pl)G%(u,S;pz)G%(u,v;k)G%(v,u;k+p)

X G (t",v;D5)G(v,5"3D,)

—iA

st[ duf dvGR(t,u;D,)G3 (,530,) GR (7,03 D5)G2 (v, 575 B,)

dP?p  exp[-il f.,vw,('r)dTI] exp(=il f,,vw,,,,(r)dﬂ )

X . - : s 5.12)
(2‘” )D ’ 21‘[(‘0)!(“ )wk(v )]1/2 Zl[wkip(u)whp(v)]l/z (
where =0, —P,=P; =D, From Eq. (5.12) we estimate the divergent part of the integral,
Lw,v;p)=1iAus d>"k_ exp[~il f“uwk(f)d” ] exp[ il fuuwmp(")d‘fl 1
= @m)P? 2i[w,@)w, @) 24wy, , ) w,,,@) 72
. dP2p  exp[=iwau)lv —ul] exp[=iwppw)lv —ul]. .. .
= € 4 '
1;)\.“ f (27T)D-1 Ziw,,(u) Ziwm,(u) finite
f dPr g ikovu) givov=w)
= A' - s
IAps (2m)? z,r 72 = M%)+ 6 pgt — (K+ D) —Mz(u)+i6+ finite
. dpo d®r 1 .
=7\ af Z2£0 ,=ipg(v-u)
A o e (2,",)D [kz —Mz(u)+15][(k+p)2 _Mg(u)+i6]+f1n1te
APo ,-ipotww ) =2 f M2(u)+ x(x = 1)p2 .
f 2 om%e 1617 v+) dxln G + finite
=~ 6(u —u)+ finit (5.13)
= =gz —u nite . )
-
Calculating the divergences in the crossed dia- £M o e 50 1 L gty
grams 5(b) and 5(c) in the same manner, we ob- et~ ® 167%€ 4
tain the counterterm for the coupling-constant
renormalization, Z“’)\ (Z/)ZPT)Z (5.14)

s s s s s s
+ L +
2
t t t ¥ t
() (® ©

FIG. 5. One-loop corrections for the four-point
function.

B. Two-loop level: renormalization of wave function

In one-loop order, the renormalizations of mass
and coupling constant have been demonstrated, and
in two-loop order we meet another type of diver-
gence, which is concerned with wave-function re-
normalization. For convenience, we divide the
free propagator into two parts,

exp =il [ wy(r)dTl]
2i[w,(H)w,(s)]*/?
=D,(t, s;k)+ D,(t, s;Kk),

Gt s;k)=

(5.15)
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NN

FIG. 6. The corrected two-point function in zeroth
order in the coupling constant.

where

dk e-iizo(s-t)

Dy(t, s;k)=~i | 2 By — w(£)+30’

(5.16)
and D,(t, s; k) is a regular function and especially
satisfies

D,(¢,t;k)=0. (5.17)

Adding all contributions of pair-creation and pair-
annihilation vertices, we denote the exact propaga-
J

graph 7(a)==(@Exp© )zZ‘”)tfdufdez(v)f(;iD);plG

graph 7(b)= -(ikﬂ-e)zfd“fd"f(zﬂ)‘:p‘ f(g:);’ 1

ICHINOSE 25

2
ziim

(a) (b)

FIG. 7. Second-order corrections for the two-point
function.

tor in zeroth order in the coupling constant A to be
Dp(t, s; k), that is,

Dy(t, s; &)= D,(¢, s;K) + Dg(t, s; k), (5.18)

where Dg(t, s; k) consists of D,(t, s; k) in Eq. (5.15)
and the contributions from the graphs given in
Fig. 6. From Eq. (5.17) and the discussion in
Sec. VA, it is proved that
d3k e
D)= [ Gy Dlts ;) = finite (5.19)
As indicated in Fig. 6, we use a double line for
Dg(t, s; k) in diagrammatic rules.
The graphs which contribute to the propagator
in two-loop order are given in Figs. 7-9, and thus

(¢, u; K)G%(u, s; K)Dp(u, v; D)Dp(v, u; D), (5.20)

$(t, u; K)G % (u, s; K)Dp(u, v; D)Dp(v, u; D) G2(v, v; Q)

= —(—irp€)? fdufdvf(z )D 1 G(t, u; k)G (y, s; k)

X Dp(u, v; p)Dp(v, u; 5){# ) eMz(v)[Zﬁ,”

(o)),

(5.21)

graph 8==(EAu)Z fduf(z L 1G (¢, u; K)G%(u, s; K)Dp(u, u; D)

= —(=irpu )Z“’AfduG"F(t 4 B)GOu, s; k){ 'sz(u)[z“’

z(l)
FIG. 8. Second-order corrections for the two-point
function.

21 (1“1:11;2;) Y>]+Dn(u)}, (5.22)

FIG. 9. Second-order corrections for the two-point
function.
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D-1 D'l
graph 9=—§(—ixu€)2fdufdvf#’; (Z,,)D 2 G%(t, u;K)G%(v, s; K)Dp(u, v; D)

X DF(v; U, a)DF(U’ U _f) -q - E) ’
where we have used Eqgs. (5.7), (5.18), and (5.19). Adding Egs. (5.20) and (5.21),

graph 7()+ 7(6) = ~(= 2. [ du [0 634,106, 5510 D)+ i3 (1n 1805 - -7)]

D- .l

(g 2" 1DF(u pr)DF(U U, 'p)

= (=i )ZfdufdvG (¢, u4; K)G%(u, s; k)[DR(v)-;.24 2( ;}ZZ}) 7)]_[%(‘“0""”’

a°p 1 finite
(@1)2 [ 92 = M2(u) +0]l( py — 4oV — D2 = M) +30]

fdu G%(t,u; k)G (u, s; k)[DR(u)+ ;ﬁ(u)(ln:lgél) Y>]+f1mte (5.24)

(5.23)

=—ixp€

23 2
In Eq. (5.23), we estimate the integral
., [d°7'p [d° g - - - > =
Iy(u,v)= —3(=ixp°) fm)p lf(z,,)u 1 Drp(u, v; P)Dp(v, u; @)Dp(v, %, D~ g~ K)
v a’'p rd’q . x>
=‘5("”H€)2f O 1_[(2”)0 7 [D,(u, v;P)D,(u, v; Q)D,(u,v; D — q — k)
+ 3D1(u’ v’ p)Dl(u’ 'U, q)DR(u’ U! ﬁ a E)
+3D,(u, v; D) Dg(u, v; @) Dy, v; b~ 4 ~ k)

+ Dg(u, v; B)Dg(t, v; DDg(w, v; 5~ G- k)1, (5.25)
and from Eq. (5.16), only the first and second terms in the above square bracket are divergent,
JESNTE ar! ili_—__llD( ")D( ")D( ."_*_‘E)
3 =K enP 1) @nP ! W%, U; ) \u, V; q) )4, V59— q
_( Z')S 2€f de f qu ﬂn e-xko(u v) e-iao(u-v) e-i Io(u-v)
== ) e ) GnP ) o Pz—Mz(u)+i5 P —M(u)+i6 12— (p— q— K = M2(u) +40
=ip2¢ g@ne-i”o(“‘v) a’p f 1 1
27 27)? J (2m)® p? Mz(u)+16 Q= MP(u)+i0 (p—q—k)> = M>(u)+ib
2 D=3
cipee [ Qacrrones oy T[N e i 000
) -3Mm? 3M2 42 1 > ..
=z{ 27”423) - 277[.(11:) [anzlu) - ] - [3(8,2+k2) + 3M2(u)J}6(u —v) +finite , (5.26)
where we have used the formula which was derived by Collins,®
dD-l - -> -
1= pe f 2”) f 2D, (u,v;D)D,(u,v;q)D gu,v;0-q -k)
dD-l dD-], dD-1 dD-1 oy
‘U‘e I (ZN)D’: (211_)17-1 (211_)13-1 (2 ) D (u 'I) p)D (u v, Q)Dg(u v, l)e ix (11 q B
dD -1 R J‘ f e~itou-v) etao W) G
il f @n?t (21T)D'le D, v; l) (2m? (21r)D_b - M2(u) +i6 q* — M?(u) + i
cope [ 4% f d®M oq .’f A% i i f____‘l_ﬁdp 1
[ @ @mP ] D (u,v;1) _-D.(Z‘n') e ity v @n? @ —Mz(u)+i5][(q TP —Mz(u)+i5]
>y S ) 1 f A% eipguomind 1 g
W We x DR(u,U,].) W@ o WY ’*231r2€+f1n1te

(5.27)

23112 p 5(14 v)D (u) +finite .
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Adding the contributions from the graphs of Figs. 7(a), 7(b), 8, and 9, the divergent part of the Feynman

propagator in two-loop order is

3z

A2 fdu fdvGF(t u;%)Go(v,s; k)[28 - WgMz(u)é(u—v) 5 4€ (8,2 +k2)6(u - v)]

In the contributions from the individual graphs
there exist terms of the form (1/e)D(t) which can-
not be eliminated by renormalization. However,
these terms cancel each other in the final result
(5.28). Therefore in two-loop order, the renor-
malization constants of mass and wave function

7T 1 3 1
(2) = —— R Y i e
zZ§ i " o5 (5.29)
11
Zz(z)=_29n4 Pt (5.30)

In a similar way, one can investigate the ultra-
violet divergences of the four-point function in
two-loop order, and verify that the theory under
consideration is renormalizable and the renor-
malization constants are identical with those in
the theory in Minkowski spacetime.

If we discuss the renormalization, starting with
the original Lagrangian (2.2), the essential feature
of the renormalization is unchanged, but the para-
meter ¢ suffers another renormalization which
comes from the wave-function renormalization,
as can be easily seen, and the finite terms are
slightly altered, that is, the physical meanings
of the renormalized mass, &, and the coupling
constant are slightly modified. However, there
is one thing to be mentioned. If we start with the
Lagrangian (2.2) in D dimensions, the interaction
term of the rescaled fields becomes

Lint = 4(uc(t))‘(lp(x)zp’*(x)) (5.31)
instead of Eq. (5.4). Singular parts in radiative
corrections are absorbed by renormalization with
the same renormalization constants obtained in
this section. After the coupling-constant renor-
malization, in addition to the ordinary terms,
there remain terms of order € having the form

Inf u2c?(t)/p?. When they combine with other sin-
gular parts of order 1/¢, there appear time-de-
pendent terms of order ¢° and particle production
takes place even in the theory of massless and
conformed coupling [m?*=0and £=5(D - 2)/(D -1)],
as suggested by Birrell and Davies.”

VI. CONCLUSION AND DISCUSSION

In this paper, we have considered the charged
scalar field with self-interaction in the spatially
flat Robertson-Walker metric and constructed the

(5.28)

)
method of calculation for perturbation expansion,
In this discussion, the functional integral tech-
nique in the coherent-state form plays an essential
role, and we have introduced creation and annihi-
lation operators of the instantaneous particle.
Although it may be considered that there is some
physical entity corresponding to it, it seems cor-
rect that the concept of instantaneous particle is
introduced merely as a calculational device. [In
fact if we can solve exactly the field equations in
curved spacetime or evaluate the functional inte-
gral (3.15) without expanding it in powers of (¢),
the description, in terms of the instantaneous par-
ticle and the vertices of pair production and pair
annihilation, does not appear in the final results.]
In the general case, the in Fock space and out
Fock space are two different Hilbert spaces, and

. it would seem that this awkward point did not sur-

face superficially in our discussion. However,
this is not true. For example, quantities such as
the S-matrix element (g;out|f;in) and the
Green’s function (vac; out | T(y(x)pT(y)) | vac; in)
have meaning only when they are divided, for ex-
ample, by the amplitude from the in vacuum to the
out vacuum, (vac; out|vac; in), since one need
not consider the disconnected diagrams. To see
this more clearly, we calculate the vacuum-to-
vacuum amplitude in the zeroth order in the cou-
pling constant. The graphs which contribute to
this amplitude are given in Fig. 10 and they do not
contain ultraviolet divergences. However,

(a)
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FIG. 10. The graphs which contribute to the vacuum-
to-vacuum amplitude.
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graph10(3)=—fd3k fdtfd3pfds ék(t)ép(s)ég(_ﬁ

t)6§(ﬁ, t) 55*("_51 3)55*(5’ S)

xexp{— fdsq[[:wduj:: dv §(?l,u)§*(?1,v)exp(—ij;qu(-r)dr>

+[:mdu£:dv £(-q, u) £*(-G, v)

X eXp(‘ ij;u Wq (T)dt)] }‘ E=r=tk= grao

=—V[fd3kfdt fds 9(t—s)ék(t)ék(s)exp<— Ziftw,,(r)d“rﬂ , | (6.1)

where V is the volume of the space in which we
consider the quantum field theory (or in other
words, the space in which the external field has
sensible time dependence, in a general case).
Adding all contributions in zeroth order in the
coupling constant, the amplitude under consider-
ation is

(vac; out | vac; in)c g4, (6.2)

where finite quantity A has the dimension (length)=3,
and generally A has a positive real part. Similar-
ly, it is easily verified that after the renormali-
zation, for any | f)e i, and | g)e Fou,

{g; out|f; in) =finitex (vac; out|vac; in). (6.3)

Notice that the Fock space is constructed to be
separable, that is, it contains only a countable
number of basis vectors. This is in the context
that in and out Fock spaces become two different
representations of the field operators in the limit
V-, If we think naively, the above fact suggests
to us to cease adhering to the Fock space and to
consider a wider space, such as the space of the

r
coherent states for all annihilation operators of

the asymptotic fields. If we do so, it of course
produces other difficulties. Although quantities,
such as the expectation value of the number of
produced particles, have meaning, at present we
have no suitable solution for this problem.

Making use of the calculational method obtained
here, we have discussed the ultraviolet diver-
gences and the renormalizability of the theory,
and it has been proved that the essential feature
of the renormalization does not depend on the
structure of the spacetime. It is interesting to
compare our method with that given by Bunch,
Panangaden, and Parker.® They approximately
obtained the Green’s function in the in Fock space
and, using this Green’s function, considered ultra-
violet divergences.
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