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The double proton transfer reaction of the isolated formic acid dimer has been investigated 
within the reaction surface Hamiltonian framework, using a newly calculated three­
dimensional ab initio potential energy surface. The symmetric (synchronous) proton 
movement, the asymmetric (asynchronous) proton movement and the relative motion of two 
formic acid molecules have been explicitly included in the calculation. The calculation gives a 
tunneling splitting of 0.004 cm - 1 , which is considerably smaller than a previous theoretical 
prediction (0.3 cm - I ). An effective tunneling path has been calculated from the lowest 
vibrational eigenfunction of the reaction surface Hamiltonian, and the path deviates 
significantly from the minimum energy path on the potential energy surface. The new results 
are consistent with the conventional understanding of heavy-light-heavy mass combination 
reactions. The effective reaction path from this calculation reveals evidence of asymmetric 
proton movement. However, a synchronous double proton transfer is the major mode of 
reaction. Tunneling splittings for a few excited vibrational levels have also been calculated 
within the reaction surface Hamiltonian framework. Vibrational excitation of a large 
amplitude, heavy atom mode dramatically increases the tunneling splitting. 

I. INTRODUCTION 

The formic acid dimer (FAD) is the smallest carboxylic 
acid dimer. It has been extensively investigated as a model 
double proton transfer system. Numerous experimental l

-
5 

and theoretical6-9 papers on FAD and related systems have 
been published in recent years. 
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Early theoretical work on FAD was primarily con­
cerned with its equilibrium geometry and its electronic 
structure.6-9 In particular, of the earlier papers, the calcula­
tion of Hayashi et al. 8 involved a systematic determination of 
the electronic structure at the SCF-CISD (self-consistent 
field-singly and doubly excited configuration interaction) 
level. These authors obtained a value of 12.3 kcal/mol for 
the classical energy barrier, i.e., the energy difference be­
tween the equilibrium geometry and the saddle point on the 
geometrical potential energy surface. 

The minimum energy path (MEP) 10 on the potential 
energy surface for the double proton transfer of FAD in­
volves a complex set of nuclear displacements (See Sec. III 
of this paper). Starting at the equilibrium geometry (Fig. I), 
the initial motion along the MEP is predominantly heavy 
atom displacements, bringing the formic acid monomer 
units closer to each other. Near the barrier (geometrical sad-
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Science, Myodaiji, Okazaki, 444 Japan. 
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dIe point on the potential energy surface), the MEP becomes 
hydrogenic motion as the protons are transferred. 

The double proton transfer of FAD is analogous to the 
well-studied double proton transfer of benzoic acid dimers in 
the solid statel(p) and the intramolecular single proton 
transfer in gas phase of malonaldehyde. II-13 In these sys­
tems, the proton transfer process is manifested by a tunnel­
ing splitting of the ground vibrational state of the system. In 
fact, a tunneling splitting may also be calculated for certain 
excited vibrational states for proton transfer reactions of this 
type. 13 

The first calculation of a tunneling splitting for FAD 
was reported in 1987 by Chang et al.9 yielding a splitting of 
I:l. = 0.3 cm - I. They employed a WKB method in analogy to 
a previous calculation of malonaldehyde. II The calculation 
of the tunneling splitting was based on the assumption that 
the proton transfer occurs through the geometrical saddle 
point on the potential energy surface and the proton transfer 
motion is entirely hydrogenic. 

The tunneling splitting of FAD has never been observed 
experimentally, although some indirect evidence of tunnel­
ing has been reported,I-5 and a rigorous assessment of the 
theoretical results is not yet feasible. Indeed, new theoretical 
results on FAD would be helpful to guide experimental work 
on this problem. 

Considering the importance of the double proton trans­
fer of FAD as a key prototype for multiple proton transfer 
reactions, we recently began a considerably more extensive 
and more detailed calculation on this system than has been 
published to date. We chose to employ the reaction surface 
Hamiltonian framework which has been shown to be an ef­
fective method for calculating tunneling splittings for proton 
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transfer reaction, such as in malonaldehyde. I 1-12 Proton 
transfer reaction between heavy atoms (e.g., oxygen) fall 
into the heavy-light-heavy category of reaction dynamics. 
Reaction motion for these systems can deviate strongly from 
the MEP. 12

-
17 Many effective procedures have been devel­

oped to make tunneling calculations for heavy-light-heavy 
systems. The reaction surface Hamiltonian approach is well 
suited to tunneling splitting problems, especially for the cal­
culation of tunneling splitting in excited vibrational states 
and the determination of vibrational wave functions in pro­
ton tunneling reactions. As discussed below, the reaction 
surface Hamiltonian approaches allow for an explicit treat­
ment of multidimensional vibrational dynamics-albeit at 
an approximate, reduced dimensionality level. 

The reaction surface Hamiltonian method, introduced 
in 1986 by Carrington and Miller, 12 involves the decomposi­
tion of coordinate space into two parts, a reaction surface 
and a small displacement from the reaction surface, as dis­
cussed in Sec. II. Carrington and Miller demonstrated the 
approach for a calculation of the tunneling splitting of the 
intramolecular proton transfer of malonaldehyde, as repre­
sented by the following: 

H 
o _~~ ____ -H~ 

... ~ 

tunneling 
\I I 
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r~" H 
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These investigators calculated the tunneling splitting 
for malonaldehyde by solving an effective nuclear Schro­
dinger equation, using two independent variables, the O-H 
bond lengths r l and r2• The remaining degrees of freedom 
were adjusted to minimize the potential energy part for given 
sets of (r l,r2). The contribution from the adjusted degrees of 
freedom to the intramolecular proton transfer were included 
adiabatically, assuming local normal modes. 

In 1989, we reported a three-dimensional reaction sur­
face Hamiltonian calculation of the tunneling splitting of 
malonaldehyde that included rl ,r2 and the intraoxygen sepa­
ration as the surface variables. 13 The calculated tunneling 
splitting was - 50% smaller than experiment and the calcu­
lated hydrogen/deuterium isotope effect was within 40% of 
experiment. In addition, tunneling splittings were calculated 
for excited vibrational states of malonaldehyde. The ground 
state vibrational wave function of malonaldehyde was ana­
lyzed to extract an effective curvilinear tunneling path. 

In this paper, we describe a reaction surface Hamilto­
nian calculation for FAD. One motivation for this work was 
to estimate the previously unmeasured tunneling splitting 
for FAD. Eventually, when experimental values are avail­
able, the comparison to our theoretical prediction will offer a 
new test of the accuracy of the reaction surface Hamiltonian 
method. The results of this paper also offer insight into the 
multidimensional character of double proton transfer reac­
tion, especially with regard as to whether the double proton 

transfer reaction involves asynchronous proton motion. Fin­
ally, we also explore the role of vibrational excitation in pro­
moting the tunneling processes. 

The paper is organized as follows. Section II reviews the 
basic formulation ofthe reaction surface Hamiltonian meth­
od and describes in detail our theoretical methods including 
the electronic structure calculations that were used to con­
struct the potential energy surface and the vibrational calcu­
lations that were used to determine the tunneling splitting 
and vibrational wave functions for FAD. Section III de­
scribes the results, making comparison where possible to ex­
perimental data and previously published theoretical calcu­
lations. The paper is summarized in Sec. IV. 

II. METHOD OF CALCULATION 

A. Summary of reaction surface Hamiltonian method 

In this section, we summarize the reaction surface Ham­
iltonian method which was originally proposed by Carring­
ton and Miller. 12 Our alternative formulation of the proce­
dure is also reviewed. 13 

The essence of the method is that the entire coordinate 
space (X) is divided into two parts, a reaction surface 
[S(r)] and a small displacement [L(r)Q] from the reaction 
surface: 

Entire Space X 
L(r) Q 

surface 

An arbitrary point X in mass-weighted molecule fixed Carte­
sian coordinates is related to S(r) and L(r)Q as follows: 

3N- 6 - m 

X j = Sj (r) + I L ja (r)Qa, (2.la) 
a 

(2.lb) 

where (Xj,YoZj) is the position of atom i in Cartesian coordi­
nates, N is the number of nuclei, mj is the nuclear mass of 
atom i, and m is the dimensionality of the reaction surface. r 
is a reaction surface variable. S(r) is the reaction surface 
expressed in terms of mass-weighted Cartesian coordinates. 
L(r) tran,sforms small displacements of the bath coordinates 
to mass-weighted Cartesian coordinates. Q is a local normal 
coordinate. Ideally, this partitioning should be taken such 
that S(r) describes every important reaction path and L(r) 
Q describes only dynamic coupling to the S(r). 

The reaction surface Hamiltonian 12 takes the following 
form: 
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3N-6-m 

+ Vo (r) +! L w! (r)Q!, 
a 

(2.2) 

where Pr and PQ are conjugate momenta ofr and Q. G(r) is 
essentially equivalent to the Wilson's G matrix. 18 The explic­
it form of the G matrix is given in Eq. (2.6) of Ref. 13. w(r) 
can be calculated as Eq. (2.20) of Ref. 13. In Eq. (2.2), the 
reaction surface is assumed to be the minimum energy su,­
face, see below. 12.13 

To construct the minimum energy surface, the follow­
ing condition must be fulfilled at every surface point; 

{I - &,}(r) [S(r) ]}gx [S(r)] = O. (2.3) 

where g" is the gradient vector in a mass-weighted Cartesian 
coordinate system defined as follows: 

[ (X)] . = aV(X). 
gx I ax 

I 

(2.4) 

9 (T) is the projection operator which projects an arbitrary 
vector onto the r space. [The explicit form of the [!lJ(r) is 
given in Eq. (2.12) of Ref. 13.] 

The adiabatic Hamiltonian 12 can be obtained by neg­
lecting the off-diagonal couplings in Eq. (2.2), yielding the 
following equation: 

a 
(2.5) 

CJ is obtained by diagonalizing G QQ (r) w (r) as follows: 

3N- b- m 

~ [GQQ(r)]apw~(r)Apy(r) =CJ!(r)Aay(r). 

(2.6) 

B. Reaction surface of FADI 

The adiabatic reaction surface Hamiltonian procedure 
for calculating vibrational wave functions and tunneling 
splittings is based on certain approximations with regard to 
the dynamic coupling of bath and surface variables. The ac­
curacy of the procedure depends on the suitability of the 
choice of surface coordinates. In previous calculations of 
tunneling splittings by the reaction surface Hamiltonian 
method (i.e., for malonaldehyde), the reaction surface co­
ordinates were chosen based upon intuition. An attempt was 
made to include the internal displacements most obviously 
coupled to the proton transfer process. For FAD, the choice 
of surface variables should allow for some of the special fea­
tures of this double proton transfer reaction, such as the 
expected importance of the distance between the monomer 
units on the proton transfer energetics and the possibility 
that the transfer can be synchronous or asynchronous. The 
starting point for our choice of a surface coordinate system 
was the set of six internal coordinates, '1' '2' '3' '4' R 1, and 

R 2 : '1-'3 and '2-'4 represent the proton movement of HAl 

and HBl> respectively, RI and R2 represent the relative mo­
tion of the two formic acid monomers. Using these six inter­
nal coordinates, we define the following four symmetry 
adapted coordinates, PI' P2' P3 and P4: 

PI ='1 +'2 -'3 - '4' 

P2 =R 1 +R2' 

P3 ='1 -'2 - '3 + '4' 
(P4 = RI - R2 ). 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

PI and P3 describe the symmetrized proton movement of 
HAt and H Bt . The former coordinate represents the sym­
metric (synchronized) proton movement and the latter rep­
resent the asymmetric (nonsynchronized) one. P2 and P4 
describe the relative motion of two formic acid monomers. 
P2 shortens both O-H-O bonds simultaneously, lowering 
the reaction barrier height to double proton transfer (see 
below). In contrast, P4 is a wagging motion of two formic 
acid monomers shortening one O-H-O bond while length­
ening the other, making this coordinate less energetically 
important. Accordingly, we have included P4 in the bath, 
rather than treating it as a reaction surface variable. 

Usingp.,P2' andp3 as the reaction surface variables, the 
minimum energy reaction surface of FAD is defined by opti­
mizing the other geometrical degrees offreedom to minimize 
the potential energy surface according to Eq. (2.3). 

C. Potential energy surface and dynamiCS calculations 

For the calculation of the potential energy surface, we 
have used the ab initio SCF and the ab initio MCPF I9 (modi­
fied coupled pair functional) methods. The procedure for 
this calculation which is closely analogous to our previous 
calculation on malonaldehyde,13 is summarized as follows; 

(I) Constrained geometry optimization and normal vi­
bration analysis was carried out at the SCF level for 76 dif­
ferent points. Each point corresponds to a specific set of val­
ues for (p 1 ,P2,P3 ) . 

(2) MCPF calculations were carried out in order to get 
the dynamic electron correlation effect for 26 selected geom­
etry points on the SCF reaction surface. 

(3) Analytical expressions for the potential energy sur­
face at the SCF level [V~CF (r) ], the correlation energy 
[ V~T'(r)] and the local normal frequencies 
[ ~!N - 9 !W~CF (r) ] on the reaction surface were obtained by 
a least square fitting procedure. 

The final potential energy surface, including the zero­
point energy correction, is expressed as 
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3N-9 

V(r) = V~CF(r) + v~r'(r) + + 1 £i)~CF(r). (2.8) 

The basis sets used in the SCF calculation were of 
MIDI420 (split valence) quality augmented by p type polar­
ization functions (orbital exponent, a = 0.68) on the mov­
ing two protons. In the MCPF calculation, Duijneveldt's 
(7s4p) , (7s4p), (4s) basis sets were used on 0, C, and H, 
respectively.21 p type polarization functions (a = 1.00) on 
the moving protons and d type polarization functions 
(a = 0.85) on ° were also added to these basis sets. These 
basis sets were contracted to [4s2pld], [4s2p] , [2s(1p)] , 
respectively, employing the general contraction scheme22 

using atomic SCF orbitals. 
Vibrational eigenstates using the reaction surface Ham­

iltonian were obtained in the vibrational MCSCF calcula­
tions. Further details are given in Ref. 29 (c). 

The SIRIUS,23 ABACUS,24 MOLECULE/SWEDEN,25 and 
VIBRA 26 program systems were used for the constrained op­
timizations/normal vibrational analyses, the MCPF calcu­
lations and the vibrational MCSCF calculations, respective­
ly. 

III. RESULTS AND DISCUSSIONS 

A. Reaction surface and barrier energy 

The potential energy surface of FAD is portrayed in Fig. 
2 as a function of PI and P2' The equilibrium geometries 
(EQ) have a larger spacing between the monomers (P2) 
than the saddle point geometry (A), which lies on thepi = 0 
line by symmetry. Figure I gives a qualitative picture of the 
geometry changes associated with the EQ-A (saddle 
point) displacement. Note that contours are not shown in 
Fig. 2 for regions of the surface where the energy exceeds 
0.045 a.u. above the energy of the equilibrium geometry. 

Figure 2 was constructed with P3 (the asynchronous 
proton motion) fixed at (P3 = 0). In fact, P3 = 0 does not in 
general correspond to a minimum energy. This is demon-

EQUILIBRIUM 

l H-O",,- STRUCTURES /O-H 
H-C 

""-O-H 
C-H H-C 

I \ 

t t 
l H-O",,-

H-C C-H 

""-O-H I 
/O-H \ 

H-C C-H 

\ H-O/ 

FIG. I. A schematic representation of the double proton transfer process in 
formic acid dimer along the classical reaction path. 
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FIG. 2. A plot of the potential energy surface on the reaction surface, V(p) 
in Eq. (2.8). The missing variable PJ in the figure is fixed at 0.0. Four points, 
A, B, and C, D in the figure are described in the text. 

strated in Fig. 3, where the potential energy is plotted for 
three different sets of fixed P I andp2 valuesA, E, and C, lying 
on the P = 0 ridge between the "product" and "reactant" 
valleys. The letters correspond to points in Fig. 2. Note that 
for A and E, a single minimum in the energy dependence of 
P3 is observed at P3 = O. At these two points on the potential 

1.0 

'"":' 0.0 
= <Ii ....... 

... 2.0 
0 .... 
x 

£C 1.0 ., 
.: 

ro.l 
e; 

0.0 :::: .: ., -~ 
2.0 

1.0 

0.0 
-1.5 0.0 1.5 
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FIG. 3. Plots of the potential energies on the reaction surface, V(p) in Eq. 
(2.8) along P3 for three fixed sets of (P"P2) values. These three sets of 
(PloP2) are shown as the points, A, B, and C in Fig. 2. 
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energy surface, at most one single negative eigenvalue exists 
for the Hessian a 2 V(p)lap2

, i.e., along the PI direction. In 
contrast, at C in Fig. 3 V shows two minima, such that the 
Hessian matrix has two negative eigenvalues around PI = 0 
andp3 = 0, i.e., one alongpi and one alongp3' In mathemat­
ical terms, for point C the following condition is satisfied: 

(3.1 ) 

This signifies that at points C, the double proton transfer 
motion may be bifurcated into two equivalent paths in the 
full three-dimensional (PI' P2' and P3) surface. This is more 
clearly demonstrated if we examine a contour plot of the 
potential energy surface as a function of the symmetric coor­
dinate P I and the asymmetric proton coordinate P3 with 
fixed inter-monomer displacement coordinate P2' Figure 4 
shows a plot of this type with P2 = 6.0(A.). Note that this 
surface includes D in Fig. 2. In fact, the geometries that lie 
on a horizontal line passing through D on Fig. 2, correspond 
to the geometries that fall on a horizontal line bisecting Fig. 
4. In Fig. 4, we show a MEP in the (PI,p3) coordinate space 
for P2 = 6.0(A). Note that the path has two equivalent sad­
dle points separating the minimum energy points. Further­
more, the maximum point (D) has two negative eigenvalues 
as described above. Each path corresponds to asynchronous 
motion of the two protons, in the sense that P3 is not equal to 
zero at every point along the path. 

This bifurcation only occurs when a 2 V(p) I ap~ is nega­
tive. The regions where this is the case are indicated in Fig. 5 
by the dark areas. Note that C and D fall into a dark area, but 
A and B do not, see Fig. 2. The dark pattern area arises when 
Ipti becomes small and P2 becomes large, or when iPli be­
comes large and P2 becomes small. (See the position of the 
dark pattern in Fig. 5.) The asymptotic geometries of these 

Minimi"++-+++_l<f 
Point 0.0 

PI 0.0 

FIG. 4. A sketch of the potential em:rgy surface for the asynchronous pro­
ton transfer process in formic acid dimer. The solid circle line in the figure 
passing through the minimum energy points and the saddle points is the 
minimum energy path. See the text for further detail. 

'" a. 

7.0""""""""""""----
Each contour line: 0.005 (a.u.) 

6.4 

5.8 

5.2 

4.6 

4.0 

-2.5 -1.25 0.0 1.25 2.5 
PI (..\.) 

FIG. 5. A plot of the potential energy surface on the reaction surface, V(p) 
in Eq. (2.8). The axis system is same as that of the Fig. 2. The variablep, in 
the figure is fixed at 0.0. The dark pattern represents the area where the 
second derivative of V(p) with respect to P3 is negative. 

correspond to the high energy exit channels (dissociation). 
The lowest energy exit channel (i.e., FAD dissociating into 
two formic acid monomers) lies on the direction where both 
iPli and P2 become large. 

The bare potential energies (without the zero-point en­
ergy correction) at the SCF and the MCPF levels are plotted 
in Figs. 6 and 7, respectively. In these figuresp3 is set equal to 
zero. The inclusion of electron correlation effects lowers the 
reaction barrier-{ (saddle point energy) - (equilibrium 
geometry) }-and changes the equilibrium geometries. It 
also significantly alters the shape of the potential energy sur­
face. 

The total energies at the equilibrium structures and the 
saddle point are given in Table I, together with those of pre­
vious work. The reaction barrier of 16.5 kcallmol at the SCF 
level agrees well with the previous SCF prediction of 15.6 

'" a. 

7.0 -.--_______ Ea_'h_co_n'_o.r_lI_ne_: .:-.0.0_05--'..(0_ ••• .:-.) ~ 

6.4 

5.8 

5.2 

4.6 

4.0 -I-~--.--~--'--~----r-~--I 

-2.5 -1.25 1.25 2.5 

FIG. 6. A plot of the reaction surface, V~CF(p) in Eq. (2.8). The variablep3 

in the figure is fixed at 0.0. 
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7.0 

6.4 

---0$ 
5.8 

.... 
0-

5.2 

4.6 

4.0 

-2.5 -1.25 0.0 1.25 2.5 
PI (A) 

FIG. 7. A plot of the reaction surface, [V~CF(p) + V~O'(p)] in Eq. (2.8). 
The variable P3 in the figure is fixed at 0.0. 

kcallmol by Chang et al.9 Our MCPF prediction of 12.0 
kcallmol is very close to the single reference CISD predic­
tion (12.3 kcallmol) by Hayashi et al.s However, it should 
be noted that the geometries in both these correlated calcula­
tions are not fully optimized. The calculations of Hayashi et 
al. employed SCF optimized equilibrium and saddle point 
geometries for the CISD calculation of the barrier energy. In 
contrast, our calculation of the barrier energy is directly 
from our analytical expression for the potential energy sur­
face. Thus, the MCPF correction of the SCF level calcula­
tion, in our case, corrects the energies, and to some extent, 
the MCPF calculation also alters the geometries of the equi­
librium and saddle points (see Fig. 8). 

B. Basis set dependence and higher order dynamic 
correlation 

In order to evaluate the accuracy of our ab initio calcula­
tion of the potential energy surface, we have made bench­
mark calculations of the barrier energy for various basis sets. 
The results are summarized in Table II. The basis sets are 
summarized in Table III. For all of these calculations, the 
same equilibrium and saddle point geometries were used. 
These geometries were optimized at the SCF level with the 
basis set III (MIDI-4). 

TABLE I. A comparison of various calculations of the total energy and the 
proton transfer barrier for formic acid dimer. 

Total energy Barrier height Basis 
Method (a.u.) (kcal/mol) set 

This work 
SCF - 376.987662 16.5 IlIa 
MCPF - 378.140 971 12.0 Iva 
Previous work 
SCF(Ref. 9) - 377.651 6 15.6 (DZ+P) 
CI-SD(Ref.8) - 377.5568 12.3 (4-3IG) 

• See Table III. 

TABLE II. Calculated total energies and barrier heights from various cal­
culational schemes and different basis sets. The basis sets used are summar­
ized in Table III. 

Barrier 
Total energy height Basis 

Method (a.u.) (kcal/mol) set' 

SCF - 377.705 221 17.4 I 
CISD - 378.614770 12.4 I 
CISD(Q) - 378.790858 10.8 I 
MCPF - 378.828 989 10.1 I 
SCF - 377.210 790 16.4 II 
MCPF - 378.137 351 9.3 II 
SCF - 376.987 662 16.5 III 

• See Table III. 

The best SCF prediction with the large basis set, I gives a 
reaction barrier of 17.4 kcallmol. The smaller basis sets, II 
and III, give 16.4 and 16.5 kcallmol, respectively. Even with 
the smallest basis set III (MIDI-4), the difference of the 
reaction barrier from the best SCF prediction is at most 1 
kcallmol. 

The single reference CISD calculation lowers the bar­
rier height to 12.4 kcallmol. (The weight of the SCF config­
uration at the two geometries are larger than 0.9, and no 
other important electron configurational state is found for 
the reference state.) The effect of the quadruple excitations 
estimated from Davidson's correction27 with basis set I 
further lowers the barrier height to 10.8 kcallmol 
[CISD(Q)]' which is very close to the 10.1 kcal/molofthe 
MCPF prediction. The method we employed to calculate the 
potential energy surface, a MCPF calculation with basis II, 
gives reaction barrier of9.3 kcallmol. 

C. Geometries 

We have determined the equilibrium and saddle point 
geometries at the SCF and the MCPF levels of theory. These 
geometries are shown in Fig. 8, together with the experimen­
tal prediction. 2 We mention again that the predicted geome­
tries at the MCPF are not completely optimized, as dis­
cussed above. 

TABLE III. The basis sets used for the calculations in Tables I and II. 

Ia IIa mb IV" 

P [3s2p] [2slp] [2slp] [2slp] 
(tunneling (6s2p) (4s1p) (4slp) (4slp) 
protons) 

0 [4s3p2d] [3s2pldJ [3s2p] [4s2pld] 
( IIs6p2d) (7s4pld) (7s4p) (7s4pld) 

C [4s3pld] [3s2p] [3s2p] [4s2p] 
(11s6pld) (7s4p) (7s4p) (7s4p) 

H [3slp] [2s] [2s] [2s] 
(6slp) (4s) (4s) (4s) 

"van Duijneve1dt etal.(Ref. 21) . 
bMIDI-4" . Tatewaki et al.(Ref. 20). 
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FIG. 8. The eqUilibrium and the saddle point geometries of formic acid 
dimer at the SCF and the MCPF /SCF levels. EXP. is the experimental pre­
diction of the equilibrium structure (Ref. 2). 

When electron correlation effects are included, the 0-
H, the H' .. 0 and the O' .. 0 distances and the L (H' .. O-C) 
and the L(O-H" '0) angles are significantly altered from 
the SCF predictions (see Fig. 8). The correlated values are 
closer to the experimental values. An exception is the O' .. 0 
distance. 

D. Formic acid monomer and dimerization energy 

We have also calculated the total energy and the equilib­
rium geometry of formic acid monomer (FA) in order to 
further test the reliability of our calculational scheme. The 
equivalent calculational scheme to that of FAD was em­
ployed for these calculations; 

( 1) The O-H distance was chosen as the reaction sur­
face variable. 
(2) The one-dimensional minimum energy surface was 
calculated at the SCF level. 
(3) MCPF calculations were carried out in order to 
make corrections for the correlation effect. 
( 4 ) The equilibrium geom etry and the total energy were 
determined from the analytical expression of the one 
dimensional potential energy surface. 
The predicted equilibrium geometry is shown in Fig. 9, 

together with the experimental prediction.3 At the MCPF 
geometry, the O-H distance is. remarkably altered from the 
SCF prediction and is closer to the experimental value. 

The dimerization energy of FA (the dissociation energy 
for the lowest energy exit channel in FAD) (De) is shown in 
Table IV, together with the three experimental values.4 The 
13.9 kcal/mol of the De in the MCPF prediction falls in the 
range of the experimental values. 

0.954 

l.3SZOi"'H '--'112.1 

1.082 )124.5 

H-~ 
124.8 \1.205 

o 

SCF 

0.977 

I.3SZOi"'H 
'--'111.9 

1.082 )124.5 II--: C 
124.~\ 1.205 

o 

MCPF/SCF EXP. 

FIG. 9. The equilibrium and the saddle point geometries of formic acid 
monomer at the SCF and the MCPF/SCF levels. EXP. is the experimental 
prediction of the eqUilibrium structure (Ref. 3). 

E. Ground state tunneling splittings 

We have calculated the frequencies and eigenfunctions 
of the lowest 16 vibrational states of the reaction surface. 
The frequency difference between the two lowest states 
(O'()()4 cm - 1) corresponds to the tunneling splitting of the 
ground vibrational state. The splitting for excited vibration­
al states will be discussed later. Table V compares the calcu­
lated tunneling splitting, and other properties, from this 
work with a previous calculation by Chang et al.9 The pre­
vious calculation differs in several respects which seem to 
account for much larger tunneling splitting. A significantly 
larger barrier (15.8 kcal/mol), calculated at the SCF level, 
was used in the calculation by Chang et al. But, more signifi­
cantly, the previous calculation employed a simple WKB 
model, in which the reaction coordinate was assumed to be 
well approximated by pure O-H stretching motion, and the 
effective barrier energy was still assumed to be the barrier 
energy of the saddle point. Our calculations reveal that the 
tunneling path (see below) deviates so significantly from the 
region of the saddle point, that a much larger effective bar­
rier applies to this reaction. Our results suggest that the sim­
ple WKB model is not appropriate for FAD. 

F. Normal vibrations and excited vibrational states 

The normal vibrational analysis at the equilibrium ge­
ometry of FAD is shown in Table VI, together with the sub­
space normal frequencies «(Us) at the same equilibrium ge­
ometry. The (Us is defined as follows: 

TABLE IV. A comparison of various calculated values of the dimerization 
energy for formic acid (kcal/mol). 

Do 
Zero-point 
energy correction 

D. 

'Ciague et al. [Ref. 4(a) J. 
bMathews et al. [Ref. 4(b) J. 
" Henderson [Ref. 4(c) J. 

SCF 

19.1 
- 2.3 

16.8 

MCPF EXP. 

16.2 
_ 2.3d 

14.8 ± 0.5a 

13.9 14.1 ±O.l b 

11.7 ± 0.1" 

d The zero-point energy correction was taken from the SCF calculation. 

J. Chem. Phys., Vol. 94, No.5, 1 March 1991 
Downloaded 26 Aug 2010 to 133.68.192.94. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



3640 Shida. Barbara. and AlmlOf: Double proton transfer 

TABLE V. The tunneling splitting of the ground vibrational state and the 
effective barrier height for formic acid dimer. 

Tunneling splitting (cm - I ) 
Effective barrier 
height (kcal/mol) 

Bare barrier height 
(kcal/mol) 

Zero-point energy 
correction (kcal/mol) 

"Chang et al.(Ref. 9). 

This work 

0.004 
11.8 

12.0 

-0.2 

Previous work" 

0.3 
15.8 

15.6 

0.2 

where H(X) is the nuclear Hessian matrix (with the rota­
tional and the translational components already projected 
out in mass-weighted Cartesian coordinates) and g}(r)(X) 
is the projection operator which projects an arbitrary vector 
onto r space (See Sec. II). The three CUs values corresponds 
to the normal frequencies on the reaction surface. 

The two CUs with high frequencies (3674 and 3683 
cm - I) have nearly exact correspondence with the two high­
est frequency modes in the full space. (The overlaps between 
the modes are 0.99 and 0.97, cf. Table VI.) These two modes 

TABLE VI. Vibrational normal modes at the SCF level for the formic acid 
dimer. The relationship between normal modes of the subspace and the full­
space are indicated by arrows. The numerical value associated with each 
arrow is the magnitude of the vibrational overlap of the pair of modes con­
nected by the arrow. See the text for further detail. 

Subspace Full space 
(em-I) (em-I) 

Overlap Character 

A. 
177 COA2-HAI-OS3. OS2-HsI-OA3 bend 

0.84 .... 207 Inter-monomer stretch 
0.30 .... 700 0A2-CM-OA3' OS2-CS4 -OS3 bend 
0.26-+ 1291 0 A2 -CA4 • OS2-CB4 stretch 

767 0.25 .... 1499 CA4-OA2-HAI' CB4-Os2-HsI bend 
1539 OA2-CM-HAS' OS2-CB4 -HSS bend 

0.27 .... 1817 0 A3 -CA., OS3-CB4 stretch 
3380 CM-HAS ' CB4-Hss stretch 

3674 • 3705 OA2-HAI,OS2-HSI stretch 
0.99 

B. 
255 OA2 -OS3' OS2-OA3 stretch 

1289 0 A2 -CA •• OS2-CB4 stretch 
1476 CM -0 A2 -HAl' CB4 -OS2 -Hs, bend 
1534 0A2-CA.-HAS. OS2-CB4-Hss bend 
1861 0 A3 -CM• OS3-CB4 stretch 
3378 CM -HAS' CB4 -Hss stretch 

3683 • 3770 OA2-HAI,OS2-HSI stretch 
0.97 

B. 
254 CA.-OA2 -HAl> Cs.-Os2-HsI bend 

(out-of-plane mode) 963 OA2-HAI' OS2-HSI bend 
1175 CM-HAS ' CB4-Hss bend 

Au 
90 twist about CA.-HAS' Cs,-Hss 

(out-of-plane mode) 180 0A2-HAI-OS3' OS2-HsI-OA3 bend 
1005 OA2-HAI.OS2-HSI bend 
1181 CM-HAS ' CB4 -Hss bend 

are the symmetric (Ag) and the asymmetric (Bu) O-H 
stretching modes. The remaining mode (cus = 767 cm- I

) 

has significant overlap with several normal modes of Ag 

symmetry in the full space. However, the main component of 
the CUs = 767 cm -I mode is the intermonomer stretch, con­
sistent with our choice of P2 as a surface variable. 

As stated above, we have calculated the frequencies and 
eigenfunctions for the lowest 16 vibrational states of the re­
action surface. The levels fall into 8 pairs whose average 
frequencies (transition energy) and splittings are summar­
ized in Table VII. The levels can be straightforwardly as­
signed to overtones and combination levels of the harmonic 
modes of the subspace. The vibrational spacings are nearly 
perfectly harmonic. 

The proton tunneling splitting dramatically increases as 
successive quanta are added to mode 1, which corresponds 
to large amplitude relative motion of the monomer units. We 
observed an analogous enhancement of the tunneling split­
ting of malonaldehyde where the 0-0 stretching vibration 
was excited. 13

•
28 For FAD, the tunneling splitting presum­

ably increases (in simple terms) because as mode 1 is excit­
ed, the root mean square amplitude of the heavy atom mo­
tion increases. Thus, there is a larger probability of smaller 
P2 values, i.e., where proton tunneling is more effective. In 
contrast, vibrational excitation of mode 2 (primarily asym­
metric proton stretch) does not increase the vibrational am­
plitude in the region of the surface where tunneling is fa­
vored. In fact, excitation of mode 2 actually reduces the 
tunneling splitting. 

G. Tunneling path 

We have extracted the effective proton tunneling path 
from the lowest vibrational eigenfunction ofthe reaction sur­
face Hamiltonian. For this purpose, we first define orthonor­
malized, mass-weighted coordinates (ql, q2' and q3) as the 
surface variables (The detail of these coordinates is de­
scribed in Appendix 3 in Ref. 13). The potential energy sur­
face in this coordinate system is shown in Fig. 10. q I' Q2, and 
Q 3 correspond to the original internal coordinates, PI' P2, and 
P3' respectively, with mass scaling factors. The significance 
of the dark pattern in Fig. 10 is analogous to Fig. 5. In this 
area, the second derivative of the potential energy surface 
with respect to Q3 is always negative. 

The MEP line in Fig. 10 is the minimum energy path 
(steepest descent path from the geometrical saddle point) in 

TABLE VII. A list of the excited vibrational energies and the correspond­
ing tunneling splitting on the reaction surface. 

Quantum No. 
Transition energy Splitting 

VI V2 (em-I) (cm- I ) 

0 0 0 0.004 
1 0 241 0.027 
2 0 481 0.112 
3 0 719 0.339 
0 1 605 0.002 
1 1 867 0.011 
2 1 1128 0.043 
3 1 1386 0.127 
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FIG. 10. A presentation of the potential energy surface, V(p) in Eq. (2.8), 
plotted in a mass weighted coordinate system, employing the new variables, 
q. See the text for further detail about the coordinate system and the two 
reaction paths, MEP and MPP. 

the q coordinates. Note that the minimum energy path can 
not be defined for the portion of the potential energy surface 
in the exit channels. We have used the gradient extremal 
criterion for this region of the minimum energy path. 29 

MPP in Fig. 10 is the most probable reaction path 
between the two equilibrium structures. We suggest the term 
maximal probability path for this reaction path. The MPP is 
defined as a steepest descent path of the negative probability 
distribution function for the vibrational ground state, 
-I<I>(q)1 2

• The steepest descent path starts at the saddle 
point and descends to the point oflargest nuclear probability 
(i.e., the reactant or the product). For the MPP in the exit 
channels, we have used the gradient extremal path for the 
MPP calculation, as described above for the MEP. (More 
detail about the MPP concept will be discussed in a forth­
coming article. ) 

In Fig. I I, the MPP, the MEP and the ground vibration­
al wave function are plotted in the same axis system as Fig. 
10. From Fig. I I, one can see that little amplitude of the 
vibrational wave function is found near the geometrical sad­
dle point (the midpoint of the MEP). It is clear that the 
MEP criterion, starting from the geometrical saddle point is 
not an appropriate criterion to define the tunneling path of 
FAD. 

The initial direction of the MPP from the reactant (i.e., 
one of the eqUilibrium geometries) is virtuaIly identical to 
that of the MEP. This initial direction is interpreted as the 
relative motion of two monomers which is mainly described 
by Q2' However, the MPP quickly changes its character to 
hydrogenic motion described by ql and shortcuts the MEP, 
even though the reaction barrier of the MPP is about twice as 
high as for the MEP (see Fig. 10). This behavior is consis­
tent with the previous conventional picture of heavy-light­
heavy mass combination systems.30 

Around the midpoint of the reaction, the MPP grazes 
the dark pattern in Fig. 10, indicating the potential involve­
ment of the asymmetric proton movement. We have calcu­
lated the tunneling splitting with q3 = 0.0 (frozen) and have 
found that the splitting decreases by 20%. From this it is 

4.5 

---
~3.5 
x 2.5 
::i 
cos 
'-' 

1.5 
... 

r::r 

0.5 

0.0 

-0.5 
-2.5 

q. 

FIG. 11. A plot of contours of the lowest eigenfunction of the reaction sur­
face Hamiltonian. The axis system and the two reaction paths are identical 
to Fig. 10. Equal spacing in arbitrary units was used for the contour plot. 
The contour plot in the right side is an expansion of the dotted region in the 
main figure. The contour spacing in the expanded region is 50 times smaller 
than the spacing for the main figure, see text for further detail. 

reasonable to assume that there is a certain probability for 
nonsynchronized proton movement, but that it is not an es­
sential element of the reaction. However, the absolute value 
of the calculated tunneling splitting is very smaIl (0.004 
cm - I), so small changes in the potential energy surface may 
alter this conclusion. 

H. Assessment of our reaction surface 

FinaIly, we will assess our choice of the reaction surface. 
We have employed minimum energy surface criteria to con­
struct the reaction surface, using symmetry adapted internal 
coordinates as the surface variables. These coordinates were 
chosen such that PI represents the symmetric O-H stretch­
ing motion, P2 represents the relative motion of two formic 
acids and P3 represents the asymmetric O-H stretching mo­
tion. However, this assignment is not always true in the 
whole region of the reaction surface, since we have used the 
displacement coordinates (PI and P3)' not the bond dis­
tances themselves. When bond distances become shorter 
than their equilibrium values, the potential energy increases 
rapidly, in general. Since PI and P3 have more freedom than 
the pure bond distances, no bond distance becomes shorter 
than its equilibrium value, even if PI andp3 take any values. 

Figure 12 shows the six asymptotic geometries of FAD 
on the reaction surface. When P2 is inappropriately smaIl 
compared with P I or P3' the molecule does not keep a planar 
structure, and P I or P3 change characters to out-of-plane 
bending motion instead of being normal O-H stretching mo­
tions. This situation is clearly demonstrated in the geome­
tries, A, B, C, and D of Fig. 12. The geometry, F, is the 
normal route to the lowest energy exit channel where two 
formic acid come apart monomers. The geometry, E, is also 
on the way to this exit channel. However, one of the hydro-
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P, = 0 
P2 -+ small 

P2 = 0 

P, = 0 

Pl -+ small 
p, -+ large 

PI -+ large 

P2 -+ large 

p, -+ large 

PI -+ large 

P2 -+ small 

P3 0 

PI -+ large 

Pl -+ small 
P3 -+ large 

PI -> large 

P2 -+ large 

P3 0 

FIG. 12. Six asymptotic geometries of formic acid dimer on the reaction 
surface. The corresponding P values of the six geometries are as follows 
(unit: A.): A: P, = 0.0, Pl = 0.0, P3 = 4.0; B: P, = - 1.2, P2 = 0.0, 
P3 = 4.5; C: P, = 0.0, P2 = - 1.0, P3 = 4.5; D: P, = - 1.2, P2 = - 1.0, 
P3 = 4.5; E: P, = - 2.5, P2 = - 1.5, P3 = 6.5; F: P, = - 2.5, Po = 0.0, 
P3 = 6.5. 

gen bonds breaks completely at first in this route, which has 
P3 constrained to be large. 

As seen in Fig. 12, our coordinate system includes mo­
tions other than the pure stretching motions. Table VIII 
shows the normal frequencies on the reaction surface at the 
SCF and the MCPF levels. The main characters of the nor­
mal modes are symmetric O-H stretch, asymmetric O-H 
stretch, and 0-0 stretch, respectively. These frequencies 
roughly correspond to the subspace frequencies in Table VI. 
The difference of the frequencies is due to the choice of the 
coordinate systems; the frequencies in Table VII are ob­
tained by Wilson's GF matrix method 18 in the p space. In 
contrast, those in Table VI refer to mass-weighted Cartesian 
coordinates. Since the p coordinates include various com­
plex motions, the frequencies in Table VI and Table VII are 
significantly different. 

TABLE VIII. Normal frequencies on the reaction surface by Wilson's GF 
matrix method. See the text for further detail. 

MCPFwith 
adiabatic correction 

(cm- I ) 

{d, = 3087 
{d2 = 1410 
{d3 = 245 

SCFwith 
no adiabatic correction 

(cm- I ) 

{dl = 2631 
{d2 = 1062 
{d3 = 290 

Due to the use of displacement coordinates, p and the 
minimum energy surface criterion, our reaction surface is 
somewhat different from our initial expectations. However, 
this situation occurs only in asymptotic regions, not around 
the important region for the tunneling. 

IV. SUMMARY, CONCLUSION, AND FUTURE STUDIES 

The double proton transfer reaction of FAD has been 
investigated within the reaction surface Hamiltonian frame­
work. A three-dimensional reaction surface has been calcu­
lated at a high level of ab initio accuracy. The calculated 
tunneling splitting is 0.004 cm - I, which is considerably 
smaller than the previous theoretical prediction which was 
based on a simple WKB method. The effective tunneling 
path (maximal probability path: MPP) on the reaction sur­
face has been extracted from the lowest eigenfunction of the 
reaction surface Hamiltonian. The MPP deviates dramati­
cally from the minimum energy path on the reaction surface. 
Our vibrational calculation shows some important evidence 
for the asymmetric proton movement around the midpoint 
of the reaction. Various other properties of FAD and the 
aspects of the reaction surface Hamiltonian method have 
been investigated and examined. 

We have reaffirmed that the reaction surface Hamilto­
nian method is a practical way to model chemical reactions, 
when the classical reaction path gives a poor description. In 
our present work, we have successfully used the minimum 
energy surface criterion to construct a reaction surface for 
FAD, using symmetry adapted internal coordinates as the 
surface variables. 
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