Al₂TiO₅-MgTi₂O₅系配向焼結体の調製と熱膨張特性

大門啓志

(名古屋工業大学材料工学科,466名古屋市昭和区御器所町)

Preparation and Thermal Expansion Characteristics of Sintered Bodies of Al₂TiO₅-MgTi₂O₅ Solid Solution with Preferred Orientation

Keiji DAIMON

(Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-shi 466)

Rod-like particles of $Al_2 TiO_5$ - $Mg Ti_2O_5$ solid solutions were synthesized by heating mixed powders of MgO, Al_2O_3 and TiO_2 above 1050°C in the presence of 10 atom% mixed fluoride of MgF_2 and AlF_3 . The rod diameter decreased with decreasing synthesis temperatures while the aspect ratio increased. At a certain temperature the rod diameter increased with increasing $Mg Ti_2O_5$ contents while the aspect ratio decreased. A sinterable powder composed of rod-like particles, in which rod diameter and aspect ratio were about 2 μ m and about 4, respectively, was obtained by heating the raw materials containing 50% $Mg Ti_2O_5$ at 1200°C. Using the rod-like particles, a sintered body of a highly oriented solid solution with the Lotgering's index f_{Ha} of 0.76, was obtained. Thermal expansion anisotropy was observed, and the hysteresis of the expansion-shrinkage behavior was smaller than that of the sintered boa, without preferred orientation.

[Received September 12, 1989; Accepted December 11, 1990]

Key words : Al₂TiO₅-MgTi₂O₅, Solid solution, Anisotropic grain, Preferred orientation, Thermal expansion anisotropy

1. 緒 言

チタン酸アルミニウム (Al₂TiO₅) 結晶の著しい熱膨 張異方性は粒界における亀裂の発生原因となり, 焼結体 のかさ密度の低下と同時に機械的強度の低下をもたら す^{1).2)}. 一方, 結晶学的異方性の利用を目的とした配向 焼結体の原料とするため, 異方形状粒子の合成に関する 研究は数多く報告されている³⁾. 著者らは, γ -アルミナ とアナターゼ (TiO₂)の混合粉体に AIF₃ を添加し, 加 熱処理を加えることによってチタン酸アルミニウムの針 状結晶が生成することを報告した⁴⁾. この異方形状粒子 は最も熱膨張係数の小さい方向に伸長しており, 容易に 配向させることにより, 隣接する粒子間の熱膨張係数の 差を小さくし,低膨張性を保ったままで粒界の亀裂を少 なくして機械的特性を改善することが可能となると考え られる.

しかしながら、チタン酸アルミニウムは1280°C以下 の温度で α -アルミナとルチル(TiO₂)とに共析分解す る^{5),6)}ため、合成には1300°C以上の加熱処理が必要で ある.このため、生成粒子は粗大になりやすく、焼結体 への応用が困難となる.これに対して、チタン酸マグネ シウム(MgTi₂O₅)は低温での合成が容易であり、か つチタン酸アルミニウムと全域固溶を形成する.これらの固溶体ではチタン酸アルミニウム単味の場合と比べ て、生成温度領域は低温の方へ広がる.一般に、合成温 度が低い方が結晶表面への異種イオンの吸着効果が高く なり、高アスペクト比の異方形状粒子が生成しやすくな る^{7).8)}.本研究では、Al₂TiO₅-MgTi₂O₅系における擬ブ ルッカイト型固溶体結晶の生成温度領域、結晶粒子の粒 径、アスペクト比などについて調べ、更にそれらの焼結 体の配向性及び熱膨張について検討した.

2. 実験方法

2.1 試料調製

①含水硫酸アルミニウム $(Al_2(SO_4)_3, 14 \sim 18 H_2O)$ 及び硫酸チタニル (TiOSO₄) をモル比が 0.9:1 とな るように水溶液状態で混合し,必要量のアンモニア水と 混合し,生成する沈殿を洗浄,水のブタノール置換,沪 過,乾燥の後,700°C·1時間仮焼した.②特級試薬 MgO とアナターゼ (TiO₂)をモル比 0.9:2 の割合で 乳鉢にてアセトン湿式混合した.①と②の粉体を所定モ ル比で混合し,MgF₂及び AlF₃をそれぞれ原料中の Mg 成分及び Al 成分の 10 atom% 加えた後,前報⁴⁾と同 様に白金管に入れ,所定温度 (~1350°C) に保った電 気炉中に白金線で吊るして挿入し,4時間加熱処理の後、 取り出し,粉末X線回折,形態観察などを行った.焼結 体作製のための原料調製にはふた付きのアルミナるつぼ を用いた.なお,試料の化学組成は原料粉末における MgTi₂O₅成分の割合で示す.

2.2 測 定

生成相の同定,格子定数及び配向度の測定には粉末X 線(Cu Ka, Ni-filter)回折装置(Geigerflex RAD-1 B, 理学電機)を用い,形態観察及び粒径,アスペクト比の 測定には走査型電子顕微鏡(SEM;HHS-2 X型,日立 製作所)並びに光学顕微鏡を用いた.異方形状粒子の粒 径とは短径を指し,アスペクト比は長径/短径の比を指 すものとする.また,Al₂TiO₅の結晶学的データは JPCDS カード 26-40を用い,配向度の評価にはLotgering の方法⁹⁾を用いた.

3. 結果と考察

3.1 Al₂TiO₅-MgTi₂O₅固溶体の生成温度領域

擬ブルッカイト型結晶は、歪んだ MeO₆ (Me=Al, Mg, Fe. etc.)及び TiO₆八面体からなっている²⁾. そ して、それらの八面体がそれぞれの辺と隅を共有して平 面方向に連鎖しており、この方向では八面体の伸びによ る熱膨張が大きい.その平面に対して垂直方向では3個 の八面体が O²⁻ を共有して連鎖しており、この方向で の熱膨張は小さい.このように擬ブルッカイト型結晶の 熱膨張異方性は、この結晶構造中の八面体の結合と歪み とに深く関連している.ここでは、Me^{x+} (x=2, 3)と Ti⁺⁺ のイオン半径の差が大きいほど八面体の歪みは増 大し、結晶学的異方性も著しくなる.2種の陽イオンの 半径の差が最も大きいのは Al₂TiO₅ である (Al³⁺ = 0.51Å, Ti⁺⁺ = 0.68Å)が、1280°C 以下で α -Al₂O₃ と TiO₂ (μ μ)に共析分解するのも結晶構造中の八面 体の歪みが著しく大きくなるためと考えられる.

本実験における擬ブルッカイト型固溶体の合成温度領 域を図1に示す.合成温度領域の下限は MgTi₂O₅成分

Fig. 1. Synthesis temperature region of Al_2TiO_5 -MgTi₂O₅ solid solution.

が多くなるに従って,ほぼ直線的に低くなる.本実験の ように,低温での合成が可能になるのは,

$2 \operatorname{Al}^{3+} \rightleftharpoons \operatorname{Mg}^{2+} + \operatorname{Ti}^{4+}$

の置き換えによって Mg²⁺ イオンと Ti⁴⁺ イオンの半径 の差が小さい (Mg²⁺=0.66 Å) ため,八面体の歪みが 小さくなり,擬ブルッカイト型結晶構造が安定化するた めと考えられる、

ここで生成した固溶体の格子定数(c軸, JCPDS カード 26-40)の原料の組成に対する依存性を図2に示す. 原料組成の変化に対して、生成した固溶体の格子定数は 全組成領域にわたってほぼ直線的に変化する.このこと は Al₂TiO₅-MgTi₂O₅系の全組成領域にわたって生成し た固溶体の化学組成が原料の化学組成の変化に比例して 変化することを示している.図中の括弧の中の数値はベ ガードの法則に基づいて Al₂TiO₅, MgTi₂O₅単味の格 子定数を用いて計算した固溶体の化学組成(Al₂TiO₅: MgTi₂O₅, wt%)を示す.原料と生成物の化学組成の 間には良い一致が見られ、Al₂TiO₅-MgTi₂O₅全域固溶

Fig. 2. Change of the lattice constant of the solid solution with the chemical composition of raw powders.

Fig. 3. Grain shape of the solid solution (Al : Mg=20 : 80) synthesized at 1150°C.

系のどの組成の固溶体でも容易に得られることが明らか である.

3.2 生成粒子の形態

固溶体粒子の SEM 写真の一例を図3に示す. Al₂TiO₅単味の系については、原料として、 γ -アルミナ とアナターゼを用いた場合にのみ Al₂TiO₅の針状粒子 が生成すること、また、原料粉末の調製方法の違いによ り、生成粒子の大きさ及びアスペクト比が異なることを 既に報告した⁴⁾. なお、この結晶の伸長方向は a 軸であ り、アスペクト比4以上の針状結晶が得られたが、この 場合、短径はいずれも5 μ m 以上であった.

粒径の処理温度及び化学組成に対する依存性を図4に 示す.加熱処理温度が高いほど、粒径は大きくなる.す なわち、 $MgTi_2O_s$ 65% において、 $1200^{\circ}C$ 処理物では平 均径約2 μ m であるが、 $1300^{\circ}C$ では約8 μ m である.こ のことは、固溶体結晶の生成において、高温ほど核の発 生速度に比べて成長速度が速いことを示している.また、 合成温度一定では、 $MgTi_2O_s$ が多いほど、粒径は大き

Fig. 4. Dependence of the grain size on the synthesis temperature and the chemical composition.
♦ : 1350°C, □: 1300°C, ●: 1250°C,
○: 1200°C, △: 1150°C, ⊽: 1100°C.

Fig. 5. Dependence of the aspect ratio on the synthesis temperature and the chemical composition.
♦ : 1350°C, □: 1300°C, ●: 1250°C,

 \bigcirc : 1200°C, \triangle : 1150°C, \bigtriangledown : 1100°C.

くなる. すなわち, 1300[°]C 処理において, MgTi₂O₅ 20% では平均径約5 μ m であるが, MgTi₂O₅ 65% では 9 μ m である. このため, 生成する固溶体の粒径は MgTi₂O₅ 成分の増加とともに合成可能温度が低下し, 合成温度の低下は粒径の減少をもたらすにもかかわら ず, 粒径の減少に一定の限界をもたらす.

これらの粒子のアスペクト比の変化を図5に示す.ア スペクト比は、加熱処理温度が低いほど大きくなる.こ のことは、活性アルミナとフッ化アルミニウムの混合物 からの六角板状 α-アルミナの生成の場合と同様に、低 温において結晶表面でのフッ化物の吸着の効果が大きい ためであると考えられる⁸⁾.しかしながら、MgTi₂O₅成 分が増加するにつれてアスペクト比が低下する傾向がみ られた.このため、アスペクト比についても、粒径と同 様に、一定の限界が生じ、平均値で4.5以上のものは得 られなかった.アスペクト比に対するこの組成依存性は、 結晶表面でのフッ化物の吸着効果以外に結晶そのものの 結晶学的異方性の低下にも原因があると考えられる.

以上のごとく、本実験では Al₂TiO₅ 単味の場合と比 ベてアスペクト比は同程度の約4であるが、粒径は約半 分の2μm 程度の固溶体粒子を得ることができた.

3.3 配向体の調製

本実験で得られた異方形状粒子を用いて一軸式のプレス成形(成形圧1t/cm²)の後,所定の温度で焼成を行った結果を図6に示す.焼成かさ密度は、いずれの場合も 3.0 g/cm^3 以下であった.また、試料の化学組成によって、最高値に達する温度が異なり、 $MgTi_2O_5$ 成分の多いものほど低温で一定のかさ密度に達した.

ここで得られた焼結体は固溶体結晶のかなり高度な優 先配向を示す.しかしながら,その配向は表面のみであ り,表面層を削りながら,配向度を調べると表面から内 側へ深くなるに従って配向度が低下する(図7).前報⁴⁾ と同様に,試料内部まで配向させるために,本実験で得 られた固溶体に PVA を 2 wt% 加え良く練った後,薄 く引き伸ばし,折り畳みを繰り返したものを層状に重ね

Fig.6. Change of the bulk densities with firing temperature.

● : 20 AT + 80 M 2 T, ▲ : 50 AT + 50 M 2 T, ■ : 80 AT + 20 M 2 T. Characteristics of raw powders and sintered bodies of pseudo-brookite solid solutions.

Powder Sintered body (1400°C · 1 h) Synthesis Grain Aspect Lotgering's index Bulk density Composition temperature size(µm) ratio fie fia fıь fтP fic (g/cm³) fin 0.71 -0.05 -0.14 0.37 0.21 -0.09 80 AT + 20 M2T 1250° C 3.7 4.0 2.57 50 AT + 50 M2T 1200°C 2.6 0.76 -0.02 -0.09 0.35 0.14 -0.03 4.4 2.48 20 AT + 80 M2T 1150°C 1.9 4.0 0.36 -0.03 -0.01 0.15 -0.08 0.03 2.93

Fig.7. Change of the preferred orientation degree of the solid solution in the sintered body with the depth from the surface of the body.

Fig. 8. Thermal expansion curves of sintered Al_2TiO_5 -MgTi₂O₅ solid solutions formed by normal press before firing.

I : AT, II : 80 AT + 20 M 2 T, II : 60 AT + 40 M 2 T, IV : 40 AT + 60 M 2 T, V : M 2 T.

てプレス(以後多層プレスと記す)して配向焼結体を作 製した.原料粉末の特性と焼結体の配向度を**表**1に示す. ここで粒径とアスペクト比のデータが図4、5と少し異 なるのは大量に合成するために密閉性に問題のある条件 でアルミナるつぼを用いたためと考えられる.焼結体中 では、固溶体結晶の a軸が加圧軸に垂直な面に平行に 優先配向している. $MgTi_2O_s 80\%$ で配向度が低いのは、 粒子が微細であるため合成時に形成した凝集の解砕が困

Fig. 9. Thermal expansion curves of sintered 0.5 $Al_2TiO_5: 0.5 MgTi_2O_5$ solid solution formed by (a) normal press and (b) multilayer press before firing.

難であること,成形に際して粒子同士の絡み合いによっ て配向が困難であったためと考えられる.

3.4 熱膨張特性

異方形状粒子を用いた通常プレス試料の 1400°C 焼成 体の熱膨張曲線を図8 に示す. Al₂TiO₅ 単味で, 熱膨張 収縮に大きなヒステリシスが認められるのは, Al₂TiO₅ の a, b, c 軸方向の熱膨張係数 ($\alpha_a < \alpha_b < \alpha_c$)の最大差 ($\Delta \alpha_{max} = \alpha_c - \alpha_a$)が著しく大きい ($\approx 23 \times 10^{-6}$ /°C)¹⁰)

Table 1.

ために高温からの冷却時に粒界に亀裂が発生するためで ある. これに対して, $MgTi_2O_5$ 及びその固溶系はヒス テリシスが小さい. これは, $MgTi_2O_5$ 固溶系は Al_2TiO_5 単味に比べて,熱膨張異方性が小さい($MgTi_2O_5$: $\Delta a_{max} = 13.6 \times 10^{-6} / ^{\circ} C)^{10}$ ために粒界に亀裂が発生し 難いことに対応している. このことは焼結体の機械的強 度の増大をもたらすが同時に膨張率の増大を引き起こ し,低膨張性を損なう原因ともなる.

 Al_2TiO_5 -MgTi₂O₅系固溶体の中で最も高い配向率が 得られた MgTi₂O₅50%の焼結体の熱膨張曲線を**図**9に 示す.通常プレスの場合にはX線回折による見掛けの配 向にもかかわらず,加圧軸に対する平行,垂直方向の差 は極めて少なく,ヒステリシスも大きい.これは,試料 内部の配向度が低く,かつ粒界の亀裂が多いことに対応 している.これに対して,多層プレスの場合には,熱膨 張挙動にも異方性がみられる.すなわち,加圧軸に対し て垂直方向では,平行方向よりも低膨張性を示し,かつ 無配向体の場合よりもヒステリシスが小さい.これは, 結晶の配向が焼結体内部にも及んでおり,無配向体と同 程度の熱膨張率でありながら粒界の亀裂が少ないことを 示している.

Cleveland らは温度が ΔT 変化する間に、熱膨張係数 が異なるために隣接する粒子間に生ずる応力 σ を

 $\sigma = 1/2 E \cdot \Delta a_{\max} \cdot \Delta T$ (1) とし、擬ブルッカイト型酸化物の機械的強度が急速に低下する臨界粒径 (gs)_{er}に関して、

 $(g_{\mathcal{S}})_{\mathrm{cr}} \propto \Delta \alpha_{\mathrm{max}}^{-2} \cdot \Delta T^{-2}$

(2)

の関係式を導いた^{III}. ここで, E は弾性率, Δa_{max} は結 晶の熱膨張係数の最大差を示す.しかしながら, 粒径が 微細な部分のデータが十分でなく, 粒界にクラックが発 生し始める臨界粒径を明らかにする実験データは得られ なかった.そこで,試験体が強固な状態からマイクロク ラックが多発して機械的強度が低下した状態へ移行する 遷移粒径についても, Δa_{max} との間に臨界粒径の場合と 同じ関係が成立するものとし, MgTi₂O₅, Al₂TiO₅の実 測値(それぞれ約5 μ m,約3 μ m)を Δa_{max}^{-2} に対して プロットし, Δa_{max}^{-2} の小さい方に外挿して, Al₂TiO₅ の遷移粒径は1~2 μ m であるとしている.本実験で得 られた粒子の短径は化学組成を適当に選べば,これらの 遷移粒径よりも小さくすることが可能である.したがっ て,このような針状粒子からなる粉末を用いて種々の微 構造制御を行うことにより,低膨張性を保ったままで機 械的強度を向上させることが可能であると考えられる.

4. 総 括

混合硫酸塩水溶液からの共沈水酸化物から得られた γ -Al₂O₃と TiO₂ (アナターゼ)の混合酸化物粉末に所 定量の MgO 及び TiO₂ (アナターゼ)粉末を混合して 原料とした.これに Mg と Al の混合比が原料と同じ フッ化物混合物 (MgF₂+AlF₃)を 10 atom%添加して 加熱することによる固溶体の生成,生成粒子の形態及び 焼結体の特性を調べた.

(1) 原料の組成とほぼ同一の化学組成を持つ固溶体 の異方形状(針状)粒子が得られた.

(2) MgTiO₅成分の増加とともに固溶体合成温度の 下限はほぼ直線的に低下する.組成一定では,合成温度 の低下に伴って粒径は減少し,アスペクト比は増大した.

(3) 合成温度一定では、 $MgTi_2O_5$ 成分の増加とと もに粒径は増大し、アスペクト比は減少した.本実験に おいて、短径が約 2 μ m、アスペクト比が約 4 の焼結可 能な粒子からなる粉末が得られた.

(4) 多層プレスを用いて、Al₂TiO₅-MgTi₂O₅固溶
 体の配向焼結体が得られた(配向度 f_{1/a}=0.76).

(5) この配向体は,成形時の加圧方向に垂直な方向 の方が平行な方向よりも熱膨張率が低く,いずれの方向 でも無配向体に比べてヒステリシスが小さい.

谊 対

- W. R. Buessem, N. R. Tielke and R. V. Sakauskass, Ceramic Age, 60, 38-40 (1952).
- B. Morosin and R.W. Lynch, Acta Cryst., B28, 1040-46 (1972).
- 3) 例えば, T. Kimura, T. Kanazawa and T. Yamaguchi, J. Am. Ceram. Soc., 66, 597-600 (1983).
- 4) 大門啓志,津坂和秀,山内敏恭,加藤悦朗,窯協,95, 515-19 (1987).
- 5) S. M. Lang, C. L. Filmore and L. H. Maxwell, J. Res. Nat. Bur. Std., 48, 298-312 (1952)..
- E. Kato, K. Daimon and J. Takahashi, J. Am. Ceram. Soc., 63, 355-56 (1980).
- 7) P. Hartman, J. Cryst. Growth, 49, 116-70 (1980).
- 8) K. Daimon and E. Kato, ibid., 75, 348-52 (1986).
- 9) F.K. Lotgering, J. Inorg. Nucl. Chem., 9, 113-23 (1959).
- 10) G. Bayer, J. Less Common Met., 24, 129-38 (1971).
- J. J. Cleveland and R. C. Bradt, J. Am. Ceram. Soc., 61, 478-81 (1978).