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The microscopic features of the particle trajectories in the Monte Carlo (MC) simulations of
strongly coupled one-component plasmas are analyzed as functions of the sequential number ¢ of
the MC configurations. It is found that the MC particles behave as if they were trapped in the po-
tential dimples of ion spheres in the small-c regime; in the large-c regime they perform diffusive
motion in the fluid simulations and remain localized around the lattice sites in the crystalline simu-
lations. These findings enable us to establish a correspondence between ¢ and the “MC elapsed
time.” Application of this correspondence in the large-c regime leads to an estimate of the diffusion
coefficient in the fluid regime which agrees well with the one evaluated independently through the

molecular-dynamics method.

I. INTRODUCTION

The classical one-component plasma' (OCP) is a sys-
tem consisting of charged particles of a single species,
with electric charge Ze, number density n, and tempera-
ture 7, embedded in a uniform neutralizing background
of opposite charges. The state of such a system can be
characterized by the Coulomb coupling constant
I'=(Ze)*/akyT, the inverse temperature in units of the
average Coulomb energy, where a =(4mrn/3)~!/? is the
ion-sphere radius. In this paper we shall henceforth scale
all the lengths in units of a, unless specified otherwise.

Equilibrium properties of the strongly coupled (i.e.,
I' >>1) OCP have been studied extensively through the
Monte Carlo’~> (MC) and molecular-dynamics® (MD)
simulation methods. It has been predicted on the basis of
MC calculations that the OCP undergoes a first-order
freezing transition (i.e., Wigner crystallization) into a bce
crystalline state at I',, =178+1 (Ref. 4) or I',, =180*1
(Ref. 5). Since the transition is of the first order, there is
a possibility that the OCP may make a glass transition’
through a supercooled fluid state if a sufficiently “rapid
quench” is applied to the system.®

In the computer-simulation studies of the phase evolu-
tion in ordinary substances, one resorts to MD methods
at constant temperature and pressure;”'? the scheme of
microcanonical MD  simulation needs adequate
modifications, however, to accommodate such a condi-
tion. The MC methods, on the other hand, can naturally
incorporate isothemal and/or isobaric conditions with
the appropriate energy and/or volume fluctuations. The
situation is simplified further in the cases of the OCP,
since the volume fluctuations vanish automatically due to
the presence of the uniform background of neutralizing
charges.

The major shortcoming of the MC method in the
phase-evolution study is an apparent lack of the “time”
concept. In this paper, to find a way to circumvent such
a shortcoming, we perform several series of MC runs for
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strongly coupled (I" > 80) OCP’s both in the fluid and in
the crystalline states, and thereby analyze the microscop-
ic features of the MC trajectories as functions of the
sequential number of the MC configurations (denoted as
c). We shall thus find that the MC particles behave as if
they are trapped in the potential dimples of the ion
spheres in the small-c regime (¢ /N < 10%), where N is the
number of MC particles; in the large-c regime
(¢ /N >10%, they perform diffusive motion in the fluid
simulations, and remain localized around the lattice sites
in the crystalline simulations. We then carry out MC-
simulation analysis of Brownian particles in a dimple of
the ion-sphere potential, which enables us to find a
correspondence between ¢ /N and the “MC elapsed time”
t. Application of this correspondence in the large-c re-
gime leads to an estimate of the diffusion coefficient in the
fluid regime, which agrees well with the one evaluated in-
dependently through the MD simulation method.®

II. MONTE CARLO TRAJECTORIES

We have performed MC simulations of various cases of
strongly coupled OCP’s following the standard Metropo-
lis algorithm, as before.*> In so doing we have intro-
duced three different schemes of particle displacements
with the following probability functions:

P(r)=QT /m)VX Tr?)exp(—Tr?/2) (1)
(scheme A),
P(r)=(2T /m)'"?exp(—T'r?/2) )

(scheme B). In either case P(r) is normalized so that
f “dr P(r)=1.
0

In addition, we have scheme C where a particle displace-
ment Ar=(Ax,Ay,Az) takes place with equal probability
in a cube: |Ax| <8, |Ay| <8, |Az| <5. Here the
Cartesian axes are along the MC-cell axes, and & is
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FIG. 1. Displacement probabilities for schemes A, B, and C
at '=160. Lengths (e.g., r) are measured in units of the ion-
sphere radius, a =(47n /3)~'/3,

chosen so that the acceptance ratio of the MC runs lies
between 0.3 and 0.7. In practice we have chosen §=0.2
for I'=80 and §=0.15 for ' =120 and 160.

In Fig. 1 we depict those three displacement probabili-
ties at I'=160 as functions of r. Schemes A and B retain
rotational invariance, while scheme C is the one which
has been used conventionally.?~> Mean-square displace-
ments of the schemes A, B, and C are 3/T, 1/T, and &?,
respectively.

In those three schemes we have performed several runs
of MC simulations for combinations of I' and N; the
durations of the MC runs are 4—7 X 10® configurations.

In Figs. 2-6, we depict trajectories of a MC particle
over 100-160 configurations (per particle) projected onto
the x-y plane for various cases of the MC runs. We have
found that in such a short “interval” the particle motion
is confined more or less within a sphere of radius
(3/T)'/2, the dashed circle drawn in each figure for com-
parison, irrespective of the schemes of displacements.

Such a confined motion of a particle may be correlated
with the single-particle behavior in the dimple (r < 1) of
the ion-sphere (IS) potential,

(3)

|

FIG. 2. Trajectories of a MC particle over 100 configurations
(per particle) projected onto the x-y plane for scheme A at
I'=280. The position of the particle is marked with a closed cir-
cle at every ten configurations. The dashed circle depicts a
sphere with radius (3/T)"/2,

The mean-square displacement of a particle in this dim-
ple is given by 3/T'; this model is thus valid only for
'>>3.

III. BROWNIAN MOTION IN THE DIMPLE
OF THE ION-SPHERE POTENTIAL

The Brownian motion of a single particle in the dimple
of the ion sphere may be analyzed through the general-
ized Langevin equation”

d2
- + A(t ’r, (4)
dr? g ¢
with
o*=w)/3=TkyT/m . (5)

Here AC(t) represents the fluctuating random force and §
is the microscopic rate of momentum transfer or the fric-
tion coefficient.

Under the assumption that the particle is initially lo-
cated at the origin with Maxwellian velocity distribution,
Eq. (4) may be solved as!!

«r2)) =3/T —(3/T) exp[ —2(3/7T) 20,1 1{ cos[ (4 — £2 /40%) 2w, 1]

+ (4w /36— 1)~ sin[ (1 - £7/40) P, }? for £<(4/3) %0,

«r?))=3/T —(3/T)exp[ —2(3/7T)"?w,t]{ cosh[( — L +&*/4e})' ?w,1]

+(1—40; /38"~ sinb[(— 5 +&7/47) Pt 1} for £>(4/3) %0,

TABLE I. Self-diffusion coefficients obtained in the present simulations with the displacement

schemes A, B, and C and those evaluated in the MD simulations (Ref. 6).

Scheme A Scheme B Scheme C
r (N =1024) (N =1024) (N =1024) (N =432)
80 0.0070 0.0088 0.0056 0.0083+0.0017
120 0.0038 0.0028 0.0048+0.0010
160 0.0021 0.0025 0.0021 0.0014 0.0033+0.0007

(6)
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FIG. 4. Same as Fig. 2, but over 160 configurations for
scheme B at I' =160.

FIG. 6. Same as Fig. 2, but for scheme A at I'=200 in the
bcc crystalline state.
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FIG. 7. Double average of r? in Eq. (6), at =80 with
§=2wp(3/7TI‘)'/2z0.219mp,asafunction of w,t.
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FIG. 8. Brownian motion of a MC particle in the ion-sphere
potential Eq. (3), at I' =80 for scheme A, with the initial condi-
tion r =0. The dotted line describes a one-particle behavior; the
solid line, the average over 107 particles; the dashed line, the
average over 10° particles.
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FIG. 9. Mean-square displacement r?) of the MC particles
in the large-c regime as a function of w,t at I'=80. Closed
squares correspond to scheme A with N =1024; closed circles,
scheme C with N =1024; open circles, scheme C with N =432.
Sequential numbers of configurations in those respective cases
are also shown along (SNC,c). For comparison, the value of the
slope, D*=2.95T "3 (Ref. 6), is depicted by the arrow.
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FIG. 10. Same as Fig. 9, but at I'=120.

Here {( )) refers to a double average over single-particle
processes and over the Maxwellian distribution.!! As-
suming the ion-sphere model where, £ :pra2(3/1rl")1/ 2
with a=1 (Ref. 1), we find that Eq. (6) applies since
£ <<(%)"?w, and that {((r?)) exhibits a peak structure as
depicted in Fig. 7 (§=0.219w,). The peak corresponds to
a point of reflection where the particle starting outward
from r =0 turns over inward. The first peak takes place
at (Dpt=(%)]/21T.

We have carried out MC simulations of Brownian
motion in the ion-sphere potential (3), starting from r =0,
at several values of I' for schemes A, B, and C of dis-
placements. In all the cases, if we average r2 over a num-
ber of particles less than 10, the resulting (72) appears
too noisy for a peak to be identified. If the average is car-
ried out over 10? particles, {#2) shows a peak structure.
If on the other hand we average r? over 10° particles or
more, the resulting (72) shows no oscillatory behaviors.
This stems from the nature of the MC simulation in that
the thermal average with respect to velocities is per-
formed virtually at every step. So if we average r2 over
so many particles, the effective rate of momentum
transfer increases, resulting in nonoscillatory behavior of
Eq. (7).

Figure 8 illustrates those cases at I'=280 in scheme A.
Adopting a heuristic approach, we pick the peak ob-
served with an average over 10? particles and identify it
as the first peak in Fig. 7; we may thereby establish a re-
lationship between w,? and the sequential number of
configurations applicable to the MC simulations of
strongly coupled OCP’s. Sequential numbers of
configurations per particle ¢ /N corresponding to the MC
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FIG. 11. Same as Fig. 9, but at I'=160; the closed triangles
correspond to scheme B with N =1024.

time of a)pt=(3/4)l/ 2 are thus obtained as follows:
scheme A, 23.0%£0.8; scheme B, 41.2+1.7; scheme C,
20.5+0.8 (I'=80), 21.6x0.8 (I'=120), 20.4+0.7
('=160).

IV. BROWNIAN MOTION IN A STRONGLY
COUPLED OCP

As we have seen in Sec. III, MC particles in a strongly
coupled OCP behave as if they were trapped in the poten-
tial dimples of ion spheres in the small-c regime,
¢/N <10%. This finding has been used to establish a
correspondence between ¢ /N and the MC time in Sec.
III. In this section, we analyze simulation results of the
mean-square displacements (72) of the MC particles in
the large-c regime, and deduce the coefficient of self-
diffusion in light of the correspondence mentioned above.

In Figs. 9-11, we exhibit MC results as functions of
w,t for various cases of simulations. For comparison, we
depict in those figures the values of the slopes,

D*=(r?) /6w,t=2.95T "% (8)

predicted by Hansen et al.® through their MD simulation
studies within errors of 20% applicable for I" <152.4.
Table I lists and compares the values of the self-diffusion
coefficients obtained for w,7>200 in various displace-
ment schemes and those of Eq. (8). We find that the
present estimates, regardless of the displacement
schemes, agree well with the MD results. This fact again
corroborates the validity of the MC time concept eluci-
dated in this paper.
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