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The kinetics of domain growth associated with a first-order phase transition is studied in a system
with multiple-degenerate ordered states. Without assuming the constant growth rate of the nucleat-
ed domains, we derive a formula for the time evolution of the volume fraction of the growing
domains in one dimension. Computer simulations show very good agreement with the theory. A
rigorous relation for the two-point correlation function is also obtained.

I. INTRODUCTION

The kinetics of a first-order phase transition is
governed by nucleation and growth of domains in the
stable phase. Just below a first-order phase transition
point the high-temperature disorder phase becomes meta-
stable. Decay of the metastable state proceeds by nu-
cleation of the low-temperature phases with the aid of
thermal fluctuations. Domain growth after nucleation
has been a subject of both theoretical and experimental
studies for many years. Almost all the previous
theories! ™ are, however, restricted to the case of nonde-
generate ordered phase and of the constant growth rate.

In a previous paper, Ohta et al.’ have studied the ki-
netics of domain growth in systems with multiple-
degenerate ground states and with a nonconserved order
parameter. The system is characterized by a degeneracy
parameter p that is equal to the number of degenerate but
physically distinct stable low-temperature phases. In
many experimental situations such as ferroelectric and
structural transitions, the ordered phases are often degen-
erate.>” This motivated them to deal with a statistical
dynamics of degenerate domains.

Ohta et al.’ have derived for arbitrary values of p the
exact nonequilibrium scattering function of the newly
forming domains nucleated from the metastable uniform
state. This is an extension of the study by Sekimoto®
where the case p =1 was formulated. These two theories
give us not only the correlation functions but also, as a
special case, the volume fraction of the ordered domains
developed Kolmogorov! and Avrami? many years ago.

These theories are based on the assumption that the
growth rate is constant and the domains are spherical.
That is, the velocity of the domain front separating the
domain and the surrounding metastable state is indepen-
dent of time or the radius of domains. Although the con-
stant growth rate enables us to formulate the theory of
domain growth in a rigorous manner, it is a very restrict-
ed assumption in reality. The time evolution of the
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domain front is generally affected by such as the interfa-
cial tension and the elastic field. For instance, expansion
of a domain increases the domain front area and hence it
is energetically unfavorable. Thus the front velocity de-
creases as the domain size increases. Furthermore, as is
well known, the critical radius of nucleation becomes
finite when the interfacial energy is taken into account.
If one wishes to formulate this case, one has to regard
that domains grow at infinite velocity up to the critical
radius and then at a finite velocity. The theory of a con-
stant growth rate cannot be applied even if the front ve-
locity after nucleation is independent of time.> These two
are the example where the domain front velocity is a de-
creasing function of its size. When the growing stable
phase has a different lattice structure from the metastable
matrix, the elastic strain around the domains affects the
growing kinetics drastically.®® It has been shown that, if
domains are softer than the matrix, the domain growth is
decelerated while if those are harder the front velocity
tends to increase. The last case is an example that the
front velocity is an increasing function of its size.

Because of the lack of theories for a time-dependent
growth rate, one often encounters a difficulty in analyzing
experimental data. That is, if the observed volume frac-
tion does not fit into the Kolmogorov-Avarmi formula al-
lowing the time dependence of the nucleation rate,” one
may ascribe this to the time dependence of the growth
rate. However, because the corresponding theory is not
available, it is impossible to determine its explicit form
and to clarify uniquely the underlying physics within the
data.

In this paper we address the domain growth problem
without assuming the constant growth rate. Our theory
does not rely on any specific forms of the growth rate.
What we impose is that the front velocity is a monoto-
nous function of time. For simplicity, we restrict our-
selves mainly to one dimension. Hence the argument
concerning the origin of the time dependence of the
growth rate mentioned above cannot be applied since the
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interfacial energy does not play any decisive role of the
kinetics in one dimension. Nevertheless, the present
theory shows explicitly how the time evolution of the
volume fraction is influenced by the nonconstant growth
rate. Some of the properties are expected to hold qualita-
tively even in higher dimensions. In fact, it will be found
that the theory for decreasing growth rate, which is more
frequently observed experimentally than the increasing
case, can be extended to higher dimensions.

Although other assumptions are the same as those in
Ref. 5, we summarize here the model to make the paper
self-contained. Nucleation obeys the Poisson distribution
and the nucleation rate may depend on time. We do not
consider any correlation between nucleation events.
There is no interaction between the growing domains ex-
cept for a direct collision. That is, when two domain
fronts collide with each other, the interface disappears if
two domains are the same ordered phase whereas it
ceases to move if the domains belong to different phases.
Thus the system for p >3 eventually exhibits a cell pat-
tern of the ordered domains. We do not consider the fur-
ther coarsening of the cell structure.

In the next section, the volume fraction of the ordered
domains is calculated by allowing the time dependence of
the front velocity. We treat the cases of the increasing
and the decreasing front velocities separately. Here we
are concerned with a one-dimensional system. In order
to verify the accuracy of the theory, we carry out, in Sec.
III, Monte Carlo simulations. In Sec. IV, we derive an
exact relation for the two-point correlation functions for
arbitrary dimensions. This relation can extract the expli-
cit p dependence of the correlation function of the or-
dered domains. The only assumption used in this deriva-
tion is the equivalence and the independence of p-ordered
phases. The method to obtain the volume fraction de-
scribed in Sec. II cannot be applied to higher dimensions
especially when the front velocity increases with time.
This is discussed in the concluding remarks given in the
final section (Sec. V).

II. VOLUME FRACTION OF THE
ORDERED DOMAINS

We consider the situation such that by a temperature
quench the system at the high-temperature phase is
brought into the metastable state below but near the
first-order transition point and the nucleation of the low-
temperature ordered phases is initiated. The domain
growth is characterized by the the volume fraction and
the spatial correlation function of the ordered domains.
In this section we study the time evolution of the volume
fraction.

As in Ref. 5 we assume that the nucleation event obeys
the Poisson process. The nucleation rate which is the
probability of nucleation per unit space-time volume is
denoted by I(z) at time ¢ after quench. The system is
translationally invariant and is extended infinitely in d di-
mensions.

Before entering the theory for the time-dependent
growth rate, we briefly review the essential part of the
theory in Ref. 5. In the study of domain growth, it is
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most convenient to consider the trajectory of the motion
of a domain front in the (d +1)-dimensional space-time
coordinate. Suppose that we are concerned with the state
at position r. In order to cover this point by one of the
ordered domains at time ¢, a nucleation event has to
occur at the surface of a cone whose apex is at the point r
and ¢ in the (d +1)-dimensional space. The cone defined
in this way is called a casual cone.” An example of the
causal cone for an increasing growth rate in one dimen-
sion will be given in Fig. 1 below. The volume A‘Y(¢) of
the causal cone weighted by the nucleation rate I (¢) plays
a central role in the theory. It is defined by

A= [Tdr1(nVie—1), 2.1)
0
where
V(t)(=0 for t <0) (2.2)

is the d-dimensional volume of the nucleated domain.

The volume fraction is obtained easily by using the
causal cone when the domain front velocity is time in-
dependent. Let ¢(z) be the volume fraction of the meta-
stable domain at time ¢. The volume fraction ¥(¢) of the
ordered domains is then given by

(2.3)

It is noted that ¢(z) is equal to the probability of covering
a point by the metastable domain at time ¢. Now we cal-
culate the probability that a point r is covered by one of
the ordered domains for the first time in the infinitesi-
mal interval between ¢ and ¢t +dt. This is given by
#(t)d A'V(¢) since the probability that the point r is un-
covered is equal to ¢(¢) and the probability of nucleation
of one of the ordered domains in the shell between A‘V(¢)
and A'Y(¢ +dr) is given by dA"V(¢)> Integrating the
above probability from O to ¢, we obtain’

P()=1—exp[—AV(D)], (2.4)
where we have used the fact that
d(t)=exp[ —AV(1)] . 2.5)

This is a consequence of the Poisson process of the nu-
cleation events. A simpler derivation is to start with (2.5)
and use (2.3). The volume fractions ¢(¢) and 1(t) are re-
lated to ¢o(f) and ¢,(¢) defined in Ref. 5 as ¢(¢)=¢(t)
and Y(t)=pde,(¢).

Now we extend this method to the time-dependent
domain growth. First we consider the case where the
front velocity is an increasing function of time. Here we
restrict ourselves to a one-dimensional system. A
difficulty to generalize to higher dimensions will be de-
scribed in Sec. V.

In one dimension, the domain area is given by

t
V(t) 2f0dtlv(tl) , (2.6)
where v (z) is the front velocity and the time origin in
(2.6) is the instance when the domain is nucleated. We
evaluate the probability that the point x =0 in Fig. 1 is
covered in the interval between ¢, and t, +dt, for the
first time by an ordered domain. The cone with its apex
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at t =t, and x =0 is a causal cone. As mentioned above,
domains which are nucleated only on the surface of the
cone have the possibility to cover the point ¢t =¢; and
x =0. Suppose that a nucleation occurred at point 4 in
Fig. 1. Two thin lines (inverted cone) which meet each

J

t
dt,qs(tl)zfo‘dtzv(tl I (ty)exp[

where f(t;,t,) is the weighted volume of the hatched
area:

t

-t
f " dsu(s)
13—,

3

-1,

It is noted here that ¢(z,) in (2.7) is not given by (2.5) but
an unknown quantity to be determined as below. We ob-
tain 1(¢) after integration over ¢, from O to ¢ as

¢(t)=f0‘dt1¢(t1)p(tl) .

t
f(tl,t2)=ft2]dt31(t3)

ds v(s) (2.8)

(2.9

Using the relation 9¥(z)=1—¢(¢t) and the fact that
¢(0)=1, Eq. (2.9) can readily be solved as

t
P(t)=1—exp —2fo’dt1fo‘dtzu(zl—tz)mz)

Xexp[ (2.10)

—f(t,8,)]
This is the formula of the volume fraction for an increas-
ing domain front velocity. When v (¢) is independent of
time, f(t,,t,) vanishes so that (2.10) reduces the
Komolgorov-Avrami formula (2.4).

Here a remark is now in order. In the derivation of
(2.10) we have assumed implicitly that the point 4 in Fig.
1 belongs to the metastable states so that nucleation of

0 X

FIG. 1. The causal cones with the apex at t =¢ and t =¢, for
the increasing growth rate.

—f(1),8,)]=dt,6(1,
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other at point A represent the trajectory of the domain
fronts after nucleation. As is clearly seen from Fig. 1,
this nucleated domain can cover x =0 only if there is no
nucleation even in the hatched area. Thus the probability
is given by

JF(t,) (2.7)

I
the ordered phase is possible. One might doubt that this
is not always justified. In fact, if there occur two succes-
sive nucleation events as in Fig. 2, the region m-n on the
surface of the causal cone is covered by the ordered
domain without covering the point x =0 at time ¢,.
However, since we have imposed the condition that there
is no nucleation event in the hatched region in Fig. 1,
such a process does not enter in the calculation of the
probability (2.7) and it is legitimate to assume that the
surface of the cone remains at the metastable phase.

Next we consider the case where v (¢) (> 0) is a smooth-
ly decreasing function of ¢. The causal cone takes the
form shown in Fig. 3. Again we calculate the probability
such that the point x =0 is covered by an ordered
domain for the first time at t =¢,. The domain front nu-
cleated at point A in Fig. 3 reaches to x =0 at t =1¢,.
However this process is not possible if there was a nu-
cleation in the hatched region since the point A has been
covered by the ordered domain and does not belong to
the metastable state. Thus we have to take into account
the probability of no nucleation in the hatched region,
which is given by exp[ —g(¢,,%,)] where

t,—t t,—t
glty,ty)= f dt;I(t3) [fol 2dsv(s)+f02 *ds v (s)

_ftlitadsv(s)l .
0

(2.11)

FIG. 2. The case where the region m-n is covered by an or-
dered domain.
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0 X
FIG. 3. The causal cones with the apex at t =t and ¢t =t for
the decreasing growth rate.

By the method similar to the derivation of (2.10) we ob-
tain

t
P(t)=1—exp —2f0tdt1foldtzu(tl——tz)I(tz)

Xexp[ —g(t;,1,)] (2.12)
When v (t) is constant, g(¢,,¢,) vanishes so that the for-
mula (2.12) agrees with (2.10) and the previous result
(2.4).

Finally we consider the domain growth with a finite
critical radius of nucleation. The front velocity is written

as
v(t)=x.68(t)+ul(t), (2.13)

where 2x, is the critical width of domains and u (¢) is the
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growth rate after nucleation. Equation (2.13) cannot be
directly applied to Eq. (2.12) since it is valid only for a
smooth function v (¢). However a similar consideration
leads us to

—tlyx,

t+2
X, X

P(t)=1—exp (1— )

2
ct0

(2.14)

—2E(x,It)

Here, for simplicity, we have put u (#)=v,=const and
I(t)=1I,=const. The function E (x) is defined by

E(x):foxds%[l—exp(—s)] . (2.15)

In the limit x, —O0, (2.14) agrees with the known result
Y(t)=1—exp(—volyt?) . (2.16)

This is obtained from (2.4). One of the features of (2.14)
is that ¢(¢) in the limits ¢t — oo exhibits the exponential
decay with the power-law correction, ie.,
(t)=(x.Iyt) " exp[ —(2vo/x.)t]. This is a clear distinc-
tion from (2.16).

The formula derived in this section is not rigorous.
For instance, we have put the condition of no nucleation
in the hatched region in Fig. 3 for the decreasing case.
This assumes that the hatched region belongs to the
metastable phase. However, if there is a nucleation
shown by B, a part of the hatched region is covered by
the ordered domain so that the region of the metastable
phase becomes smaller. It seems impossible to take
rigorously this hierarchical process into consideration.

III. COMPUTER SIMULATIONS

Here we present the results of computer simulations in
one dimension. The system size (lattice points) L is
chosen as L =1560. However we have used only the data
in the middle of the system with the size L /2 to avoid the

w(t)

100.0

FIG. 4. The time dependence of the volume fraction for the constant growth rate. The vertical axis is W(¢) as a function of time ¢

in the horizontal axis.
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w(t)

0.6

0.4
T

FIG. 5. The time dependence of the volume fraction for the
those in Fig. 4.

boundary effect. In order to see the consequence only of
the time-dependent growth rate, we put the nucleation
rate I(t) to be constant, I (¢)=1,=0.8/L. The front ve-
locity is chosen as v(t)=ab exp(£bt) with a =0.1 and
b =0.2 for the increasing (+) and with @ =100 and
b =0.2 for the decreasing (—) cases. The reason as to
why we use the exponential growth rate is simply because
it enables us to extract the effects of the time dependence
most pronouncedly. The critical radius of nucleation is
put to be zero.

The domain growth is simulated as follows. Initially
the system is in the metastable disorder state. All the lat-
tice points are assigned by the number “0.” We generate
a uniform random number ¢ which is in the interval be-
tween 0 and 1 and specifies the possible nucleation point
x =cL. Then, we again generate a random number. If
this number is smaller than 0.8, we regard that nucleation
occurs at that point and assign the number 1, while if not,
the state of the point remains unchanged. Since we are
concerned with the volume fraction, it is unnecessary to
consider the degeneracy of the ordered phase. The nu-
cleated domain is then expanded in the magnitude v (¢)At
where the increment of time is chosen as Az =0.005.
Then we return to the first step. If the point specified by
x =cL has already belonged to “1,” we discard this point
and simply expand the domains.

In order to check the accuracy of simulations we first
performed simulations for the constant velocity v (¢#)=1.
Other conditions are the same as described above. Figure
4 shows the obtained volume fraction ¥(z) as a function
of time. The broken line is the average of 100 indepen-
dent runs. The vertical bars indicate the typical scatter
of the data. The full line is the rigorous result given by
Eq. (2.4) or more explicitly by (2.16). Note that two lines
are almost indistinguishable. This confirms the accuracy
of simulations.

The result for the increasing front velocity is shown in
Fig. 5. The broken line is the average of 100 runs with

-0 100.0

increasing growth rate. The meanings of the axes are the same as

the deviation indicated by the vertical bars. The thick
line is our theoretical result given by Eq. (2.10), which is
in very good agreement with the simulations. For com-
parison, the Komogorov-Avrami formula (2.4) substitut-
ed by the time-dependent velocity is also shown by the
thin line. The reason as to why the approximate result
(thin line) gives the rapid increase of ¥(z) compared to
our theoretical result and simulations is obvious. Sup-
pose that there are two growing domains as in Fig. 6.
One ( A) is nucleated earlier than the other (B). If the
domain (B) were absent, the domain ( 4) would grow as
shown by the dotted line. However when the second nu-
cleation occurs, the left front of ( 4) is blocked. Thus the
covering of the system is effectively delayed in the case of
the increasing velocity. This process is not incorporated
to the approximate theory given by the thin line.

Figure 7 displays the volume fraction for the decreas-

X

FIG. 6. A block of 4 domain by B domain. The dotted line
indicates the trajectory of the left front of 4 when it was not
blocked.
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FIG. 7. The time dependence of the volume fraction for the
those in Fig. 4.

ing front velocity. The meanings of the lines are the same
as those in Fig. 5. It is remarkable that the present
theoretical line is almost overlapped with the average of
the simulations.

In this way, it has been shown that the present theory,
although not rigorous, provides us with a very accurate
approximant for the volume fraction.

IV. CORRELATION FUNCTION OF
THE ORDERED DOMAINS

As far as the total volume of the ordered domains is
concerned, the degeneracy parameter p does not play any
important role in the expression of the volume fraction.
However, if we are interested in the structure of domains
of a specific phase, i.e., the structure function, we need to
determine the p dependence explicitly. In this section we
aim to solve this problem in aribtrary dimensions under a
condition as weak as possible.

We denote the ordered phases by n =1,...,p which
are statistically equivalent. The metastable state is denot-
ed by 0. The basic correlation function is G,(r;—r,,?)
which is the probability such that both of the spatial
points r; and r, are covered by the ordered domain 1 by
time ¢ after quench. Here we note that there are two pos-
sibilities to cover the points r; and r, by domain 1, as
shown in Fig. 8. One is the case where these two points
are covered by a common domain 1 [Fig. 8(a)] and the
other is the case that the points are covered by domains 1
that have nucleated by different nucleation events [Fig.
8(b)]. Let us denote the former probability by
C,(r;—r,,t). Notice that because of the equivalence of
the degenerate ordered states the latter probability is the
same as H,(r;—r,,t), the probability such that the point
r, is covered by domain one and the point r, by domain 2
by time r. We further introduce the probability
Co(r;—r,,t) that the points r; and r, do not belong to the
metastable domain O at time z. The correlation function

decreasing growth rate. The meanings of the axes are the same as

G (r; —r1,,t) then satisfies the relation

G (ry,ryt)= *Dp;lcl(rl,rz,t)-i- —%Co(rl —ryt) . (4.1)
p

This can be proved as follows. First of all, it is obvious

from the definitions that we have

G,=C,+H, . (4.2)

(b)

FIG. 8. Two possibilities to cover the points r; and r, by the
same ordered phase. (a) The two points are covered by a com-
mon domain. (b) The two points are covered by two domains
with different nucleation centers.
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Here and after we omit the arguments r and ¢ for simpli-
city. Next we note that the probability that the point r,
is covered by domain 1 and that the point r, is covered by
any of the ordered phases is given by G, +(p —1)H;.
Hence we have

Co=p[G,+(p—1DH,]. (4.3)

Eliminating H, from (4.2) and (4.3), we obtain Eq. (4.1).
It is noted here that another expression of Cj, is given by

Co(r;—Tpt)=1—2¢(1)+Gy(r,— 1) , (4.4)

where G| is the probability that both points r; and r, be-
long to the metastable state at ¢.

The relation (4.1) was first obtained in Ref. 5 by a
direct calculation of G, for spherical domains with a con-
stant growth rate. It should be emphasized here that the
present derivation indicates that (4.1) holds for more gen-
eral conditions. What we have assumed is only the
equivalence of the degenerate ordered phases.

We have attempted to evaluate explicitly the correla-
tion functions G, and G, for the time-dependent growth
rate by applying the method in Sec. II. However it turns
out that the calculation is complicated. One difficulty is
that we have to solve the coupled set of equations for G,
and G, using the relation (4.1) generalized to two
different times. Here we do not enter this problem fur-
ther since we have not obtained any concrete solutions.

V. CONCLUDING REMARKS

We have investigated the domain growth with the
time-dependent growth rate. The time evolution of the
volume fraction has been obtained in one dimension.
Here we discuss the possibility to generalize the theory to
higher dimensions. When the growth rate is an increas-
ing function of time, block of a growing domain by a
newly formed domain occurs in one dimension as was
shown in Sec. III. In higher dimensions, the situation is
entirely different since a domain can grow around a new
domain without interruption. Thus the block is less fre-
quent unless the nucleation rate is too large. Only when
a sufficient number of domains nucleate and surround a

T. OHTA, Y. ENOMOTO, AND R. KATO 43

growing domain completely, the domain is blocked. This
implies that the condition corresponding to no nucleation
in the hatched region in Fig. 1 should be replaced by a
more complicated one. Thus the theory for the increas-
ing growth rate cannot be extended directly to higher di-
mensions. In the decreasing case, however, such a
difficulty does not appear. We may apply the theory by
using the higher-dimensional version of the causal cone
in Fig. 3.

At the end of Sec. II, we have derived the volume frac-
tion for the constant growth rate but with a finite nu-
cleation radius. If we substitute the velocity (2.13) into
the Kolmogorov-Avrami formula (2.4), we obtain

Y(t)=1—exp(—volot?—2Ix 1) . (5.1)

This agrees with the result derived in Ref. 11 where (5.1)
was obtained under the approximation, in the present ter-
minology, such that the inside of the causal cone at time
t, in Fig. 3 always belongs to the metastable state. The
present result (2.14) is qualitatively different from (5.1).
Especially when v, =0, ¢(¢) shows an exponential decay
in (5.1) while (2.14) exhibits a simple power-law decay
(x Iot) 2.

So far we have considered the finite nucleation rate for
t >0. It is mentioned that if the nucleation rate is given
by I(¢)=1,6(2), the factors f(t,,t,, and g (¢,,t,) defined
by (2.8) and (2.11), respectively, vanish trivially. In this
case, the Kolmogorov-Avrami theory is valid for the
time-dependent growth rate.

Computer simulations in Sec. IV show excellent agree-
ment with the theory for both the increasing and the de-
creasing growth rates. Thus the theory, though here re-
stricted to one dimension, will be useful for analyzing ex-
perimental observation such as in Ref. 10.
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