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Equations of state for dense carbon-oxygen (C-O) binary-ionic mixtures (BIM’s) appropriate to
the interiors of white dwarfs are investigated through Monte Carlo simulations, by solution of
relevant integral equations and variational calculations in the density-functional formalism. It is
thereby shown that the internal energies of the C-O BIM solids and fluids both obey precisely the
linear mixing formulas. We then present an accurate calculation of the phase diagram associated
with freezing transitions in such BIM materials, resulting in a novel prediction of an azeotropic dia-
gram. Discontinuities of the mass density across the azeotropic phase boundaries are evaluated nu-
merically for application to a study of white-dwarf evolution.

I. INTRODUCTION

Binary-ionic mixtures (BIM’s) of carbon and oxygen
are thought to constitute the internal composition of the
white dwarfs produced by helium burning; such a white
dwarf in a close binary system may make a likely progen-
itor of a Type-I supernova (SNI).!”® It has been not-
ed* % that a dense matter in the interior of a white dwarf
may undergo a freezing transition as its density and/or
inverse temperature increase through the evolutionary
processes.

An outstanding problem associated with such a
solidification is the phase diagram or a possibility of
chemical separation in the BIM material. Stevenson’
showed how sensitive the phase diagram of carbon-
oxygen (C-O) mixtures was to the assumptions of thermo-
dynamic models, and in particular pointed out a possibili-
ty of a eutectic phase diagram when the random-alloy
mixing (RAM) model was assumed for the internal ener-
gies in the solid phase. This prediction of a eutectic was
then followed by proposal of new models for white-dwarf
cooling, luminosity, and SNI mechanisms involving
chemical separation.®°®

As for a theoretical study of chemical separation, Bar-
rat et al.'® used a density-functional approach to analyze
freezing of binary hard-sphere mixtures into disordered
crystals and found in particular that the phase diagram
can be of a spindle type, an azeotropic type, or a eutectic
type, depending on the ratio between the hard-sphere ra-
dii. Smithline and Haymet!! developed a density-
functional theory for the freezing of 1:1 hard-sphere mix-
tures and predicted three different stable solid phases: a
disordered (phase separated) fcc structure and ordered
CsCl and NaCl structures, depending on the hard-sphere
radius ratio.

Recently, two of the present authors'? presented a non-
linear density-functional approach to the crystallization
of a classical one-component plasma (OCP), through mi-
croscopic analyses of the role played by the three-body or
angular correlations. A simplified density-wave theory of
freezing was thereby obtained.
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In this paper, we extend the aforementioned OCP
freezing theory to microscopic calculations of the phase
diagram for the C-O BIM appropriate to the white-dwarf
interior. To complement those analytic calculations, we
further carry out a Monte Carlo (MC) simulation study
of the BIM fluids and solids, and thereby elucidate salient
features in their equations of state.

Contents of the paper are organized as follows: In Sec.
I1, after surveying the ranges of the physical parameters
involved, we show through the MC analyses that the
internal energies of the C-O BIM solids and liquids both
accurately obey the linear mixing (LM) formulas, rather
than the RAM formulas, invalidating thus the basic as-
sumption introduced in Stevenson’s eutectic diagram.’
We then carry out the hypernetted chain (HNC) and the
improved HNC (IHNC) calculations'® on the C-O BIM
fluids and prove again superiority of the LM formula. In
Sec. ITI, we perform nonlinear density-functional calcula-
tions of the BIM solids, to derive an analytic expression
for the mixing entropy; for liquids, we take the ideal en-
tropy of mixing.!* Those evaluations of internal energies
and entropies lead to a novel prediction'® of an azeotro-
pic phase diagram for the C-O BIM materials in Sec. IV.
Mindful of an application to the evolution calculations,
we evaluate numerically the mass-density differences on
the phase boundaries in Sec. V. Concluding remarks are
given in Sec. VL.

II. THERMODYNAMIC FUNCTIONS
FOR BIM MATERIALS

We consider a C-O BIM with x =ny/n (the molar
fraction of oxygen), where n =n-+ng is the number
density of ions. The mass densities are assumed in the
range, 105<p, <10'° g/cm?, so that for the electronic
pressure, 10'°< P, <10'® Mbar. The dimensionless densi-
ty parameter of the electrons,'®

re=1.750,,1"%, (1)

ranges in 1073 <7, <107 % hence, the electrons form a re-
lativistically degenerate, incompressible background of
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negative charges, except across the phase boundaries,
where Ap,, /p,, <1073 (cf. Sec. V). The freezing temper-
atures of carbon plasmas,!”

T.=3.48X10%, 'K , )

are found in 2X 106 < T <5X 10’ K
The effective Coulomb coupling constant of the BIM is
formulated as'®

r=(z°°)r,, 3)
where (Z?)=2Z%(1—x)+Z5x, and
I, =5.0476 X107, T/T . 4)

We take Z,=6 and Z,=8 for the C-O BIM and
I',, =180 for a transition to a bcc crystal in the classical
ocp.”

A, MC simulation study

We have performed a series of MC simulations with
N =1024, the number of MC particles, for the fluid and
crystalline BIM’s at various combinations of T and x, fol-
lowing the standard Metropolis algorithm.!® In the simu-
lations, we have implemented a possibility of interchang-
ing two neighboring MC particles, in addition to the usu-
al random displacements of particle positions. In the
bee lattice simulations, irrespective of the initial
configurations, we have found the equilibrated final states
to take random bcc-solid configurations. In Fig. 1, the
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FIG. 1. Partial radial-distribution functions vs distance in

units of a =(3/4mn)!/?, the average interionic separation. (a)
Lattice simulation at T/T-=0.5 and x =0.5; (b) lattice simula-
tion at T/T-=0.9 and x =0.5; (c) lattice simulation at
T/Tc=1.1and x =0.61; (d) fluid simulation at T/T-=1.1 and
x =0.48.

resulting partial radial-distribution functions, g, (r) with
u, v=C, O, are shown for the parameters relevant to
white-dwarf interiors.

With the knowledge of g,,(r) the (normalized) excess
internal energy, u = U,, /NkyT, is calculated as'®

\/n“nv
u=>y 2k, T fd

,uv

[gw(r)—l] : (5)

The MC values of u are listed in Table 1 of Ref. 15 for
fluid and random bcc-solid simulations.

In terms of the OCP excess internal-energy formula,
uocp(T), the ion-sphere model considerations'®?° predict
the LM formula:

uLM=(1—x)u0Cp(Zf/31"e)+xuocp(Zg/3Fe) . (6)

The RAM model assumes that the internal energy of a
BIM may be given by that of an equivalent OCP with
Z=(Z), so that

Uram =tocp({Z)°7°T,) . (7
The OCP excess internal-energy formulas are

Uocp(T)=—0.895929T"+ 1.5+ 3225 /T2 (8)
for the bee crystalline state?! and

—0.898 004" +0.967 86174
+0.2207030 174

uOCP( r=
—0.86097 9)

for the fluid state.!”

In Table 1 of Ref. 15, we have compared the excess
internal-energy values predicted by the mixing formulas
(6) and (7) with the MC values. We have thus observed
that the LM formula (6) can reproduce the MC values
very accurately both in the fluid and solid states, while
the RAM formula (7) is not accurate enough to be used in
the phase-diagram calculations.

B. HCN and THNC analyses

The excess internal energy of a BIM fluid can be calcu-
lated analytically through a solution to a set of integral
equations such as the HNC and IHNC schemes.'>!® Ex-
act relations between the pair-correlation functions,
h,(r)=g,,(r)—1, and the direct correlation functions,
c w(r), are
8u(r)=exp[—v

(PR, (P —c, (r)+B

P+, [drh
A

W1, 10

h, (r)=

v lt—r'De;, (r) a1y
where vw(r)=Z#Zve2/kBTr, and B, (r) are the bridge
functions. In the HNC approximation, one assumes
B,,(r)=01in Eq. (10).

In the IHNC scheme,!?
tions approximately as

N=f(NBZ(r), (12)

we evaluate the bridge func-

where



I&

BR(N=4Znn [ drdrh,u(le—n)

Xhyellr;—ry g, (Ir,— 1)

Xh;w(rl )hé—v(rz) ’ (13)
Fu(?) B,,(0) 1 r |’ +1. (14)
r)=— - €X - .
= B0 "I low

The parameters are defined and calculated as

o,,=(0,+0,)/2, (15)
0,=1.8[3Z,/4m(Z n,+Z,n,)]'", (16)
B, (0)=H, (0)+c,,(0)+1, (17)

and the screening potentials!®2°

H, (0)=0.9T,[(Z,+Z,)"?~Z;*-Z}7]  (18)

at the origin are given by

in the ion-sphere model.

To examine accuracy of the HNC and IHNC schemes
in predicting the thermodynamic properties of BIM sys-
tems, we have solved those sets of integral equations for
Z,=1 and Z,=2 at x =1; the results are compared in
Fig. 2 with the MC data obtained by Hansen et al.??> We
here find that the IHNC scheme in particular reproduces
the MC data accurately.

We next examine accuracy and validity of the LM for-
mula (6) for C-O BIM fluids in the HNC and IHNC
schemes. In Fig. 3, we plot the values of Au=u —upy
calculated in both schemes at I',=9 as functions of x,
and compare them with the ideal entropy of mixing in
the BIM fluid,"

ASH(x)=AS,4(x)—Nkp[(1—x)In(Z, /{Z))
+xIn(Z,/4ZN], (19
with
AS;4(x)=—Nkg[(1—x)In(1—x)+x Inx] . (20)

100

r

FIG. 2. Comparison of the thermal part, u"=u+0.9T, of
the excess internal energy between the HNC and IHNC predic-
tions and MC data (Ref. 22) for Z, =1 and Z, =2 with x =0.5.
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FIG. 3. The values of Au=u —u;) in the HNC (open
squares) and IHNC (open circles) calculations for C-O fluids at
', =9. The solid curve depicts Eq. (19) for comparison.

The second term of (19) stems from the charge neutrality
condition in the uniform background of the electrons; at
x =0.5, it amounts to a 1.5% correction to the first term.
The deviations Au are less than 1073 for the HNC and
107! for the IHNC, smaller by far than the magnitude of
ASyr/Nkpg. These results have shown again the superiori-
ty of the LM formula (6) with the HNC and IHNC
schemes.

III. ENTROPY OF MIXING
FOR BIM SOLIDS

The normalized Helmholtz free energy, f=F/NkyT,
is expressed as f =1.5+u —S/Nkg, where S is the en-
tropy. In this section we are concerned with an evalua-
tion of this entropy for a BIM solid; in BIM fluids, the
entropy of mixing is given by Eq. (19).

A. Density-functional formalism

The free energy of a BIM solid is formulated as a func-
tional of inhomogeneous density distributions pulr) of
carbon (x=C) and oxygen (u=0) atoms:

Flp,1)]=Folp0)]—®[p,(r)], @1

where

Folp(n]1=ks TS [drp,(0{In[Alp,(1)]—1} ,  (22)
n

A, =Qa# /m, kyT)'"? (23)

The interaction part of the free-energy functional,
®[p,(r)], is expanded with respect to density variation,

ép,(r)=p,(r)—p, , (24)

around the average (fluid) density Py SO that
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q>[pu(r)]=q>[{p#;]+kBT§fdrc;}>(r;{p#}')apu(rw o

Here, {p,} =(pc,po), and

c(n)

,u.lu-un(rl’ st 7rn;{p,u})

is the n-body direct-correlation function!? evaluated in
the homogeneous (fluid) state.

B. Variational parameters

We now introduce basic assumptions in the treatment
of the free-energy density-functional (25): A Gaussian
parametrization of the local one-particle density variation
is adopted so that
372
Y
- S expl—y,lr—r,1%), (26)

o .
JE{L,}

Pury,)=

where the j summation is carried out over the lattice sites
{L,} for the u particles. Assuming yﬂa2>> 3.3 where
a =(3/4mn)!?, we take the Lindeman parameters'2 Y’s
as variational parameters.

Following the simplified density-wave theory obtained
in Ref. 12 for the OCP, we truncate Eq. (25) at the terms
involving ¢2)(r;,r5;{p,}); those terms are then evaluated
through reduction by 78% of the second-shortest bcc
reciprocal-lattice vector (RLV) contributions. The
second direct-correlation functions for the fluid state are
calculated in the IHNC scheme.

For characterization of a BIM solid, we introduce a
third variational parameter §, describing the degree of a
long-range order in the alloy.”> We do so by decompos-
ing the bce crystal into two equivalent simple-cubic (sc)
sublattices, “M* and “N”’, corresponding to the “Cs” and
“Cl” sites in CsCl structures. The order parameter is
thus defined as

Yu—X Yy T Xy
E—R =2 (x,<x,),
X, 1—x, #
E= _ _ (27)
Yy X Yp—%
=t (x,>x,),
Xy I—x,
where x, denotes the molar fraction of u atoms and y,

refers to the fractional number of “M” sites occupied by
the u atoms. It is apparent that the order parameter
ranges in 0= =<1. That {=0 means a randomly occu-
pied alloy, while {=1 corresponds to a state with a com-
pletely ordered alloy.

C. Variational calculations

Let P(u,M) be the probability of finding a 4 atom on a
“M site; this probability along with three other proba-
bilities defined analogously is expressible in terms of §
and x’s. A Fourier component of the density distribution
of the p atoms is then calculated as

kT

I&

> fdrldrchj(r,,rz;[pﬂ})Spu(rl)Spv(rZ)-i— s (25)
",V

P.(Q)=(N/2)P(u,M)8, g exp(—g>/y,)

+(N /2P, N)8y g expliq-A—g2/y,) (28)
where G are the RLV’s of the sc sublattices, A
=(d /2)(1,1,1), and d is the bcc lattice constant. An ex-
pression analogous to Eq. (28) applies for the v atoms.
We remark in passing that the random-alloy model of
Barrat et al.!® is recovered if £=0 is set in those expres-

sions.
We substitute inverse Fourier transforms of Eq. (28) in

Egs. (22) and (25). Equation (21) thus yields an expres-
sion for the free energy in the -crystalline state,
Fe(x;70706), of the BIM solid in the Gaussian
density-wave model. The increment of the free energy in
mixing is given by

AF(7670,6)=Fc(x;70 ¥ 0,6)
—[(1—x)Fc(x =0)+xFc(x =1)]. (29)
That part of Eq. (29) arising from the ideal free energy

(22) may be split into two separate contributions:
AFy=AFy( )+ AF,(y), where

AFy()/NkpT =13 P(2,Z)InP(z,Z) , (30)
z,Z
Yclx)

AF NkgT=2|(1— —_—
o(v)/Nkg 2[( x)In Y lx =0)

Yolx)

+xIn | ————
'}’o(x =1)

] . (31)
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FIG. 4. Elements of variational minima, AF: (solid circles)
=AF,( ) (open squares) +AFy(y) (open circles) —A®P (open
triangles) of Eq. (29) at I', =9 as functions of { for C-O BIM
solids with x =0.2.
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FIG. 5. Same as Fig. 4, but with x =0.5.

The part, AF,( « ), in which the summation is carried out
over the particle species “z” and the sites “Z”, represents
the configurational entropy of mixing; AF,(y) describes
changes of the y’s due to mixing.

The mixing entropy AS. of the crystalline state is
defined and calculated from the variational minimum
AF - of Eq. (29) with respect to ¥ ¢, Yo, and § as

ASc=—AF./T . (32)

Salient features in the results of these variational analyses
for the BIM solids are summarized in the following.
Figures 4-6 plot the values of the elements in
AF-=AFy(0)+AF,(y)—A® at I', =9 as functions of §
for the C-O BIM solids with x =0.2, 0.5, and 0.8. As
these figures illustrate, the y-dependent contributions in
AF, acts to stabilize the random-alloy phase ({=0). In

(o]
L.
I

>
>
>
>
3
>
>
]

-04

b
h o oo @O

-0.8 | 1 1 |
0 0.2 04 06 08 10

4

FIG. 6. Same as Fig. 4, but with x =0.8.

! | | |
0O 02 04 0.6x0.8 10

FIG. 7. The mixing entropies computed at minima of Eq.
(29) vs x: open circles, I', =7; open squares, I', =13. The solid
curves depict Eq. (33) at the same I', values; the dashed curve,
Eq. (20).

the parameter domain investigated, that is, 7<I, <13,
such a random-alloy phase turns out to be stable for all
the composition x.

The values of Y and Y at the variational-minimum
conditions are as follows (in units of the average interion-
ic separation a):

14<yc=<19, 205y,<34 atI',=7,
32<ycand yo=50 atI',=13.

Finally we plot in Fig. 7 the values of AS- computed
variationally at ', =7 and 13. We thus find that the cal-
culated values can be parametrized accurately by the for-
mula

AS(T,,x)=R(T,)AS4(x) , (33)
where
R(T',)=0.7204—0.0354(T", —10)+0.0016(T", — 10)?

for 7=T, =13, and ASjy(x) has been given in Eq. (20).
We depict Egs. (20) and (33) also in Fig. 7, to show accu-
racy of the fitting formula (33).

IV. PHASE DIAGRAM FOR DENSE C-O MIXTURES

The evaluation of the thermodynamic quantities de-
scribed in the preceding sections can be combined into a
construction of the phase diagram for the C-O BIM’s.
Since the electrons form virtually incompressible back-
ground of neutralizing charges in the BIM material under
investigation, the phase diagram is determined through
the condition for minimization of Helmholtz free energy
at constant T and n,, the number density of electrons.
The result of calculation, shown in Fig. 8, implies an
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FIG. 8. Azeotropic phase diagram of C-O mixtures. The
dashed curves are the spindle phase diagram of Ref. 24.

azeotropic phase diagram with the azeotropic point at
T ,=0.94T; and x , =0.16.

The appearance of an azeotrope stems physically from
the LM rule (6) and the mixing entropy (33) in solid. We
remark that the increment of the internal energy between
the mixed-alloy and chemically separated phases vanishes
identically with the LM rule for both fluids and solids.
Since AS- <ASp, the fluid phase is favored in the mix-
tures, resulting in lowering of the freezing temperatures.
The solid state, still retaining a considerable amount of
the mixing entropy (33), can sustain a mixed-alloy phase,
rather than a chemically separated phase.

Stevenson’s eutectic is a result of assuming the RAM
rule (7) for solids [while assuming the LM rule (6) for
liquids] and adopting the ideal entropy of mixing (20) for
both fluids and solids. Near the freezing temperatures,
the internal energy is overwhelmingly more the major
constituent of the free energy than the entropy term.
Since the RAM rule would substantially underestimate
the magnitude of the BIM internal energy as Table 1 of
Ref. 15 illustrates, the freezing temperatures would de-
crease and chemically separated phases would be favored
over mixing alloys in solids. As we have shown in Sec. II,
however, the assumption of the RAM rule (7) cannot be
justified for the C-O BIM.

V. VARIATIONS OF MASS DENSITY
ACROSS THE PHASE BOUNDARY

Variations of the mass density across the phase-
boundary curves can be evaluated through a perturbative
method.” In the ranges of physical parameters under
present investigation, the partial pressure P, of the elec-
trons constitutes the bulk of the total pressure P of the
system. The ionic contribution P; then creates a

difference in mass density between the coexisting solid-

solution and fluid-mixture phases across the boundary.
In the first-order perturbation theory, the discontinui-
ty,

Ap,, =p,,(solid)—p,, (fluid) , (34)
across the phase boundary is calculated as
Ap,./p,,=An,/n,—AY/Y
=—AP;/yP,—AY/Y . (35)

Here Y=(Z)/( A) refers to the number of electrons
per unit of atomic mass, and ¥y =(d InP, /d Inp,, )y is an
adiabatic index.

The results for the azeotropic phase diagram of Fig. 8
are listed in Table 2 of Ref. 15. In the case of Stevenson’s
eutectic diagram, the discontinuities have been calculat-
ed’ to fall in the range of (1-2)X 1073 at the eutectic
point. Hence, the present results at the azeotropic point
are smaller by about an order of magnitude than those at
Stevenson’s eutectic point, predicting significantly re-
duced influences of the phase separation on the evolution
of a C-O white dwarf.

VI. CONCLUDING REMARKS

We have theoretically investigated the thermodynamic
functions for dense BIM materials through the MC simu-
lations and by analytic means. We have in particular
shown that the internal energies of the C-O BIM solids
and fluids both obey accurately the LM formula (6),
which, combined with an explicit evaluation (33) for the
entropy of mixing in solids, has led to a prediction of an
azeotropic phase diagram in Fig. 8.

A number of theoretical problems remain to be investi-
gated, however, in conjunction with assumptions adopted
in such a calculation of the phase diagram. Those in-
clude the following: accuracy and validity of the LM for-
mula as applied to BIM’s other than the C-O systems;
utility of the simplified free-energy functionals'? for the
OCP when extended to the BIM; dependence on the
modeling such as the Gaussian density waves and the
long-range order parameter for the alloy; higher-order
structural effects in the density-wave calculations; and
possible deformation of crystalline structures due to
Z,5%Z,. A treatment of any of those problems on a
theoretically reliable basis would call for a work of con-
siderable effort and will be a subject of future study.

After completion of this work and submittal of the
manuscript, we became aware of a paper?* by Barrat
et al. on the same problem reporting calculations using a
density-functional approach. They obtained an ordinary
spindle-shaped phase diagram (dashed curves in Fig. 8),
rather than an azeotropic one in the present work. As far
as we can tell from Ref. 24, it appears that the present
work is superior on three accounts. (1) Thermodynamic
functions of the C-O mixtures have been examined care-
fully by performing MC simulations at relevant paramet-
ric combinations in white dwarfs for both solids and
fluids. (2) We were able to characterize a possible long-
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range order in the alloy phase by a third variational pa-
rameter § [see Eq. (27)]. (3) Freezing conditions have
been formulated in an accurate way (see Ref. 12). It
remains to be investigated which of the three has actually
caused such a difference in the phase diagrams.
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