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Through Monte Carlo simulations of rapidly quenched one-component plasmas, we investigate
microscopically the dynamic evolutions of local and extended bond-orientational symmetries in su-
percooled states and show that the resulting states are the Coulomb glasses. The glass states are
characterized by random polycrystalline structures with long-range bond-orientational order; in
these states the particles are virtually locked around their equilibrium positions. The inverse tem-
perature at the glass transition is found between 200 and 300 in units of the average Coulomb ener-
gy. The polycrystalline structures of the resulting glasses depend sensitively on how the rapid
quench is applied. Physical problems specific to the Coulombic systems are discussed.

I. INTRODUCTION

Various attempts have been made to investigate meta-
stability of supercooled fluids and processes of solid-
ification (i.e., crystallization and glass transition) through
molecular-dynamics (MD) and Monte Carlo (MC) simu-
lation methods in systems such as the hard spheres,!'?
Lennard-Jones,>* and inverse power>® systems. Those
simple fluids, if quenched rapidly, have been found to
form glasses and exhibit many properties similar to those
commonly observed in complex glassy systems.

The classical one-component plasma’ (OCP) is a sys-
tem consisting of charged particles of a single species,
with electric charge Ze, number density n, and tempera-
ture 7, embedded in a uniform neutralizing background
of opposite charges. The state of such a system can be
characterized by the Coulomb coupling constant

['=(Ze)*/akyT , (1)

the inverse temperature in units of the average Coulomb
energy, where

a=(4mn/3)" /3 ()

is the ion-sphere radius.

The OCP differs from the simple fluids mentioned
above in various ways: We note in particular that the
Coulomb force is a long-range one and that no volume
fluctuations exist owing to the presence of the uniform
background of neutralizing charges. It has been predict-
ed®® that the OCP undergoes a first-order freezing transi-
tion (i.e., a Wigner transition) to the bcc-lattice phase at
I',,=178-180. An outstanding problem associated with
such a transition is an investigation in evolution of micro-
scopic structures and bond-orientational symmetries as
the plasma is supercooled below the transition tempera-
ture, ' >T,,.

In the computer-simulation studies of the phase evolu-
tion in ordinary substances, one resorts to the MD
methods at constant temperature and pressure;'%!! the
scheme of microcanonical MD simulation needs adequate
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modifications, however, to accommodate such conditions.
The MC methods, on the other hand, can naturally in-
corporate isothermal and/or isobaric conditions with the
appropriate energy and/or volume fluctuations. The situ-
ation is simplified further in the cases of the OCP since
the volume fluctuations vanish automatically.

The major shortcoming of the MC method in the
phase-evolution study is an apparent lack of the “time”
concept. To find a way to circumvent such a shortcom-
ing, we performed several series of MC runs for strongly
coupled (I" = 80) OCP’s both in the fluid and in the crys-
talline states, and thereby analyzed the microscopic
features of the MC trajectories as functions of the sequen-
tial number c of the MC configurations measured in units
of a million configurations. Detailed investigations'?
have revealed that the MC particles behave as if they are
trapped in the potential dimples of ion spheres’ in the
small ¢ /N regime (¢ /N <10~ %), where N is the number
of the MC particles; in the large c¢/N regime
(c/N >1073), they perform diffusive motions in the fluid
simulations, and remain localized around the lattice sites
in the crystalline simulations. We then carried out a MC
simulation analysis of Brownian particles in a dimple of
the ion-sphere potential, and thereby found a correspon-
dence between ¢ and “MC time” t:

¢ /N =[(23.0£0.8) X 10" *2w,t /V 37 , (3)

where , is the plasma frequency. Application of this
correspondence in the large ¢ regime leads to an estimate
of the diffusion coefficient in the fluid regime, which
agrees well with the one evaluated independently through
the MD simulation method. '

In this paper we thus investigate the dynamic evolu-
tions of microscopic structures and bond-orientational
symmetries in the supercooled OCP’s through the MC
simulation method. In Sec. II we institute four cases of
rapid quenches into supercooled states starting with an
equilibrated fluid state at I’ =160; those are simulated by
four distinct runs of the MC simulations. In Sec. III we
define and introduce various parameters and functions
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describing the local and extended bond-orientational
symmetries. In Sec. IV we investigate the microscopic
correlations and bond-orientational symmetries in a fluid
simulation at I'=160 and in a bcc-lattice simulation at
I'=400; those provide frames of reference for compar-
ison with the rapid-quench simulations. Section V con-
tains the main results of the present MC simulation study
in the four cases of the rapidly supercooled OCP’s; the
microscopic structures of the glass states are investigated
in detail. Concluding remarks are given in Sec. V1.

II. QUENCHING PROCESSES

For the MC simulations of infinite systems, one finds it
desirable to increase the number N of the particles in the
MC cell under the periodic boundary conditions, so that
the effects of the boundary conditions may be minimized.
The “MC elapsed time”!? is then proportional to ¢/N
and thus decreases with N at the same ¢. To find a way to
compromise between those two opposing effects of N, we
note that the computed values of the excess internal ener-
gy have remained almost constant within error bars for
N=432, 686, and 1024 in the earlier study.’ We hence
choose the smallest number 432, which corresponds to
the side length L ~ 12a of the MC cell.

Four distinct runs of the MC simulations are per-
formed to study evolution of microscopic correlations in
rapidly quenched OCP’s, starting with an equilibrated
fluid state at I’ =160: (A) an application of a ‘“‘sudden
quench” to I'=400 at ¢=0; (B) an application of a ‘“gra-
dual quench” stepwise with AI'=10 from I'=160 at ¢c=0
to I'=400 at ¢=23; (C) a sudden quench to I'=300 at
¢=0; and (D) a sudden quench to I'=200 at ¢=0. The
phase evolutions have been subsequently monitored up to
¢=80 for (A), (B), and (C), and up to ¢=30 for (D).

Since we adopt

P(r)=Q2L /m)'?T(r /a)*exp[ —T'(r /a)* /2] (4)

as the probability of random displacements r of the MC
particles,!” we find the correspondence of the MC time as

w,t =2.7X10% (5)

in the present cases of simulation.

III. BOND-ORIENTATIONAL ORDER PARAMETERS

The local bond-orientational symmetries are studied
in terms of the spherical harmonics, @Q,,(r)
=Y,,(6(r),¢(r)), where 0(r) and ¢(r) are the polar an-
gles of the bond joining two neighboring particles; the
particle positions are averaged over a sequence of 0.3 in
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order to reduce thermal fluctuations. Following
Steinhardt es al.'* and Nosé and Yonezawa,'> we intro-
duce the following bond-orientational parameters, which
are rotationally invariant combinations of the second and

the third order:

477_ 172
Q=557 = Qu(r >|2] , (6)
Im| <1
) le 1 Q-lm 2 élm 3
2 lél 12]3/2 : (7)
Imi<1

The coefficients in Eq. (7) are the Wigner 3j symbols,
whose summation is carried out with m; +m, +m;=0.
Unless specified otherwise, we define a bond as that be-
tween those particles whose separation is less than 2.3q,
approximately the distance at which the radial distribu-
tion function g (r) takes on its first minimum.

The average Q,,, in Eq. (7) is carried out with regard to
all of such bonds around a given particle; { ) in Eq. (6)
means analogous average with respect to such bonds over
all the MC particles. The number of neighboring parti-
cles within the radius of 2.3q, that is, ‘“coordination num-
ber N.” is 12 for the fec, hep, and icosahedral clusters
(close packing structures); it is 14 for the bcc clusters.

The rotationally invariant quantities, Q; and W,, play
the key part in cluster ‘“shape spectroscopy” in liquids
and glasses. '* Q) takes on a first nonvanishing value (oth-
er than Q) for /=4 in samples with cubic symmetry and
for /=6 in icosahedrally oriented systems. The ratios W,
in particular are a sensitive measure of the different
orientational symmetries. We list in Table I the values of
Q.4, Q¢, W4, and W for four types of the clusters men-
tioned above.

The quantities Q, and Q¢ are defined in terms of aver-
ages over all the particles in the MC cell; hence, they can
describe bond-orientational symmetries in the entire MC
cell. In Table I we observe that the values of Q, differ
significantly from each other among the four types of
clusters, while the values of Q4 remain almost the same.
The quantity Q, is thus more useful than Qg in distin-
guishing between different bond-orientational symmetries
in the MC cell.

The quantities W, and W, on the other hand, are
defined in terms of averages over bonds around an indivi-
dual MC particles. In Table I we find that the local
bond-orientational symmetries around a particle can be
discerned through its location on the two-dimensional
(W4, W) map. (See Sec. V for details.) We remark that
W, is not a well-defined quantity for the icosahedron

TABLE 1. Values of Q4, Q¢, W, and W, calculated with N, =12 for the fcc, hcp, and icosahedral

clusters and with N, = 14 for the bcc clusters.

Q4 W4 W()
fce 0.1909 0.5745 —0.1593 —0.0132
hep 0.0972 0.4848 0.1341 —0.0124
icosahedral 0 0.6633 —0.1698
bcc 0.0364 0.5107 0.1593 0.0132
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since Q, =0; Wy is negative and its magnitude is distinct-
ly larger by an order of magnitude than those for the oth-
er three clusters.

The extended bond-orientational symmetries are stud-
ied in terms of the correlation functions

_ 41
..———~————(21+1)Go(r) ‘"EI(QI,,,(I‘)Q,_,,,(O)) (8)

where Go(r)=4m{Quy(1)Q(0)).

G,(r)

IV. MC SIMULATIONS FOR FLUID
AND LATTICE OCP’S

In order to establish frames of reference whereby we
may study comparatively the degrees of local bond-
orientational symmetries developed in the quenched
OCP’s, we carry out a fluid simulation at ' =160 and a
bcce-lattice simulation at I' =400, and measure the corre-
lation functions and the bond-orientational order param-
eters in those simulations.

The radial distribution function in the fluid case,
shown in Fig. 1(a), is a smooth function of r, while g (r) in
the bcce-lattice case exhibits prominent peaks reflecting
the bcc crystalline structures. For the fluid case,
Q04~0.01 and Q¢=0.03; for the bcc-lattice -case,
Q,~0.04 and Q4 ~0.5, indicating the existence of bond-
orientational symmetries over the entire MC cell. Frac-
tional numbers of the particles with N, =12, 13, and 14
are 0.3, 0.4, and 0.2, respectively, for the fluid phase;
fractions with N, <11 and N, = 15 are negligible. In the
bce-lattice case all the particles have N, = 14.

Particles with N.=12 and 14 are singled out and are
plotted on the two-dimensional ( W, W) maps with open
and solid circles, respectively: Fig. 2(a) for the fluid case
and Fig. 2(b) for the bcc-lattice case. In those figures, di-
amond markers are entered for the fcc, hep, icosahedral,
and bcc clusters according to the values of W, and W in
Table I (the value of W, for the icosahedron is arbitrarily
set to zero in the figures). In the fluid case, particles with
N,=12 and 14 are scattered widely on the map, with
more particles located in the lower half, W, <0. In the
bece-lattice case, almost 90% of the particles with N, =14
are found in the first quadrant. Due to thermal fluctua-
tions, the particle locations depart from the diamond
marker of the exact bcc cluster, and some particles are
found even in the second quadrant.
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FIG. 1. The radial distribution functions in the fluid and
bece-lattice OCP’s: (a) is the fluid simulation at I'=160; (b) the
bec-lattice simulation at I'=400.
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FIG. 2. Two-dimensional (W,, W) maps in the fluid and
bee-lattice OCP’s: (a) is the fluid simulation at '=160; (b) the
bece-lattice simulation at I'=400. Open circles indicate those
particles with N, =12; solid circles, N.=14. Diamond markers
depict the W, and W, values in Table I for the fcc, hcp,
icosahedral, and bcce clusters; for the icosahedron, we set W, =0
here.
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FIG. 3. Two-dimensional (x,y) mappings of the real-space
trajectories of the MC particles located within thickness
Az =2a in the bcc-lattice simulation at I'=400. Particles
moves from the open circles to the solid circles during an inter-
val of eight.
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FIG. 4. Correlation functions G,(r) (dotted lines) and G(r)
(solid lines) in the fluid and bcc-lattice OCP’s: (a) is the fluid
simulation at I’ =160; (b) the bcc-lattice simulation at I'=400.
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Two-dimensional (x,y) mappings of the real-space tra-
jectories of the MC particles located within thickness
Az =2a are shown in Fig. 3 for the bcc-lattice case; the
particle positions are averaged over 0.3 in every million
configurations and are followed during an interval of
eight. The initial positions of the MC particles are desig-
nated by the open cirlces and the end positions by the
solid circles. Since the center of mass is not fixed in MC
simulations, we observe here that a uniform displacement
of the entire system is involved even in the bcc-lattice
simulation.

Figure 4(a) indicates that G,(r)~0 and G¢(r)~0 over
the MC-cell volume in the fluid case; no extended bond-
orientational symmetries are observed. In the bcc lattice
of Fig. 4(b), we observe G,(r)~0 and G4(r)~0.25 over
the MC-cell volume, indicating the existence of bond-
orientational symmetries. Since G,(r)~0 in both phases,
we may conclude that G,(r) is not an appropriate quanti-
ty for an investigation of the extended bond-orientational
symmetries.

V. MC SIMULATIONS OF RAPIDLY QUENCHED OCP’s

We investigate sequential developments of the follow-
ing quantities in the rapidly quenched OCP’s for the MC
runs (A)-(D) of Sec. II: The excess internal energy U
(see, e.g., Ref. 7); g(r); N.; Q4 and Q; particle distribu-
tions on the two-dimensional (W,,W¢) maps; two-
dimensional (x,y) mappings of the real-space trajectories
of those MC particles located within thickness of
Az =2a, over an interval of eight; G,(r) and G(r).
Those are compared also with the results of the fluid and
bece-lattice simulations described in the preceding section.

Figure 5 summarizes the evolution of the normalized
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FIG. 5. Evolution of the normalized excess internal energies
for the MC simulation runs (A), (B), (C), and (D), explained in
the text. The dashed lines indicate the levels predicted from ex-
tensions of the fluid internal-energy formulas [top: Eq. (9); bot-
tom: Eq. (10)] at the I’ values in the metastable states after
quenches; the dot-dashed lines, the bcc crystalline levels, Eq.
(11).
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excess internal energies, u =U/NkgT, in the four
quenching processes. In the figure we also depict the
values (the dashed lines) predicted from the extensions of
the fluid internal-energy formulas®

u=—0.897 744 +0.950 431174

+0.189 56" '/4—0.814 87 (9)
and’
u =—0.898 004" +0.967 86!/
+0.220703F ~1/4—0.86097 , (10)

and the bcc-lattice values (the dot-dashed lines) according
to the formula®

u=-—0.895929T+1.5+3225" 2. (1)

We find in Fig. 5 that after the rapid quenches (A), (B),
and (C), the excess internal energies relax to metastable
levels for ¢ >24-29, which lie distinctly below the exten-
sions of the fluid internal-energy formulas (9) and (10),
and which stay somewhat above the bcc-lattice values
(11). Specifically in the quench (A), after a sudden initial
decrease, u stays around the levels of Egs. (9) and (10) for
2<c¢ <7, decreases steeply at ¢ ~13, and relaxes to the
metastable level for ¢ =28. Analogously in the quench
(C), u stays around the extended fluid values for 1 =c =<6,
decreases steeply at ¢ ~8, finds itself in a *“‘plateau’ state
at 9<c¢ <23, and relaxes to the metastable level for
¢ >24. We proceed to investigate the sequential evolu-
tions of the correlation functions and the bond-
orientational symmetries in the four cases of rapid
quenches, in reference to Fig. 5.

A. Sudden quench to I'=400

The radial distribution functions g (r) at various stages
of the sequential evolution are plotted in Figs. 6: At
¢=7, g(r) is a smooth function of » and resembles the

atn
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FIG. 6. The radial distribution functions: (a) at c=7, (b) at
c=15, (c) at c=40, and (d) at ¢=80, for the MC simulation run
of the sudden quench (A) to I'=400. The triangular markers
depict the positions of nearest-neighbor particles in the fcc-hcp
structures.
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FIG. 7. Evolution of the Q, and Q¢ values for the MC simu-
lation run of the sudden quench (A) to I'=400. Open circles
correspond to Q, values; solid circles, Q¢ values.

fluid case in Fig. 1; at ¢=15, the second peak of g (r) ac-
quires a shoulder; at c¢=40, the second peak is split into
two peaks, which correspond to peaks for the fcc or hep
lattice; at ¢=80, no significant changes from the case at
¢=40 can be detected.
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FIG. 8. Evolution of fractional numbers of various clusters
for the sudden quench (A) to '=400. I, crosses, the clusters
with N.=12; square N, =13; and triangles, N.=14. II, for the
clusters with N,=12, solid circles indicate those on the first
quadrant in the (W,, W) map; squares, the second quadrant;
crosses, the third quadrant (identified as “fcc”; triangles, the
fourth quadrant (identified as “hcp”). III, Same as II, but for
the clusters with N, =13 reassembled to “N,=12." 1V, for the
clusters with N_=14, solid circles indicate those on the first
quadrant (identified as ‘bcc”); squares, the second quadrant;
crosses, the third quadrant; triangles, the fourth quadrant. V,
same as IV, but for the clusters with N, =13 reassembled to
“N, =14
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Sequential evolutions of Q, and Qg are shown in Fig.
7, and are observed to have an intimate connection with
those of the excess internal energies (Fig. 5). For
2=c=7, @;~0.015 and Q4 ~0.1; for 9<c¢ <13, they in-
crease monotonically to Q4 ~0.06 and Q4 ~0.3; at ¢ ~24,
Q,~0.07 and Qg increases stepwise to 0.4 and remains
constant thereafter. For comparison we recall Q, ~0.01
and Q¢ ~0.03 in the fluid case at T =160. The observed
final values of Q, leads us to conclude that a bond-
orientational symmetry has been developed over the en-
tire MC cell in the metastable state.

Fractional numbers of the particles with N, =12, 13,
and 14 in the metastable state (¢ = 30) relax to 0.35, 0.55,
and 0.10, respectively, as shown in Fig. 81. The fraction
with N.=14 is somewhat smaller, while that with
N.=13 is somewhat larger, than those in the fluid case at
'=160.

Particles with N,=12 and 14 are plotted on the
(W4, We) maps in Fig. 9, in the same way as in Fig. 2: At
c¢=17, particles with N.=12 and 14 are widely scattered
as in the fluid case of Fig. 2(a); at c=15, particle distribu-
tions with N.=12 and 14 shrink toward the abscissa
(W¢=0); at c=40, particles with N. =12 are gathered to-
ward the fcc and hcp markers; the state at c=80 appears
much the same as that at c¢=40, both being in the meta-
stable state.

Particles are divided into four groups according to the
locations on the quadrants of the (W, W) plane. Since
the majority of the particles have N,=13, we calculate
their W, and Wy also by taking 12 and 14 nearest neigh-
bors; we then classify those reassembled particles accord-
ing to the signs of W, and W,. Sequential evolutions of
the fractional numbers in those four groups are plotted in
Figs. 8II-V. No significant differences are observed be-
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FIG. 9. Two-dimensional (W,, W ) maps: (a) at c=7; (b) at
c=15; (c) at ¢=40; and (d) at ¢=80, for the MC run of the sud-
den quench (A) to I'=400. Open circles represent those parti-
cles with N,=12; solid circles, N.=14. The diamond markers
correspond to the fcc, hep, icosahedral, and bec clusters in
Table I (for icosahedron, we set W, =0 here).
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tween the behaviors of the original particles with N, =12
or 14 and of those N_.=13 particles reassembled to
“N.=12 or 147 At the onset of the metastable state
(c ~28), we clearly observe turning overs of the fractional
numbers so that the “bee” particles (in the first quadrant)
become the largest in number among the “N,=14" parti-
cles, while the “hcp” (in the fourth quadrant) and ‘“‘fcc”
(in the third quadrant) particles are the major constitu-
ents in the ““N,=12" particles.

To see whether the metastable state belongs to a fluid
or a solid state, a two-dimensional (x,y) mapping of the
MC-particle positions within thickness Az =2a is shown
in Fig. 10 (top) from ¢=70 (open circles) to ¢=78 (solid
circles). Contrary to the bcc-lattice case in Fig. 3, a
long-range translational order is apparently destroyed.
Analogous to the bcc-lattice case, no diffusive motions of
the particles are observed, and a translational motion of
the particles as a whole remains (due to the nature of MC
simulations). We may therefore conclude that the meta-
stable state realized in the rapid quench (A) for c 228 isa
solid state without a long-range translational order, im-
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FIG. 10. Top: Two-dimensional (x,y) mapping of the MC
particle positions within thickness Az =2a in the metastable
state for the MC run of the sudden quench (A) to I'=400. Par-
ticles move from the open circles at ¢=70 to the solid circles at
c=78. Bottom: Local bond-orientational symmetry associated
with the particles in the figure (top). See the text for the mean-
ing of the markers. Domain boundaries, drawn by dotted
curves, are only for a guide to the eye.
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FIG. 11. Correlation functions G,4(r) (dotted line) and G(r)
(solid line) at ¢=60 in the MC simulation run of the sudden
quench (A) to I' =400.

plying a glass state.

To investigate the local bond-orientational symmetries
associated with those interlocked particles in Fig. 10
(top), we identify each particle in terms of its signature
characterizing the bond-orientational symmetry in Fig.
10 (bottom). Thus, a particle with N, =12 is identified as
“fcc” (a shaded square) if it is located in the third qua-
drant (W, <0, W, <0) on the (W,, W) plane; if in the
fourth quadrant (W,>0,W,<0), it is “hcp” (an open
square). Analogously, a particle with N, =14 is identified
as “bee” (a solid square) if in the first quadrant (W, >0,
W >0). For those particles with N, =13, we extend the
calculations of W, and W into the reassembled clusters
with “N_,=12 or 14” as mentioned earlier; “fcc” (a shad-
ed triangle), “hcp” (an open triangle), and “bce” (a solid
triangle) are then assigned according to the signs of W,
and W as in the preceding cases. A cross designates a
particle which has both the bcc and the fcc-hep charac-
terizations. An open circle indicates a particle which
does not belong to any of the characterizations men-
tioned above. We here observe a substantial degree of
polycrystalline nucleations of localized fcc and hep struc-
tures, another indication of a glass state.

As Fig. 11 shows, G4(r)~0.2 over the entire MC-cell
volume in the metastable state. This value is to be com-
pared with G4(r)~0.25 in the bcc-lattice simulation and
G¢(r)~0 in the fluid simulation, both in Fig. 4. A long-
range bond-orientational symmetry thus appears to be es-
tablished in the metastable state, a further indication of a
glass state. The values of G,(r), on the other hand, stay
around zero in this metastable state, as in the cases of
Fig. 4.

B. Gradual quench to I'=400

In Fig. 12 we plot g (r) obtained at two different stages
of evolution, ¢=50 and 80, both apparently in the meta-
stable state. The peaks in g(r), however, do not corre-
spond exactly to either the fcc-hep or the bee crystalline
peaks.

Figure 13 shows the sequential evolutions of Q, and
Q¢, with the metastable values approximately 0.06 and



a(r)

FIG. 12. Same as Fig. 6, but for the gradual quench (B) to
(a) at c=50 and (b) at c=80.

' =400:

Q,

FIG. 13. Same as Fig. 7, but for the gradual quench (B) to

I" =400.

FIG. 14. Same as Fig. 8, but for the gradual quench (B) to

I"=400.
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FIG. 15. Same as Fig. 9, but for the gradual quench (B) to
I"'=400: (a) at ¢c=50 and (b) at c=80.

0.35. The latter implies the existence of a bond-
orientational symmetry over the entire MC cell.

In Fig. 141, we find that the fractional numbers of par-
ticles with N,=12, 13, and 14 are 0.3, 0.6, and 0.1, re-
spectively, in the metastable state; these values are almost
the same as those in the sudden quench (A) (Fig. 8).

Two-dimensional (W,, W) maps in Fig. 15 show
features rather different from those in the sudden quench
(A). The distribution of W, values appears to imply a
substantial involvement of the local icosahedral struc-

FIG. 16. Same as Fig. 9, but for the gradual quench (B) to
I" =400.
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r/a
FIG. 17. Same as Fig. 11, but for the gradual quench (B) to
"' =400.

tures, although the periodic boundary conditions in the
MC simulations may limit emergence of a perfect
icosahedral structure. We find that a large fraction of the
particles tend to form hcp clusters while bce clusters are
rare. These features are seen also in the sequential-
evolution diagrams of Figs. 14I1-V.

Two-dimensional (x,y) mappings of the MC particles
within the thickness Az =2a in the metastable state,
shown in Fig. 16, indicate that the particles are virtually
locked around their own equilibrium positions and that
the long-range translational order is apparently impaired
in the equilibrium positions; nucleations of localized fcc
and hcp structures are detected in this glass state. Analo-
gously to the case of sudden quench (A), we find in Fig.
17 that an extended bond-orientational symmetry exists
in the metastable state, since G¢(r)~0.15 over the entire
MC-cell volume.

C. Sudden quench to I'=300

The radial distribution function, shown in Fig. 18, be-
gins with a smooth function of r at ¢=35, develops peaks
reflecting the bcc crystalline structures in the plateau

al @ (b)

% "2 4 o0 2 4 6

r/a r/a

FIG. 18. Same as Fig. 6, but for the sudden quench (C) to
'=300: (a) at c=35, (b) at c=15, (c) at c=230, and (d) at c=60.
The triangular markers depict the positions of nearest-neighbor
particles in the bcc structures.
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FIG. 19. Same as Fig. 7, but for the sudden quench (C) to
" =300.

state at ¢=15, and becomes a smoother function in the
metastable state at ¢=230; the state at ¢=60 remains un-
changed.

In the metastable state, Fig. 19 shows that Q,~0.04
and Q¢ ~0.35; these are to be compared with Q,~0.02
and Q¢ ~0.35 in the plateau state. The increase of Q, in
the metastable state may imply a decrease in the involve-
ment of the bece structures (see Table I).

Figure 20I shows that fractions of the clusters with
N.=12, 13, and 14 are 0.20, 0.35, and 0.45, respectively,
in the metastable state, while 0.05, 0.35, and 0.60 in the
plateau state. These again indicate predominance of the
bee structures in the plateau state and a decrease in the
involvement of the bce structures in the metastable state.
At the transition from the plateau state to the metastable
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FIG. 20. Same as Fig. 8, but for the sudden quench (C) to
I'=300.
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FIG. 21. Same as Fig. 9, but for the sudden quench (C) to
I'=300: (a) at c=35; (b) at c=15; (c) at c=30; and (d) at c=60.

state around c¢=24, the fraction of the fcc clusters in-
creases (Fig. 20II), concurrently with the decrease in that
of the bce structures (Fig. 201V). It appears, however,
that a substantial interference between the clusters with
N_.=12 and those with N,=14 are involved so that a

FIG. 22. Same as Fig. 10, but for the sudden quench (C) to
' =300.
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0.6 T T T " ;

04} ]
0.2}
0

—02} ]

FIG. 23. Same as Fig. 11, but for the sudden quench (C) to
I'=300.

large fraction of the particles are found in the second
quadrant in the metastable state These features are also
exhibited in the (W,, W ) maps of Fig. 21 as well as in
Figs. 201I-V.

Two-dimensional mappings of the real-space trajec-
tories in the metastable state (Fig. 22) show once again
that the particles are virtually locked around their own
equilibrium positions and that the long-range translation-
al order has been impaired. In this glass state we find the
localized bcc structures with substantial admixtures of
the localized fcc structures.

Extended bond-orientational symmetry remains in this
glass state as well. Figure 23 shows that G¢(r)~0.1 over
the entire MC-cell volume.

D. Sudden quench to I' =200

Radial distribution functions, shown in Fig. 24, are
smooth functions of r, as that in the fluid tate at ' =160
(see Fig. 1). Figure 25 indicates that Q,~0.01 and
Q¢ ~0.05, slightly larger than those in the fluid state at
I'=160. Figures 26 show that either fractional numbers
of particles with N,=12, 13, and 14 or fractional num-
bers of those clusters in the four quadrants remain un-
changed from those in the fluid phase at I'=160. Parti-
cles with N,=12 and 14 are widely scattered on the
(W,,W¢) maps of Fig. 27. Particles diffuse randomly
from ¢=20 to ¢=28 as exhibited in Fig. 28. An extended

T T T T

(b)

Ta(n

FIG. 24. Same as Fig. 6, but for the sudden quench (D) to
I’'=200: (a) at c=10 and (b) at c=25.
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FIG. 25. Same as Fig. 7, but for the sudden quench (D) to
I'=200.
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FIG. 26. Same as Fig. 8, but for the sudden quench (D) to
I'=200.
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FIG. 27. Same as Fig. 9, but for the sudden quench (D) to
I'=200: (a) at c=10 and (b) at c=25.
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FIG. 28. Same as Fig. 10 (top), but for the sudden quench (D)
to I'=200, from the open circles at c=20 to the solid circles at
c=28.

bond-orientational order does not exist in this metastable
state, as Fig. 29 shows. Consequently, the state realized
in this quench is a supercooled fluid state, and not a glass.

The normalized diffusion coefficient in this supercooled
fluid state can be calculated with the aid of Eq. (5) as
D*=((Ar/a)’) /6a,t=0.0057. This value is about a
quarter of the one derived from an extrapolation of the
diffusion coefficient formula, D*=2.95 "3 which was
derived by Hansen et al.'3 though the MD method and is
applicable for I' =152.4. This decrease in the diffusion
coefficient may be interpreted as a precursor to the glass
transitions, which we observed in the quenches (A), (B),
and (C).

VI. DISCUSSION AND CONCLUDING REMARKS

Through examination and analyses of the MC simula-
tion data as evidenced in the preceding section, we may

S B
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FIG. 29. Same as Fig. 11, but for the sudden quench (D) to
I'=200 at c=20.
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conclude that the Coulomb glasses have been realized in
rapidly quenched OCP’s and that the glass-transition
temperature corresponds to 200<TI', <300. The poly-
crystalline structures of the resulting glasses depend sen-
sitively on how the quench is applied.

In the present series of the MC simulations, we have
fixed the number of the particles at N =2X6=432, a
number appropriate to the bcc lattice. Nevertheless, the
supercooled OCP’s have not resulted in a pure bcc crys-
talline state in equilibrium; rather they have formed
glasses with polycrystalline structures. We point out two
reasons for these behaviors.

One is that the quenching rates are extremely rapid in
all the four cases of the present simulations. The
correspondence (5) tells us that even in the case of the
‘“‘gradual quench” (B), the temperature has decreased by
a factor of ;. during a span of 6.2X 103a)pt.

Another reason may be traced to the closeness of the
Madelung energies among the fcc, hep, and bec struc-
tures in the Coulomb lattice. Specifically we note the
Madelung energies

—0.895929T (bee)
= 1-0.895874T (fcc) (12)
—0.895838T (hcp) ,

E
Nk,T

so that at I’ =400

Efcc—Ebcc =0.022 ,
Nk, T

Ehcp_Ebcc

——F =0.036 .
NkyT

Those values are in fact comparable to the standard devi-
ations of the excess internal energies averaged over 0.1
(cf. Fig. 5). Thermal fluctuations and transitions between
different cluster structures appear quite probable.

To achieve an equilibrated state with a clear distinction
between different cluster structures, a truly gradual
quench to a temperature much lower than I'=400 ap-
pears necessary; work in these directions is in progress.
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