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Various aspects of the intramolecular proton transfer in malonaldehyde have been investigated 
theoretically within the reaction surface Hamiltonian framework, which was recently applied 
with a two-dimensional surface to this molecule by Carrington and Miller. The present 
calculation, which involves a three-dimensional reaction surface and a high level of ab initio 
accuracy, gives a tunneling splitting which is - 50% smaller than experiment and a hydrogen/ 
deuterium isotope effect that is within 40% of experiment with no adjustable parameter. The 
vibrational wave function has been analyzed to extract an effective curvilinear tunneling path 
on the hypersurface. The path calculations, and other analysis, clearly demonstrate the 
limitations of one-dimensional models for polyatomic tunneling systems like malonaldehyde. 
In addition, tunneling splittings have been calculated for excited vibrational states of 
malonaldehyde, leading to new insight into the multidimensional character of proton transfer. 

I. INTRODUCTION 

Malonaldehyde (MA) and related molecules have been 
used as important prototypes for the theoretical l

-
9 and ex­

perimental l
O-

13 investigation of proton tunneling in polyato­
mic systems. 

H .. . 
tunneling 

Nuclear tunneling between the two equivalent isomers 
of MA has experimental manifestations in microwave and 
far infrared spectroscopy which can be analyzed to yield a 
- 21 cm -I tunneling splitting of the ground vibrational 
state of MA, and a - 3 cm -I splitting for the HI deuterated 
species. 10 

A straightforward calculation of the tunneling splitting 
would amount to first determining a 21-dimensional Born­
Oppenheimer potential surface, then solving for the lowest 
pair of vibrational states in that potential. Since the surface is 
strongly anharmonic, analytic derivative methods are oflit­
tle use, and such a calculation would be beyond our compu­
tational capability at present. 

A number of different approximate approaches have 
been taken to make the calculation ofthe splitting practical. 
Over a decade ago, Fluder and de la Vega calculated the 
splitting employing a rudimentary, one-dimensional double 
minimum potential. 5(a),5(b) The model potential was fit to 
ab initio SCF energies of a few geometries near the equilibri­
um geometry and saddle point (i.e., conventional transition 
state). The calculated splitting was only 0.75 cm -I, almost 
two orders of magnitude smaller than experiment. They also 
considered alternative one-dimensional paths for nuclear 
tunneling, and found that tunneling along the minimum en­
ergy path was inefficient because the minimum energy path 
involves large motion of heavy atoms. Other paths having 

pure hydrogen motions gave a much larger splitting, al­
though still almost an order of magnitude smaller than the 
experimental value. The Fluder and de la Vega calculation 
did not consider the effect of the multicoordinate vibrational 
motion of MA on the tunneling coordinate. 

In 1983, Bicerano et al. made an imprOVed one-dimen­
sional calculation of the splitting that employed an accurate 
SCF-CI (self-consistent field-configuration interaction) de­
termination of the barrier energy Vo and vibrational frequen­
cies (a» of the normal modes ofMA in the equilibrium (tih) 
and barrier geometries (Wk).5(C) The calculation assumed 
that the tunneling path was a pure O-H stretching motion 
and the effect of the "orthogonal" vibrational modes was 
treated adiabatically. The WKB approximation was used to 
calculate the splitting, and therefore only the equilibrium 
and barrier geometries needed to be considered explicitly. 
According to this model, the effective barrier energy Veff for 
the ground vibrational level is given by 

F-I 

Veff = Vo + L !(wt - wa ), (1.1 ) 
a=1 

where F= 3N - 6, i.e., 21 for MA. The adiabatic one-di­
mensional treatment can be justified on the assumption that 
the 3N - 7 orthogonal vibrational degrees of freedom can 
rapidly (adiabatically) adjust as the proton tunneling mo­
tion occurs. 

The choice of a path for a chemical reaction is a complex 
issue that has been investigated for many years. I

4-16 One 
unique choice for the path is Fukui's well-known Intrinsic 
Reaction Coordinate (IRC).14(a)-14(c) This is an inefficient 
tunneling path for MA,5 or for any "heavy-light-heavy" 
system, because it includes too much motion of heavy 
atoms. 6 Instead, the choice of path made by Bicerano et 
al.5

(C) and, independently, by Fluder et af.5(a) emphasized 
O-H stretching motion. The one-dimensional treatments 
just described are closely related to the reaction path meth­
ods for vibrational structure and dynamics, which have been 
successfully applied in many cases. 15-17 The simplest and 
best defined case is the IRC path in the Born-Dppenheimer 
potential energy surface. The IRe is uniquely defined as the 
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steepest descent path from the saddle point on the PES to the 
equilibrium geometry in mass-weighted Cartesian coordi­
nates. 14 The PES forms a valley around this path, i.e., at each 
point (r) along the IRC, there are 3N - 7 orthogonal direc­
tions expressed as the local normal modes (Q), such that 

[ 
JV(r,Q) ] = 0, 

JQa Q=O 

( 1.2a) 

[
J

2
V(r,Q)] = 2£ 

OJaU a/3 . 
JQa JQ/3 Q=O 

(1.2b) 

If the orthogonal degrees of freedom (sometimes called 
the bath) are treated quadratically, V(r,Qo) together with 
the 3N - 7 OJa (r) and Qa gives a local representation of the 
PES along the path r.15 Assuming further that the bath 
modes can rapidly adjust to changes in r, the effect of the 
bath modes can be treated adiabatically giving the approxi­
mate expressions for the effective one-dimensional potential 
Vetf (r) along the IRC, 

3N-7 

Vetf (r) = VCr) + ~ I OJa (r). (1.3 ) 
a=1 

One complication in applying this to double-minimum 
tunneling problems in polyatomics is that the IRC is entirely 
undefined on the side of the minimum energy geometry op­
posite to the direction of the saddle point. In a later section of 
this paper, we give a practical solution to this problem, by 
employing the gradient extremal algorithm for finding the 
unknown position ofthe path. 18,19 

Miller and co-workers have argued that the MA mole­
cule is a polyatomic version of a heavy-light-heavy mass 
combination reaction, as such the IRC path should not be a 
good representation of the actual reaction path.5

-
7 In partic­

ular, for MA the heavy motion is primarily "stretching" mo­
tion between the two oxygen atoms. This is the initial main 
character of the IRC as the molecule moves from the equilib­
rium geometry to the saddle point. 1-9 Near the saddle point 
the IRC is primarily hydrogenic motion. The IRC is, there­
fore, sharply curved and the actual dynamical motion must 
deviate from the IRC. The O-H stretching path employed 
by Bicerano et al. represents an alternative (non-IRC) path 
for the nuclear tunneling.S(C) 

A. Reaction surface description 

A major breakthrough on the MA problem was report­
ed in 1986 by Carri~gton and Miller.7 They modeled the 
intramolecular proton transfer with an adiabatic reaction 
surface Hamiltonian. The proton tunneling splitting was cal­
culated solving a two-dimensional nuclear Schrodinger 
equation for an effective two-dimensional potential energy 
surface with the two O-H bond lengths r l and r2 as the co­
ordinates. The effective reaction surface V(r l ,r2 ) was con­
structed from the bare potential surface VO(r l ,r2 ) and a sim­
ple adiabatic term l:~':18~OJa (r l ,r2 ). Thus the dynamics of 
the large amplitUde degrees of freedom are treated in detail 
in the two-dimensional space while the motion of the bath 
modes are treated adiabatically and assumed to be locally 
harmonic. 

Ideally, the surface is found by solving the electronic 
problem at each r l , r2 point with the 3N - 8 remaining de-

grees offreedom (bath modes) varied to yield the minimum 
V(r l ,r2 ). The vibrational frequencies of the bath modes 
OJa (r l ,r2 ) are found by expanding the potential quadratical­
ly about the minimized and constrained (r"r2 ) geometry. 

The reaction surface method has several key differences 
from the one-dimensional treatments. For example, com­
pared to the minimum energyo reaction path approach, the 
reaction surface description allows for dynamics and tunnel­
ing far from the IRC. Another difference is that the choice of 
the reaction surface coordinates made by Carrington and 
Miller was based on intuition (using the most obvious choice 
for two large amplitUde degrees of freedom) rather than a 
unique mathematical procedure such as the one-dimension­
al IRC path. A number of other approaches to the modeling 
of tunneling far from the IRC, such as the large curvature 
approximation methods, have been reported. '6 

Determining the reaction surface is much more compu­
tationally intensive than one-dimensional treatments in gen­
eral, and, in particular, the simple WKB approach. Further­
more, recent high-level electronic calculations on MA have 
demonstrated the necessity to include electron correlation 
effects if energies and geometries accurate enough for proton 
tunneling calculations are to be obtained. In order to make 
the ab initio calculation of the reaction surface tractable, 
Carrington and Miller first calculated the two-dimensional 
reaction surface and bath frequencies at the SCF level with a 
minimum basis set. The surface was improved by scaling the 
polynomial so that the geometries and energies of the equi­
librium point and saddle point agreed with the previously 
published ab initio calculation of MA that went beyond the 
SCF level, i.e., MP2 and MP4. 8 Vibrational frequencies of 
the bath were calculated at the SCF level. 

Employing the effective two-dimensional reaction sur­
face potential energy surface (which has a classical barrier of 
4.3 kcal/mol), Carrington and Miller calculated a tunneling 
splitting of 60 cm - I, which is about a factor of 3 larger than 
experiment. A tunneling splitting in agreement with experi­
ment was obtained by linearly scaling the reaction surface 
such that the classical barrier was increased to 6.8 kcallmol. 

B. Motivation and overview 

The reaction surface Hamiltonian approach is a 
straightforward procedure to calculate vibrational wave 
functions and energy levels (yielding tunneling splitting) for 
polyatomics. It is also an excellent framework for exploring 
complex multidimensional tunneling effects. It is important 
to test the accuracy of this procedure with respect to experi­
ment and the sensitivity of this calculation to the choice of 
surface variables which is somewhat arbitrary. The avail­
ability of enhanced ab initio methods (that take advantage of 
the most powerful computers and new algorithms for ana­
lytically determining first and second derivatives of the po­
tential with respect to nuclear displacement) has allowed us 
to make a considerably enhanced reaction surface calcula­
tion for MA that involves a three-dimensional surface and a 
more exact and extensive electronic calculation of the shape 
of the reaction surface. This calculation is the subject of this 
paper. 

Our reaction surface is a function of three coordinates, 
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the two O-H distances r l , r2 , and the 0-0 distance. This 
allows for complex large amplitude motion involving the 0-
H bending motions, O-H stretching motion, and the dis­
placement of the 0-0 distance (r3 ). The latter two motions 
are major components of the IRC for MA. 

Section II outlines our alternative derivation of the reac­
tion surface Hamiltonian. The result is mathematically 
equivalent to that of Carrington and Miller, but the deriva­
tion is more straightforward. In this section, we also describe 
the potential surface calculation, including the details of the 
ab initio electronic structure calculation. 

In Sec. III we compare the calculated tunneling splitting 
to experiment. In addition, we use the new reaction surface 
Hamiltonian calculations to explore several key aspects of 
polyatomic nuclear tunneling, including hydrogen/deuter­
ium isotope effects, nuclear tunneling paths, one-dimension­
al IRC models, and tunneling of excited vibrational states. 

II. METHOD OF CALCULATION 

A. Reaction surface Hamiltonian 

This section describes our implementation of the reac­
tion surface Hamiltonian method by Carrington and Mill­
er.7 Our approach emphasizes the use of Cartesian coordi­
nates, as opposed to internal coordinates which were used in 
Carrington and Miller's derivation. Our implementation 
leads to a simpler and more straightforward computational 
algorithm, since we emphasize Cartesian coordinates which 
are the common coordinates for ab initio computer codes. 

Assume that an arbitrary point X in a molecule fixed 
mass-weighted Cartesian coordinate system can be ex­
pressed in terms of reaction surface (internal) coordinates r 
and bath coordinates Q as 

X; = [S;(r) +L;a(r)Qa]' 

X = {~x), ~rn)YI' ~rn)Z), ... ,~rnNzN}' 

(2.la) 

(2.1b) 

where (x;,Y;oz;) is the position of atom i in Cartesian coordi­
nates, rnj is the nuclear mass of atom i, and m is the dimen­
sionality of the reaction surface. S(r) is the reaction surface 
expressed in terms of mass-weighted Cartesian coordinates. 
L (r) transforms small displacements of the bath coordinates 
to mass-weighted Cartesian coordinates. Both Land S will 
be discussed in detail below. We have adopted Einstein's 
summation rule20 and always use the following running suf­
fixes: 

i, j: I - 3N (suffixes of mass-weighted Cartesian 

coordinates) , 

k, I: 1-m (suffixes of reaction surface coordinates), 

a,f3,y:I-3N - 6 - m (suffixes of bath coordinates). 

The reaction surface coordinate rk is a function of X, i.e., the 
following inverse relation exists; 

(2.2) 

Before deriving an explicit form for the reaction surface 
Hamilton~n, we obtain an expression for the classical kinet­
ic energy T in terms ofr, Q, and the conjugate momenta P r 

andPQ • 

A T (Grr GrQ ) (Pr ) T(r,Q,P .. PQ) = (P;FQ) G G p' (2.3) 
Qr QQ Q 

G, the so-called Wilson's G matrix,21 is defined as 

G . = aq aq' (2.4) 
qq ax. ax.' 

I I 

The formal expression of the G matrix can be obtained 
as follows: The derivatives of rand Q with respect to X are 
calculated from the relations in Eqs. (2.1) and (2.2) as 

ark aFk(X) 
-= (2.5a) 
ax; ax;' 

aQa aFk (X) aLja (r) 
ax; = ax; ark [X} - ~ (r)] 

+ L. (r) [~ .. _ aFk (X) as/r)] 
Ja I} ax; ark 

aFk (X) aLja (r) 
ax; ark Ljp(r)Qp 

L [£ aFk(X)aSj(r)] + ja (r) Vij - • 
aXj ark 

(2.5b) 

The G matrix in Eq. (2.3) is now determined from Eqs. 
(2.4) and (2.5) as 

_ aFk aF) 
(k.~kir}) - aX

j 
ax; , 

G p = L. (1 _ as; aFk _ aFk aSj 
a la 

(a.p= {Q}) ark aX) ax; ark 

(2.6a) 

(2.6b) 

(2.6c) 

where terms of third and higher order in Q are neglected to 
obtain a consistent level of the approximation. [In our 
scheme, the last term in Eq. (2.6c) is always zero because of 
the conditions we impose on the Q which are described be­
low (also see Appendix 1).] 

The reaction surface Hamiltonian of this form is written 
using the G matrix in Eq. (2.6) as 

A T T (Grr GrQ )(Pr) H(r,Pr,Q'PQ) = !(PrPQ) G G 
Qr QQ PQ 

+ Vo(r) + !aJ! (r)Q!, (2.7) 

where it is assumed that the reaction surface is the minimum 
energy surface. 

To construct the minimum energy surface, the follow­
ing condition must be fulfilled at each point on the reaction 
surface S(r); 

[ av~r,Q) ]r=r =0. (2.8) 
Q Q=O 

Up to this point, Eq. (2.8) can not be evaluated since Q has 
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not yet been uniquely determined. Here, we impose the fol­
lowing condition on Q; 

ark aQa ark 
--=-Lia=O. (2.9) 
aXi Xi aXi 

Equation (2.9) enforces the orthogonality between the reac­
tion coordinates r and the bath normal coordinates Q [Note 
that the Q's are not orthogonal to the reaction surface 
S(r).]. Using Eq. (2.9), the minimum surface condition 
(2.8) can be obtained in a mass-weighted Cartesian coordi­
nate system as (see Appendix 1): 

{t - &,(r) [S(r) ]}gx [S(r)] = 0, (2.10) 

where gx is the gradient vector in a mass-weighted Cartesian 
coordinate system defined as 

(2.11) 

&' (r) is the projection operator which projects an arbitrary 
vector onto r space; 

&' <rk) (X) = [I aF; ~X»){ aF; ~X) I] / 
[(aF;<;) I aF;~X»)], (2.12a) 

(1- &,(r» = (1- &,(r,» (1- &,(r'», ... ,(I_ &,(rm». 

(2.12b) 

The adiabatic Hamiltonian 7 can be obtained by neglect­
ing the off-diagonal couplings in Eq. (2.7) as 

Since GQQ in Eq. (2.6b) is not the unit matrix, the local 
normal frequencies (an in Eq. (2.13) are obtained in close 
analogy with Wilson's GF matrix method20 as fOllows; 

2- -2-
(GQQ)apwpApy =WaAay. (2.14) 

as/ar and L in Eq. (2.6b) can be calculated as follows. 
When the minimum surface condition (2.10) is fulfilled 

at every point in S(r), the following relation must be also 
satisfied. 

~ {t - &' (r) [S(r) ]}gx [S(r)] = O. 
drk 

Since, in general, 

~A [B(x)] = [aA(Y) ] aB(x) , 
dx ay y= B(x) ax 

the condition in Eq. (2.15) can be evaluated as 

{ (
a&' (r) ) } aSj 

[(I-&'r)Hx ]ij- --gx -=0, 
.. aXj i ark 

(2.15) 

(2.16) 

(2.17) 

where Hx is the nuclear Hessian matrix in a mass-weighted 
Cartesian coordinate system defined as 

(2.18 ) 

In Eq. (2.17), only (3N - 6 - m) of the equations are lin­
early independent for each rk. To determine the as/ark' 
additional m + 6 equations are required. They are 

(2.19a) 

(2.19b) 

(2.19c) 

where f!lI and f§ are vectors describing infinitesimal rota­
tions and translations, respectively. as/ark can now be ob­
tained by solving the linear equations of Eqs. (2.17) and 
(2.19). 

Finally, Lin Eq. (2.6) and W in Eq. (2.7) can be calcu­
lated as follows (more details are given in Appendix 1): 

(H;ff)ijLja =W~Lia 

H;ff = (1- &,)Heff (1- &'), 

a2rk 
(Heff)ij == (Hx)ij - ax ax (gr)k' 

I J 

(2.20a) 

(2.20b) 

(2.20c) 

where gr is the gradient vector in terms of reaction coordi­
nates r, and (1 - &') is the projection operator which proj­
ects out the rotational, translational, and r components from 
an arbitrary vector. Heff is the effective Hessian matrix in 
mass-weighted Cartesian coordinates. Note that Heff is ex­
plicitly dependent on gr [second term in Eq. (2.2Oc)] as a 
result of the nonlinear transformation between mass-weight­
ed Cartesian coordinates and internal coordinates. 

B. Potential energy surface and vibrational calculations 

The procedure we employ to construct the three-dimen­
sional potential energy surface combines ab initio SCF calcu­
lations and ab initio SCF-MCPF (Modified Coupled Pair 
Functional) calculations.22 The latter calculations include 
higher order dynamic correlation effects in a size consistent 
way, yielding a surface with an accurate shape and barrier 
energy. 

The starting point of the construction of the surface is an 
SCF calculation using the following basis set functions. (i) 
(7s3p) contracted to [4s2p] on carbon and oxygen23

; (ii) 
(4s) contracted to [2s] on hydrogen23

; (iii) d type polariza­
tion function (orbital exponent, a = 0.85) on oxygen; and 
(iv) a p type polarization function (a = 1.0) on the tunnel­
ing proton. Constrained geometry optimization was per­
formed at 89 different geometries r according to the condi­
tions defined by Eq. (2.10). 

At each optimized geometry the 3N dimensional gradi­
ent vector and the 3N X 3N Hessian matrix was calculated in 
mass-weighted Cartesian coordinates. The vibrational fre­
quencies of the local normal modes were calculated by the 
method outlined above. 

The SCF energy and gradient vectors at the 89 geome­
tries were fit by a sixth order polynomial representation of 
the surface, VSCF(r). A polynomial representation of the 
zero point energy of the bath (at the SCF level) ZPESCF (r) 
was determined by fitting !l:~19 l'Ja (r) as a function ofr to 
fouth order. 

A correlation correction to the SCF potential energy 
surface was determined from MCPF calculations made at 49 
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r points using the same basis set functions as described 
above. In these calculations, a Hartree-Fock single determi­
nant was used as the reference state and all the K shell orbi­
tals were kept frozen. Typically, about 250000 configura­
tion state functions (CSF's) were generated to describe the 
correlation effect. The energy difference between the MCPF 
and SCF values, i.e., the correlation energies, were fitted by a 
polynomial CE(r) of fourth order. 

An analytical form for the reaction surface V( r) includ­
ing the zero point energy of the bath (adiabatic correction) 
and the correlation energy is given by the following expres­
sion: 

VCr) = VSCF(r) + CE(r) + ZPESCF(r). (2.21 ) 

The eigenstates of the reaction surface Hamiltonian 
were obtained by the vibrational MCSCF method. IS Typi­
cally 2000 vibrational configurations were generated, and 
both the expansion coefficients and the "harmonic expo­
nents lS

" were optimized to minimize the total energy. The 
convergence ofthese expansions were checked by employing 
up to 10 000 configurations in selected points, and the nu­
merical error of the vibrational energy was < 1 cm - I. 

The SIRIUS24 and ABACUS25 program systems were used 
for the constrained geometry optimizations and the normal 
vibrational analysis. The program system MOLECULE/ 

SWEDEN26 was used for the MCPF calculations. The pro­
gram system VIBR427 was used for the vibrational MCSCF 
calculations. 

III. RESULTS AND DISCUSSIONS 

A. The reaction surface, barrier energy, and geometries 

The shape of the effective three-dimensional potential 
energy surface VCr) in our calculations depends significant­
lyon the adiabatic ZPESCF(r) and the correlation energy 
CE(r) terms in Eq. (2.21). For the sake of presentation we 
will emphasize the r l and rz dependence of the PES. For 
example, the SCF term VSCF(r) in Eq. (2.21) is represented 
in Fig. 1. At each point the variable r3 (the 0-0 distance) 
has been adjusted to minimize the energy. Figure 2 portrays 
an analogous plot of the sum of the V SCF (r) and CE( r). The 
analogous r l and rz dependence of the sum of all three contri­
butions to the effective PES [i.e., VCr) in Eq. (2.21)] is 
presented in Fig. 3. 

The barrier energy of 10.6 kcallmol at the SCF level of 
theory (Table 1) is very. close to the best SCF calculation 
previously reported (10.0 kcallmol), see Table I. Inclusion 
of electron correlation (Fig. 2 and Table I) lowers the bar­
rier by ~4O%. The calculated energy 6.3 kcallmol is, how­
ever, much higher than MP2 and MP4 calculations of 
Schaefer and co-workers. S 

To estimate how well the electron correlation effect is 
included in our MCPF calculations, we also carried out sin­
gle reference CIsD , using the Davidson's correction28 for the 
effects of quadruple excitations. These methods generally 
give better results than calculations based on M011er-Plesset 
perturbation theory. The equilibrium and saddle point geo­
metries optimized in the SCF calculations (see Fig. 4) were 
used in these calculations. The results are shown in Table II, 
together with the MCPF and the SCF values calculated at 

Eacb contonr line: • .DIIlS (a.u.) 
2.00 

1.76 

1.52 

-< 
~ .. .. 

1.28 

1.04 

0.80 +--~---.--~--,-"'::= 

0.80 1.10 1.70 2.00 

FIG. 1. A plot of V'CF (r) in Eq. (2.15) as a function of r, and r2• At each 
point (r"r2) on the surface r3 was optimized to minimize VSCF (r). 

the same SCF geometries. In Table II, the correlation effect 
of the CIsD and the CIsD( Q) calculations also lowers the 
barrier by ~ 35% and - 40%, respectively, and the barrier 
height of the MCPF calculation is very close to the CIsD(Q) 
value. 

The variation in barrier energy of the different calcula­
tions may also partly reflect how the geometries of the equi­
librium point and saddle point are determined, and to what 
extent these geometries vary with electronic theoretical 
models, i.e., SCF, MP2, MP4, and MCPF. 

In our calculations we determine these geometries di-

2.00 
Eacb contour line: O.DIIlS (a.u.) 

1.76 

1.52 

~ .. .. 
1.28 

1.04 

0.80 +--~---'--"""----r---=~ 

0.80 1.10 1.70 2.00 

FIG. 2. A plot of[ VSCF (r) + CE(r) I in Eq. (2.15) as a function ofr, and 
r2. The r3 coordinate was optimized in an analogous fashion to Fig. 1. 
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Each contour 'ine: 0.0025 (a.o.) 
2.00 

1.76 

1.52 

~ .. .. 
1.28 

1.04 

0.80 -+---.---.---~----.---= 

0.80 1.10 1.70 2.00 

FIG. 3. A plot of VCr) in Eq. (2.15) as a function ofr, and '2' The'3 coordi­
nate was optimized in an analogous fashion to Fig. I. The two bold lines in 
the figure are the MEP (minimum energy path) and the expectation value 
path EVP which are described in detail in the text. 

rectly from a fitted form ofthe PES in Figs. I and 2. Thus, for 
equilibrium and saddle point geometries on the MCPF /SCF 
surface (Fig. 2), only '1' '2' and'3 have been varied explicitly 
from the SCF level prediction of these geometries. However, 
other geometrical degrees of freedom have also been varied 
implicitly, since they are functions of'l' '2' and '3' This ap­
proximation makes efficient use of the electron correlation 
calculations, and yields an equilibrium geometry which is 
similar to that obtained in an MP2 calculation where the 

SCF MCPF 

TABLE I. A comparison of various calculations of the total energy and the 
proton transfer barrier height for malonaldehyde. 

This work 
SCF 
MCPF 

Previous work" 
SCF (DZ+P) 
MP2 (6-31G**) 
MP4 (6-31G**) 

" Frish et al., Ref. 8. 

Total energy 
(a.u.) 

- 265.328 119 
- 265.994 678 

- 265.697 88 
- 266.418 51 

Barrier height 
, (kcal/mol) 

10.6 
6.3 

10.0 
3.6 
4.3 

geometry was fully optimized.s Apparently, the coordinates 
'I' '2' and '3 are more dramatically altered when electron 
correlation effects are taken into account. 

The various geometries are shown in Fig. 4 in which the 
equilibrium structure is portrayed on top of each structure, 
while the saddle point is represented on the bottom. Our 'I' 
'2' and'3 values in the MCPF /SCF calculation are similar to 
the optimized MP2 calculations. As noted previously, when 
electron correlation is included, the hydrogen bond distance 
is altered significantly from the SCF geometry. 

It is important to note that the inclusion of electron cor­
relation (Fig. 2) also significantly alters the shape of the 
PES, which plays an important role in determining the mag­
nitude of the tunneling splitting and most probable proton 
tunneling path, see below. Making the MCPF calculation at 
numerous '1' '2' and'3 geometries emphasizes the most im­
portant correction to the PES surface, while making efficient 
use of the most expensive portion of the electronic calcula­
tion. 

~ O· .... ~O 
f1,11.2" 2.361 , 

1·2IS t 

~
u.'" 

US," 
H 1.3" c'V"n 

I 
H 

MP2' 

FIG. 4. Geometries for malonaldehyde of 
the equilibrium (upper) and the saddle 
point (lower) structures which have been 
calculated at the SCF, MCPF/SCF and 
MP2 (Ref. 8) levels. 
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TABLE II. A comparison with MCPF and CI calculations of the total ener­
gy and the proton transfer barrier height for malonaldehyde at the SCF 
geometries (Fig. 4). 

Total energy Barrier height 
Method (a.u.) (kcal/mol) 

C1so - 265.893 309 6.9 
CIso(Q) . - 265.981 327 6.2 

MCPF - 265.993 894 6.1 
SCF - 265.328 119 10.6 

"The total energy and the barrier height are estimated by the Davidson's 
correction (Ref. 28) i.e., EC1SD(Q) = ECI

sD 
+ (the Davidson's correction). 

B. Tunneling spllttings 

We have calculated the vibrational wave functions and 
energies for the lower excited vibrational states associated 
with the reaction surface Hamiltonian model. The results 
are extremely sensitive to the PES employed as summarized 
by Table III. A large (HID) isotope effect is observed, see 
below for further discussion. Our estimate for the tunneling 
splitting (MCPF surface with adiabatic corrections in Table 
III) is about a factor of210wer than experiment. In contrast, 
Miller and co-workers overestimate the splitting by about a 
factor of 3,7 employing a two-dimensional surface and a dif­
ferent procedure for electron correlation. 

The magnitude of the tunneling splitting in Table III in 
related to the barrier height. Indeed, even one-dimensional 
treatments for MA give similar tunneling splittings (ifO-H 
stretching motion is arbitrarily chosen as the reaction coor­
dinate).5,6.10 

Nevertheless, the simple rough correlation of the tun­
neling splitting and barrier height is in contrast to the com­
plex character of the proton transfer process that is uncov­
ered by directly examining the vibrational wave function in 
the following section. 

c. Vibrational wave functions and tunneling paths 

As an introduction to the discussion of the "path" of 
proton transfer in MA it is useful to consider the definition of 
the intrinsic reaction path IRC, which was described in Sec. 
I. An analogous path in the three-dimensional reaction sub-

TABLE III. Tunneling splitting (cm -') for the ground vibrational state of 
malonaldehyde. 

Tunneling splitting 

H D,-MA 

This work 
MCPF surface with 9 0.7 
adiabatic correction 
SCFsurface 0.3 0.0 
MCPF surface with 19 1.6 
no adiabatic correction 

2D reaction surface" 60 
Experimental valueb 21 3 

• Carrington and Miller, Ref. 7. 
bWiIson and co-workers, Ref. 10. 

Barrier height 
(kcal/mol) 

7.1 

10.6 
6.3 

4.3 

space is the steepest descent path in mass-weighted internal 
coordinates, see Appendix 2. We denote this path as MEP 
(minimum energy path) in the following discussion. Note 
that the definition of our MEP is somewhat different from 
that of the IRc. 14

(a)-14(c) (The true IRC is defined only in 
mass-weighted Cartesian coordinates.) The MEP for MA is 
portrayed in Fig. 3. The MEP is the steepest descent path 
that passes through the saddle point and terminates at the 
equilibrium geometries. As stated above, in heavy-light­
heavy systems the reasonable tunneling path (using a one­
dimensional picture) can deviate significantly from the 
MEP. 

The extent of deviation from the MEP for MA is nicely 
demonstrated in Fig. 5. The non-bold lines in Fig. 5 are con­
tours of the ground vibrational nuclear probability distribu­
tion of MA in the reaction surface description. As expected, 
the nuclear probability distribution function 1 <I> (r) 12 of the 
ground state is highly peaked near the equilibrium geometry. 
Figure 5 is plotted on the same axes as Fig. 3. One of the bold 
lines in Fig. 5 is the MEP. It is interesting to note that the 
probability for symmetric (r l = r2 ) geometries is not peaked 
near the MEP. In other words, there is no tendency for the 
reaction to pass through the classical transition state.5,6 This 
is emphasized in the window in Fig. 5 which is a blow-up of 
the region enclosed by a dotted line. 

In order to explore further the dependence of the nu­
clear probability on coordinates r of the PES, we have calcu­
lated two types of effective vibrational paths, i.e., an expecta­
tion value path EVP and a maximal probability path. The 
expectation value path is defined as follows. First, we intro­
duce new coordinates, PI' P2' and P3; 

2.00 

1.76 

1.52 
0< J '-' 

.:' 

1.28 

1.04 

FIG. 5. Contour plots of the nuclear probability of the ground state vibra­
tional wave function ofthe reaction surface (PES), see the text. The axis 
system and the bold line in the main part of the figure are identical to Fig. 3, 
and the equal spacing in an arbitrary unit was used. The upper right comer 
is an expansion of the dotted square region of the main part of the figure. 
The contours spacings in the expanded region is 20 times smaller than the 
spacing for the main figure, see the text for further detail. 
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Pl='l - '2' 

P2='1 + '2' 

P3='3' 

( 3.1a) 

(3.1b) 

(3.1c) 

Second, in terms of these coordinates a curvilinear path is 
calculated from Eq. (3.2); 

(p (p » = SIcf>(PI>P2,P3) 1

2
p2dp2 dP3 

2 I SIcf>(PI,P2,p3) 12dp2 dP3 ' 
(3.2a) 

(P3(PI» = SIcf>(PI,p2'P3W~3dp2 dP3 . 
SIcf>(PI,p2,p3) I dP2 dP3 

(3.2b) 

The significance of this path is most obvious for P I = 0 (C 2v 

geometry), which falls on a line 45° from the'l axis on Fig. 5. 
The EVP intersects the 45° line at the averagedp2 value of the 
nuclear probability distribution function Icf>(r) 12dr (for the 
constraint PI = 0), see Eq. (3.2a). Away from the PI = 0 
line, the EVP corresponds to the averged geometry P2 for 
chosenpi = 0 ('I - '2) value. Thus, the EVP is a curved line 
of averaged nuclear positions for constrained displacement 
alongpl' The path qualitatively indicates the most probable 
path of proton tunneling. This path is shown in the main part 
of Fig. 5 as the bold line. Note that the EVP is much less 
curved, and deviates significantly from the MEP. The differ­
ence is especially dramatic in the region of the PES por­
trayed in the window in Fig. 5. 

More recently, we have been studying a maximal proba­
bility path for the nuclear wave function. This path is calcu­
lated from a hypersurface given by the negative ofthe proba­
bility Icf>(r) 12, which has valleys at the most probable 
geometries in Fig. 5. The saddle point on this surface is the 
most probable structure of C2v geometry. The steepest de­
scent path from the saddle point to the valleys defines a path 
of maximal probability for the vibrational wave function, in 
analogy (topographically) to the definition of the MEP. Our 
calculated maximal probability path (not shown) is virtual­
ly identical to the EVP in Fig. 5. 

The deviation between the MEP and theE':VP is consis­
tent with the expectations for heavy-light-heavy systems. 
This is most easily demonstrated in a mass-weighted coordi­
nate system (consistent with the reaction surface Hamilto­
nian model). For the sake of presentation, we have reduced 
the three-dimensional surface we have developed for MA to 
two dimensions. Figure 6 shows our representation of the 
desired mass weighted surface. The mass-weighted coordi­
nates ql and q2 correspond roughly to 'I - '2 and 'I + '2' 
although the relationship is not simple (see Appendix 3). 
The highly curved bold line EQ-MCP-SP-MCP-EQ in Fig. 6 
is the MEP. The nuclear displacements along the MEP are 
shown in an exaggerated representation in Fig. 7. The MEP 
passes through the equilibrium geometry (EQ), the point we 
denote by MCP (maximal curvature point) and the saddle 
point (SP). TheinitialmotionalongtheMEP (EQ-+MCP) 
is primarily stretching motion between the two oxygen 
atoms. This is followed by proton motion between the oxy­
gen atoms (MCP-+SP-+MCP). 

It is interesting to note that the EVP path involves much 
less 0-0 motion than the MEP. The EVP passes through a 
symmetric geometry, i.e., an effective saddle point (ESP), 
which has a much larger 0-0 separation than the true sad-

1.40 

I ~ .. 1.00 

" x 
:i 
.u 0.60 

0.20 

-0 .20 -l""-"-L-,l--->'"-----i-.J..-.-..L--.----.:~'--_+_...L-.1.,....Jl..lliIl! 

-1.00 -0.50 0.00 0.50 1.00 

ql (a.u. x ..J a.m.u.) 

FIG. 6. A representation of the PES [V(r) 1 shown in Fig. 3, plotted in a 
transformed, mass·weighted, coordinate system, employing the new vari· 
abIes q I and Q2' see the text for further details about this coordinate system 
and the abbreviations, EQ, ESP, MCP, and SP. 

dIe point. The EVP path is a compromise between potential 
energy which favors the MEP (lower barrier) and effective 
mass motion which would be minimized along a straight line 
path between the two EQ points.5

-
7 

The interplay of potential energy and mass is nicely 
demonstrated in Fig. 8 in which the potential energies are 
plotted along the MEP and EVP. The steepest descent path 
from the SP is not defined beyond the equilibrium geometry 
in the direction away from the SP. For this portion of the 
MEP we used the recently developed gradient extremal path 
algorithm. 18,19 

The MEP has (consistent with its definition) a signifi­
cantly smaller barrier than the EVP. In contrast, the EVP 
barrier is much narrower at the base, since the motion along 
this path is less massive. Thus tunneling is much more effec­
tive along the EVP despite its large barrier energy. To 
further establish this point we undertook a one-dimensional 
vibrational calculation for the MEP and EVP. The calculat-

~-~-~ 

~-~-~ 
FIG. 7. The geometries of the various labeled points on Fig. 8. The abbrevia· 
tions are defined in the text. The displacement of the saddle point geometry 
have been exaggerated by a factor of 2 in Fig. 7. 
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16.0 

EVP 

£il 
8.0 .. 

= f;I;l 

-; 
i 4.0 

! 
0.0 

·5.00 -2.50 0.00 2.50 5.00 

Reaction coordinate (a.u. x ·ra:m:u:) 

FIG. 8. The potential energy VCr) dependence along the MEP and EVP in 
Fig. 8. 

ed tunneling splittings, 0.0 and 0.3 cm- I, respectively, 
further demonstrate the importance of the narrowness (light 
mass) of the EVP. In addition, the discrepancy of the one­
dimensional calculation along the EVP for the splitting, and 
the full three-dimensional result (9 cm -I) seems to demon­
strate the necessity of a multidimensional approach. 

D. Vibrational excited states 

An examination of the excited vibrational states of ma­
lonaldehyde offers an opportunity to explore the dependence 
of the tunneling splitting or vibrational excitation. This 
leads, in principle, to insight into the multidimensional na­
ture of proton tunneling in MA. In this section we consider 
two types of vibrational calculations which are denoted by 
fullspace and subspace. The level fullspace denotes a vibra­
tional calculation involving the fu1l3N - 6 (21 modes) sur­
face. This has only been accomplished for the normal modes 
MA at the equilibrium geometry. The frequencies and char­
acters of these modes are listed in the third and fourth col­
umn of Table IV. The level subspace is associated with the 
three-dimensional reaction surface (PES). 

The adiabatic implementation of the reaction surface 
Hamiltonian method involves a separation of the 3N - 6 
vibrational degrees offreedom into 3N - 6 - m bath modes 
and m modes of the subspace (PES). The normal mode fre­
quencies of the three-dimensional subspace are listed in the 
first column of Table IV. 

With the exception of the 3950 cm -1 vibration (02-H I 
stretching) of the subspace, there is no simple relationship 
between the two types of normal modes. The 499 cm - I mode 
is a combination of 0-0 stretching and an in-plane bending 
mode of the intramolecular hydrogen-bonded ring. The 
2320 cm -I mode is a complex motion involving displace­
ments of many atoms ofMA, inducing a significant 02-HI-
0 3 in-plane bending. 

The significant overlap of the normal modes of the sub­
space with the modes of the fullspace, and the similarity of 

TABLE IV. Vibrational normal modes at the SCF level of electronic calcu­
lation (or malonaldehyde and the reaction surface subspace. The relation­
ship ofthe normal modes of the subspace to the normal modes of the fu11-
space are indicated by arrows in the overlap column. The numerical value 
associated with each arrow is the magnitude ofthe vibrational overlap of the 
pair of modes connected by the arrow. 

Subspace 
Frequencies 
(cm-') 

Fullspace 
Frequencies 

overlap (em - , ) Character" 

274 

499<:·9 III 
897 

0.2 974 
1026 
1181 

2320 1192 
1215 

.............. --.. 1389 

1544 
1556 
1611 

3950 1789 
1898 
3171 
3367 
3408 
3834 

(A ')b 0 3 = Co ring bend 
O2-03 stretch 

(A ") C4 = C~ ring bend 
02-C4 in-plane ring bend 

(A") H,-02 ring bend 
(A .) HK-C~ ring bend 

in-plane ring bend (mixture) 
in-plane ring bend (mixture) 

(A .) H7.8.9-C4.S.0 ring bend 
(A .) H7•8•9 -C4.~.O ring bend 

H.-C~ in-plane ring bend 
H7-C4 in-plane ring bend 
H9-C6 in-plane ring bend 
02-H ,-03 in-plane ring bend 
C4 = C~ in-plane ring bend 
Cs-Co in-plane ring bend 
02-C4 in-plane ring bend 
H9-CO stretch 
Hr-C4 stretch 
HK-C~ stretch 
H ,-02 stretch 

"The atom numbers are defined in the diagram ofmalonaldehyde. 
b A • signifies out-of-plane vibrational modes. 

some of the frequencies, implies that an attempt to calculate 
the exact vibrational states of MA by the adiabatic reaction 
surface Hamiltonian approach would be inaccurate due to 
the neglect of the important diabatic coupling between the 
bath and subspace modes. 

The excited vibrational states of the subspace (Table V) 
alone can be examined to gain further insight on the tunnel­
ing process. But, it should be emphasized that these states do 
not actually correspond to states of MA since the coupling 
between the subspace and the bath modes are treated adia­
batically. 

The first 16 vibrational levels of the subspace assigned to 
eight pairs of levels with the average frequencies and split­
dngs listed in Table V for malonaldehye and deutereated 
malonaldehyde (DI-MA). The vibrational zero-point ener-

TABLE V. A list of the eight lowest pairs of exact wave function levels of the 
reaction surface subspace. 

Transition energy Splitting 
Quantum No. (cm-') (cm-') 

v, V2 H D H D 

0 0 0 0 9 0.7 
1 0 318 308 28 4 
2 0 644 648 58 13 
3 0 996 1032 89 27 
4 0 1399 1474 109 47 
0 1 1378 993 24 1.2 
1 1 1754 1338 82 8 
2 1 2183 1731 143 28 
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gy for MA is 2482 cm- I, while DI-MA has a zero-point 
energy of 1844 cm- I. The results in Table V have been ob­
tained for the MCPF/adiabatic PES. For this surface the 
normal modes frequencies are: VI = 307, V 2 = 1346, and 
V3 = 3420 cm -1 for MA and VI = 294, V2 = 986, and 
V3 = 2470 cm -I for D I-MA. These modes are analogous to, 
though not exactly the same as the normal modes calculated 
at the SCF level, see Table IV. Mode I is 0--0 stretching and 
in-plane ring bend in character, consistent with the minor 
HID isotope effect on the transition energy of this mode. 

The vibrational states that are summarized in Table V 
are exact eigenstates for the three-dimensional PES (sub­
space, but not for the fullspace). They correspond closely to 
overtone and combination states of the normal modes (see 
above) of this surface. Table V lists the assignment of the 
pairs of levels to states involving different numbers of vi bra­
tional quanta in the two lowest frequency normal modes of 
the subspace. it is interesting to note that for all levels above 
the lowest pair of states (VI = 0, V2 ::::: 0), the total vibration­
al energy (zero point energy plus transition energy) is actu­
ally greater than the barrier energy of the PES which is 7.1 
kcaVmol (2483 cm -I). The existence of pairs of levels 
( each with a splitting) is a consequence of the near adiabatic 
separation of the tunneling motion from mode I and mode 2. 
In simple terms, the tunneling splitting of the various excited 
levels in Table V is associated with a barrier in a pseudopo­
tential along the tunneling coordinate. 

Vibrational excitation of mode 1 increases the tunneling 
splitting monotonically as a function of vibrational energy 
(quanta). But, the tunneling splitting is highly mode specif­
ic. For example, if almost the same vibrational energy is de­
posited in mode 1 (VI = 4, v2 = 0) as compared to mode 2 
(VI = 0, V2 = 1), a much larger tunneling splitting is ob­
served for the energy in mode 1, see Table V. 

Presumably, the trends in Table V result from both adia­
batic and diabatic effects involving modes 1,2 and the tun­
neling coordinate since, as stated above, the tunneling pro­
cess intimately involves all three degrees of freedom of the 
surface. It is interesting, however, to speculate how the de­
pendence of tunneling splitting on vibrational excitation 
might be rationalized in terms of a crude adiabatic picture. 
For example, it can be shown, that as successive quanta are 
added to mode 1, the average 0-0 bond separation increases 
because of the anharmonicity of the potential. Would an in­
crease in the 0--0 separation increase or decrease the tunnel­
ing splitting? A qualitative answer to this question is ob­
tained by the results described above which are summarized 
in Fig. 6. As the 0--0 separation is increased, the EVP 
should tend: (i) to be more curved (longer) and (ii) to have 
a larger barrier. Both effects tend to decrease the tunneling 
splittings in contrast to the results of Table V. 

This analysis ignores the potential role of rms (root­
mean-square) amplitude of mode I which increases when 
this mode is excited. This will tend both to enhance and 
diminish tunneling because of the larger spread in 0-0 sepa­
rations. But, if very short 0--0 separations are much more 
important (which one might infer from the PES in Fig. 6), 
then the net effect of increased amplitude would be to in­
crease the tunneling splitting. (It is noted that the similar 

results were reported by Sato and Iwata using a simple two­
dimensional model surface.29

) This qualitative effect may be 
responsible for the trends in Table V, but a more rigorous 
approach would be necessary to verify this assumption. 

E. Hydrogen/deuterium isotope effects 

We have made calculations analogous to those de­
scribed above for a monodeuterated form of MA. The ratio 
of tunneling splitting of the Hand D molecules for the 
ground state vibrational level is 12 which is close to the ex­
perimental value 7. The calculated EVP (not shown) is very 
similar to the path for undeuterated MA (Fig. 3). This may 
suggest that the actual path in both cases is primarily a result 
of the shape of the PES and the fact that MA is a heavy­
light-heavy systems. 

The results in Table V demonstrate that the isotope ef­
fect on the tunneling splitting decreases as the tunneling 
splittings increase. This is consistent with the notion that the 
effective potential barrier to the tunneling for the vibration­
ally excited states decreases in the excited states. For simple 
models, the isotope effect decreases as the barrier height is 
decreased. 

IV. SUMMARY AND CONCLUSIONS 

Proton tunneling in malonaldehyde (MA) has been 
studied in a three-dimensional reaction surface Hamiltonian 
model. A new reaction PES has been calculated, and the 
tunneling splitting of the vibrational level associated with 
the PES is in reasonable agreement with the experimental 
value for MA. The vibrational wave function of the ground 
state has been analyzed to yield an effective tunneling path 
for the proton transfer. The path deviates significantly from 
the MEP. Vibrationally excited states of the reaction PES 
show larger tunneling splitting than the ground state, but 
splitting is highly vibrational mode specific. The calculated 
isotope effect on the tunneling splitting is smaller than the 
experimental value. A number of other aspects of the reac­
tion surface Hamiltonian model for MA have been explored. 

As discussed previously, the reaction surface Hamilto­
nian offers an accurate means for the calculation of tunnel­
ing splittings in medium size molecules. The method nicely 
accounts for the strong deviation of the tunneling path from 
the intrinsic reaction path, which is the starting point of 
simpler models for proton transfer. In addition, the formal­
ism naturally allows for a detailed analysis of multidimen­
sional tunneling effects in polyatomics. 
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APPENDIX 1 

The effective Hessian matrix in Eq. (2.20) arid the mini­
mum energy surface condition (2.10) are derived in this sec­
tin. The starting point for the derivation is the potential ener­
gy in terms of the reaction coordinates r and the normal 
coordinates of the bath Q. The potential energy can be ex­
panded as a Taylor's series around an arbitrary point on the 
reaction surface S (r 0) as 

V rQ (r,Q) = V rQ (ro,O) + g;bor + g~Q + !borTHrrbor 

+ borTHrQQ + !QTHQQQ , (ALl) 

where g, and H are gradient vectors and Hessian matrices 
defined as 

(gr) k = (:~)?==r~ , 
(gQ)a = (:~ )?:r~' 
(Hrr)kl = (a~2;' )Q=o, 

k 1 r = rCJ 

(HrQ)ka = (ar~~J?==r~' 
(HQQ )a/3 = (a~2:QJ?==r~' 

(A1.2a) 

(A1.2b) 

(A1.2c) 

(A1.2d) 

(A1.2e) 

HQQ in Eq. (A1.2e) must be a diagonal matrix since Q are 
normal coordinates; 

(HQQ )a/3 =lU~8a/3 . (Al.3) 

In addition, we consider a Taylor's expansion of the poten­
tial energy in terms of mass-weighted Cartesian coordinates; 

Vx(X) = Vx(Xo) + g~(Xo)boX 
+ !boXTHx(Xo)boX + ... , 

Xo=S(ro) . 

(A1.4a) 

(A1.4b) 

The chain rule of differentiation can be used to obtain the 
relation between g and H in the two different coordinate 
systems; 

(Al.5a) 

aFk aFI aFk aQa 
(Hx) ij = ax. ax. (Hrr) kl + ax. ax. (HrQ) ka 

I ] I J 

aQa aFk aQa aQ/3 
+ ax. ax. (HrQ) ka + ax. ax. (HQQ) a/3 

J } I I 

a2F a2Qa 
+ ax; a~ (gr)k + ax. ax. (gQ)a + </1ij , 

, J 

(Al.5b) 

where ~ are the contributions from rotational and transla­
tional degrees of freedom. 

Up to this point in the derivation, the choice of the bath 
coordinate Q is not unique. Here, we impose the following 
condition on Q: 

ark aQa ark 
----=--L;a =0. 
ax; ax; ax; 

(A1.6) 

To obtain the condition that defines the minimum ener­
gy surface and the bath frequencies, we extract gQ and HQQ 
from Eq. (Al.5) by projecting out other terms. For this pur­
pose, we first define the projection operator (1 - 9) which 
projects out the (infinitesimal) translational, rotational and 
r components from an arbitrary vector as; 

(1- 9)=(1- 9(r»(1- 9(R»(1_ 9(T». 
(Al.7) 

The explicit form of the 9 (R) and 9 (T) operators are analo­
gous to 9(r) which is defined by Eq. (2.12). The use of a 
projection operator for rotations is based on the first order 
approximation of a linear relation between rotational co­
ordinates and mass-weighted Cartesian coordinates, such as 
in the use of the Eckart criteria.30 It is easy to show that the 
following relations are satisfied when (1 - 9) is operated 
to aFk/aX, aQa/ax, and </1; 

aFk (1- 9) .. - = 0, (A1.8a) 
IJ ax. 

J 

t7}J aQa 
(1- ;:;r)ij - = L;a , (A1.8b) 

aXj 

(1-9)</1=0. (A1.8c) 

Using the projection operator in Eq. (A1.7), gQ and 
HQQ can be extracted from Eq. (Al.5) as follows: 

(1- 9)gx = LgQ ' 

(1 - 9 )Heff (1 - 9) = LHQQLT, 

(A1.9a) 

(A1.9b) 

a2F a2Q 
(Hff) .. =(Hx )"- k (g)k- a (g) . 

e IJ lJ ax. ax. r ax. ax. Q a 
J J I J 

(A1.9c) 

A sufficient condition to construct the minimum energy 
surface (gQ = 0) is obtained from Eq. (Al.9a) as 

(1- 9)gx = O. (A1.10) 

When the minimum surface condition (A1.1O) is satisfied 
on the reaction surface S(r), the last term in Eq. (A1.9c) 
becomes zero and Heff can be written as 

a2Fk 
(Heff)ij = (Hx)ij - ax. ax. (gr)k' (A1.1l) 

I J 

If one defines H;ff as; 

H;ff = (1 - 9 )Heff (1- 9) , 

Eq. (A1.9b) can be rewritten as 

(A1.l2) 

(A1.13) 

The three relations (Al.1l), (ALl2), and (Al.13) are 
three parts of Eq. (2.20). Equation (2.10) is given by Eq. 
(ALlO). 

APPENDIX 2 

The effective steepest descent path in Fig. 3 (MEP) can 
be calculated as follows. The Lagrangian in internal coordi­
nates can be written as 

A A 

.Y' = T- V=W;G(r)Pr - V(r) 

= !rTG-1(r)r - VCr) . CA2.1 ) 

J. Chern. Phys., Vol. 91, No.7, 1 October 1989 

Downloaded 26 Aug 2010 to 133.68.192.94. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



4072 Shida, Barbara, and AlmlOf: Multidimensional nuclear tunneling 

Since the derivatives of !L' with respect to rand r are calcu­
lated as 

a!L'_G- 1()' - r r, ar 
a!L' = _ aVer) == _ F(r) . 
ar ar 

The Lagrange equation is determined as 

~[G-l(r)r] = - F(r) . 
dt 

If the following initial conditions are applied; 

r = Oat t= 0, 

Eq. (A2.3) can be written approximately as 

dr = - CG(r)F(r) , 

where C is a "small time constant." 14(a) 

APPENDIX 3 

(A2.2a) 

(A2.2b) 

(A2.3) 

(A2.4a) 

(A2.4b) 

The transformation from internal coordinates to ortho­
normalized mass-weighted coordinates (Fig. 6) can be ob­
tained as follows. The kinetic energy in internal coordinates 
is expressed as 

2T=rTG- 1(r)r. (A3.1) 

If one introduces a unitary matrix u which diagonalizes the 
matrix G; 

Gu=U€, (A3.2) 

Eq. (A3.1) can be written as 

2T = rT(uc1uT)r = (€-1/2uTr )T(€-1/2uTr ) . (A3.3 ) 

Introducing a new set of coordinates q satisfies 

q==E- 1/ 2uTr, (A3.4) 

leads to the following kinetic energy form; 
A 'T' T = ~q q. (A3.5) 

The coordinates q can be obtained by solving 

q(r) = f c 1/2(r)uT(r)dr. (A3.6) 

q in Eq. (A3.6) are the generalized mass weighted co­
ordinates. The G matrix in that basis is a unit matrix at every 
point, in space. 
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