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2-D LMA Filters——Design of Stable Two-Dimensional
Digital Filters with Arbitrary Magnitude Function——

Takao KOBAYASHIf, Kazuyoshi FUKUSHITT, Keiichi TOKUDATTt

SUMMARY This paper proposes a technique for designing
two-dimensional (2-D) digital filters approximating an arbitrary
magnitude function. The technique is based on 2-D spectral
factorization and rational approximation of the complex
exponential function. A 2-D spectral factorization technique is
used to obtain a recursively computable and stable system with
nonsymmetric half-plane support from the desired 2-D magni-
tude function. Since the obtained system has an exponential
function type transfer function and cannot be realized directly in
a rational form, a class of realizable 2-D digital filters is
introduced to approximate the exponential type transfer func-
tion. This class of filters referred to as two-dimensional log
magnitude approximation (2-D LMA) filters can be viewed as
an extension of the class of 1-D LMA filters to the 2-D case.
Filter coefficients are given by the 2-D complex cepstrum
coefficients, i.e., the inverse Fourier transform of the logarithm of
the given magnitude function, which can be efficiently computed
using 2-D FFT algorithm. Consequently, computation of the
filter coefficients is straightforward and efficient. A simple stabil-
ity condition for the 2-D LMA filters is given. Under this
condition, the stability of the designed filter is guaranteed.
Parallel implementation of the 2-D LMA filters is also discussed.
Several examples are presented to demonstrate the design capa-
bility.

key words: 2-D digital filter, LMA filter, 2-D spectral factoriza-
tion

1. Introduction

In designing two-dimensional (2-D) IIR digital
filters, one of difficulties of the problem is to ensure the
stability of the designed filter. This is due to the fact
that it is generally impossible to factor a 2-D
polynomial into a product of polynomials of lower
order. There have been several attempts to design
stable 2-D IIR filters with an arbitrarily prescribed
magnitude function™®,  Since these techniques
involve nonlinear optimization procedures, the
computational complexity of the filter design tends to
be high. An approach to simplifying the problem is to
employ separable filters. However, it has a potential
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problem that separable filters can realize only the
restrictive class of magnitude functions which have
quadrantal symmetry®. - It is known that nonsym-
metric half-plane (NSHP) filters should be employed
to realize a general magnitude function®.

In this paper, we propose a technique for design-
ing 2-D IIR digital filters with an arbitrarily prescribed
magnitude function. The technique is based on 2-D
spectral factorization and rational approximation of
the complex exponential function. For a given 2-D
magnitude function, a recursively stable system with
nonsymmetric half-plane support is obtained using a
2-D spectral factorization technique™. However, since
the obtained system has an exponential function type
transfer function, it cannot be realized directly in a
rational form. We introduce a class of realizable 2-D
digital filters to approximate exponential function type
transfer functions. We will refer such filters as 2-D log
magnitude approximation (LMA) filters because this
class of filters can be viewed as an extension of the class
of LMA filters® to two dimensions. Unlike other filter
design techniques based on the 2-D spectral factoriza-
tion™, the 2-D LMA filter leads to a straightforward
and computationally efficient design algorithm for
obtaining a stable filter. Filter coefficients are given by
the 2-D complex cepstrum coefficients®, i.e. the
inverse Fourier transform of the logarithm of the given
magnitude function. The complex cepstrum may be
efficiently computed using 2-D FFT algorithm. We
give a simple stability condition for the 2-D LMA
filters. Using this condition, we can easily guarantee
the stability of the obtained filter. Moreover, we can
derive an efficient network structure of 2-D LMA filters
for implementation on parallel VLSI array processors.

In Sect.2, we state a brief review of the 2-D
spectral factorization algorithm. Then we introduce
the class of 2-D LMA filters in Sect. 3. We also discuss
stability and implementation of the 2-D LMA filters.
In Sect. 4, we show several examples to demonstrate the
design capability.

2. 2-D Spectral Factorization
2.1 Two-Factor Decomposition

Let X(z, z) be the z-transform of a 2-D sequence
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{x(m, n)}. Suppose that X(z, z;) is analytic and not
zero on the unit bicircle I'*={(z, z)||a|=|z|=1}.
Then X(z,z) can be factored into two recursively
stable factors such that

C X(z, 2) =X+ (21, ) Xo- (21, 2) (1)

where Xg.: (21, z) and Xo_(z, z) are mix-min phase
and mix-max phase, respectively”®. Furthermore,
Xo+ (2, +o0) is 1-D minimum phase and Xo-(z, 0) is
1-D maximum phase.

The above factorization is obtained by decompos-
ing the 2-D complex cepstrum® given by

£(m, n)=~417[:£:1n[X(

~dwdw; (2)

Pl eiwz) ]eijmejwzn
b

as
X(m, n)==Xe.(m, n)+xo-(m, n) (3)

where Xo.(m, n) and $o_(m, n) are the projections
of X¥(m, n) onto the nonsymmetric half-planes Reo+
and Reo- shown in Fig. 1, respectively. Since regions
R+ and Ro- overlap at the origin, X(0, 0) should be
divided up between Xg. and Xo- such that

£(0,0) = %o+ (0,0) + Xo-(0,0). (4)
Then Xg.(z,z) and Xo-(z, z) are given by
In[ X+ (21, Zz)]= =

Xo+(m, n)z "zz"
(m,n)ERz+

(5)

Xo-(m,n)z "z "

In[ Xo- (z, Zz)]:(m’g;}?“
(6)

2.2 Application to Filter Design

The 2-D spectral factorization technique leads to a
simple approach to designing nonsymmetric half-plane

//%

N
NN

Fig.1 Nonsymmetric half-planes R+ and Ro-.
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filters which can approximate arbitrary magnitude
functions®. ]

Suppose that a desired 2-D magnitude function
D(w1, ws) is gven. We assume that D(w,, 2) is contin-
uous and that D(w;, wz) =D(— w1, —w2). We also
assume that there exists the inverse Fourier transform
of In[D(w1, @2)], i.e., the cepstrum d(m, n) given by

d(m, n) 1 / f In[D (w1, ws) &’ ™e™?"
~dwdw,. (7)
Let us consider the following transfer function:
F(za, z) =(mv7§;m* was (m, n)d(m, n)zi "z "
(8)
where
2, (n>0)U(m>0,n=0)
was(m, n)=31, m=n=0 "~ (9)
0, otherwise.
Since we have assumed that D(wi, ws) =D(— w1, — w2)
and, therefore, it holds dim, n)=d(—m, ) we
have
Re[ F(e’1, &™) ]=In[D(w1, w2) ]. (10)
Consequently, if we can realize
H(z, z)=exp[F(z, z)], (11)

then H(z, z) is mix-min phase and stable, and its
magnitude response becomes

|H (e, &%) |=D( w1, wz). (12)

It is noted that the impulse response of H(z, z) has
the region of support on the nonsymmetric half-plane
Ro+ and is in general infinite-extent sequence.

3. 2-D Log Magnitude Approximation (LMA) Fil-
ters

3.1 Realization of Exponential Function Type
Transfer Functions

To obtain the stable 2-D digital filter which has
the desired magnitude response, we should realize the
exponential function type transfer function given by
Eq. (11). However, since the complex exponential
function is not a rational function, filters having the
transfer function (11) cannot be realized directly. We
introduce here a class of 2-D digital filters to approxi-
mate exponential transfer functions. The new class of
filters is viewed as an extension of the class of log
magnitude approximation (LMA) filters® to the 2-D
case.

The complex exponential function exp(w) can be
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approximated by a rational function

L
1+2 AL,IWZ
exp(w) =R(w) =———7—"————, |W|[<Wpg,
1+§1 Ap(—w)!
(13)

where Wk, is the modulus of the zero or pole of R (w)
with the smallest modulus. For example, if we choose
A, as

a=3i()/ () a9

then Eq. (13) is the [ L /L] Padé approximant of
exp(w) at w=0.
Substituting w=F(z, z) into Eq. (13), we have

L
1+§1 AL‘,Z{F(Zl, Zz)}l

T .
1+§1 AL,!{"F(ZI: Zz)}l

RL[F(Zl, Zz)]: (15)

If max |F(e’1, e™2)|< Wy, then, from Egs. (12),
0=wi,w2=2r

(13), and (15), the magnitude response of R[F(z, ) ]
becomes

|R[F(e?, &%) ]| = D( w1, w2). (16)

Thus the filter with the transfer function (15) gives an
approximation to the desired magnitude function
D{wi, ws). We will refer to this filter as the 2-D LMA
filter. In addition, as in the 1-D case®™®, we will refer to
the filter with the transfer function F(z, z) as the basic
filter. The basic filter should have a convex region of
support which does not include the origin so that the
2-D LMA filter becomes recursively computable.

Since the error of the rational approximation of
exp(w) affects the performance of the 2-D LMA filter
crucially, it is desirable to determine the rational func-
tion in such a way that the maximum error is mini-
mized ; that is,

n/;nin Imla;xlln[c:xp(w) 1—In[R.(w)]| (17)
where
r=_ max |F(e™, /)| (18)

0=w1, w221

We can easily obtain a best or near-best approximation
using a conventional optimization technique such as a
complex Chebyshev approximation technique®® or
modified Padé approximation technique®.

3.2 Structure of 2-D LMA Filters

When a desired magnitude function D(w;, w;) is
given, the transfer function of the basic filter F(z, z)
is obtained from Eq. ( 8 ). Since the support of d (m, n)
is generally of infinite-extent, the support of f (m, n),
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the impulse response of the basic filter, is also of
infinite-extent. In order to realize the 2-D LMA filter,
we confine the support of f(m, n) to some finite-extent
region using a window method. Let wr(m, n) be a
window function confining the support to a finite-
extent region %r. Using this window, the transfer
function of the basic filter is given by
F(a, z) = flm, n)z"zs" (19)

m,n)ERe+NEF

where
f(m, n) =wes (m, n) wem, n) d(m, n). (20)

The frequency response Re[F (&', e’“?)] becomes a
smoothed version of In[ D(w:, w;) ], where the smooth-
ing function is the Fourier transform of wr(m, n)®.

If F(z, z) has a constant term f(0,0), the 2-D
LMA filter R;[F(z,z)] becomes noncomputable
because the constant term leads to delay-free loops.
However, rewriting Eq. (19) in the form

‘ F(Zh Zz) :f(O, O) + G(Zl, z) (21)
where
G(n,2)=  flm,mzmzt (22)

. (m,n)eRen 2r—(0,0)

we can obtain a realizable transfer function of the 2-D
LMA filter:

H(z,z)=C- RL[ G(a, Zz)] (23)
where C is the filter gain given by
C=exp[f(0,0)]. (24)

It is obvious that R.[G(z, z)] is recursively computa-
ble. A network structure of the 2-D LMA filter for L
=3 is shown in Fig. 2.

3.3 Stability

The exponential transfer function exp[ G(z, z) ] is
stable if the basic filter G(z, z) is stable. This can be
derived from the fact that the exp[G(z, z)] has no
singularities and zeros in the region in which G(z, z)
has no singularities. We comnsider here the stability
when the rational approximation in Eq. (13) is used.
Let H(z, z) of Eq. (23) be the transfer function of a
2-D LMA filter. Suppose that the basic filter is stable
and has the nonsymmetric half-plane support ® g ..
This means that G(zy, zz) is analytic in the region

_%_‘ G(z, %) G(z1, 22) }17—{ G_(zl, 22) }17
Az Az Az

Fig.2 Direct implementation of a 2-D LMA filter for L=3.
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D e +={(z1, 2)| | z1|=L, | | 21} U{ (21, 2) | | 2| 21, zo=
+00}®. Thus the following inequality holds for any
(71, 22) E Do+ from the maximum principle:

|Gz, z)|= max [G(z, 2)| (25)

Moreover, it can be shown® that the rational -approxi-
mation Ry(w) in Eq. (13), such as the Padé approx-
imant or the best approximation of exp(w), has no
poles and zeros in the region

2.000, L=1
lw|< W,={3.464, L=2 (26)
4644, L=3
because Wi < Wy,. If |G(z, z)| is bounded such that
max |Gz, z)|[< W, 27

(z1,22)El’
then, from Eq. (25), we have
|Gz, 2)|[< Wi, (71, 2) EDe+- (28)

Consequently, R.[ G(z, )] has no poles and zeros in
the region D+, i.e., R.[G(z, z)] is mix-min phase
and R.[G(z, +o0)] is 1-D minimum phase. There-
fore, the 2-D LMA filter is stable. In other words, for
the given transfer function of the basic filter G(z, z),
if we choose the order of the rational approximation L
such that
r= max |G(e™, &™) |< W, (29)

0=w1,w2=2w
then the 2-D LMA filter R.[G(z, z)] is stable. In
addition, the same result can be derived for the other
nonsymmetric half-plane support or quarter-plane sup-
port basic filters.

3.4 Parallel Implementation of 2-D LMA Filters

In Fig. 2 we have shown that the 2-D LMA filter
with the rational approximation of order L consists of
L basic filters. When an M X N NSHP FIR filter is
used as the basic filter, i.e., the basic filter has the
region of support {(m, n)||m|EM,|n|=N}N Re+
—(0,0), an output sample from the 2-D LMA filter
requires L(2MN + M + N +1) + 1 multiplications and
LQ2MN+ M+ N +1) additions. Thus the number of
multiplications and additions per output point is
roughly L times that of the M X N NSHP FIR filter.
However we can reduce the processing time per output
point as follows.

Let us consider computing the value of an output
sample at (m, n) in Fig.2. From the definition of
G (a1, z) in Eq. (22), it is easily seen that computing the
output sample of each basic filter at (m, n) does not
require output samples..of the other basic filters at
(m, n). This means that the computations in each

basic filter are performed simultaneously. Therefore,
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network structure shown in Fig. 2 is inherently suited
for parallel implementation. To derive a more efficient
network structure of 2-D LMA filters for implementa-
tion on parallel VLSI array processors, we rewrite Eq.
(13) in the form

P(w) _1+0(w)/E(w)

ReW) =y = T=0(w) /E(w) (30)
where

p<w)=1+§Ll Ao (31)

O(w)={P(w) —P(—w)}/2 (32)

E(w) ={P(w) + P(—w)}/2. (33)

Using the fact that there exists a continued-fraction
expansion of O(w)/E(w) in the form

ow) 1} 1
E(w)  [(wBr)™" " [(wBrz)™!

1]
+ [(wB,.)™!

(34)

we obtain a network structure of R.[G(z, z)] shown
in Fig.3(a)®). When Ry (w) is the [L/L] Padé
approximant of exp(w), the coefficient B;,; is given by

If we use a configuration as shown in Fig.3(b) to
realize the network of Fig. 3( a ), then the network has
the following features:

(a) Regularity: Each processor has the same struc-
ture with local interconnections except that the first
processor has extra two adders.

(b) Temporal locality: Since the basic filter
G(z, z) does not require the input sample at (m, »n) to
compute its output sample at (m1, n), there exists one

Input

Output
—t

(a)

Input

Processor 1 Processor 2 Processor §

[¢] utput 0

(b)

Fig. 3 Parallel implementation of a 2-D LMA filter for L=3.
(a) A structure of 2-D LMA filter based on
continued-fraction expansion.
(b) A systolized version.
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unit-time delay at each interconnection.
(c¢c) Synchrony: The data can be computed
synchronously with a global clock.

As a result, this network can be viewed as a
systolic array®®. If we ignore the processing time for
two adders and the communication time between
processors, the speed-up factor’® is L, where L is the
number of processors.

4. Design Examples

In this section, we present examples of the 2-D
LMA filter design algorithm applied to the approxima-
tion of general magnitude functions. The design
algorithm is summarized as follows:

(1) For a given magnitude function D(w,, ws), find
the cepstrum d(m, n) by inverse Fourier transforming
lIl[D(CUl, (()2) ]

(2) Using an appropriate window function we(m, n),
obtain the basic filter coefficients f(m, n) given by Eq.
(20).

(3) Determine L, the order of the rational approxi-
mation of the complex exponential function, such that
Eq. (29) holds. Then find A.; using the modified
Padgé approximate®.

In the following examples, we used 64 X 64-point
DFT to compute the Fourier transform.

Example 1. Lowpass filter—Consider a circularly
symmetric magnitude function given by

0dB, Jwi+ w%é%ﬂ
20 logio[ D(wn, w2) ]=
—30dB, otherwise.

Since this magnitude function yields an infinite-extent
sequence d(m, n), we confine the support of f(m, n)
by applying a circularly symmetric Kaiser Window®-®

wr(m, n)
J_—H—E
L[ayl] (m—f—n)/N]’ Jm <N
= Io(a’)
0, otherwise

(36)

where L(x) is the modified Bessel function of the first
kind of order zero, and « is a parameter. Then the
basic filter becomes the NSHP FIR filter with the
region of support {(m, n)|0</m?>+n®<N}N Ro..
For the case N =10 and ¢=46.0, the maximum value of
the magnitude response of the basic filter became r=
3.43. From Eq. (29) we let L=3 to obtain a stable
filter. Figure 4 shows the log magnitude response of
the designed filter with L=3, N=10, and ¢=6.0.
Example 2: Bandpass fan filter—Let the following
bandpass fan specification be the desired magnitude
response:
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dB
0
-10 / //’l;'II;;":: :m’»‘\\\\ i
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,,,,Il,l 000.0.‘%‘“\\\\\\5
ok i ' ‘t t‘\\\\}‘\}\\“

’I/ 'I
,'I

5{//1111,,
'o

i 0“ ‘\\\‘w&

(m,m)

(m,~m)

Fig. 4 Example 1. Log magnitude response of the designed
filter with L=3, N=10, and ¢=6.0.

20 10g10[D(a)1, CUZ) ]

1 1 3 1
—_ < _—_ —_— —_—
0dB, 47r§6=27r0r 47r§z9§ 37T
B and %né]a)zié%n
~30dB, otherwise.

where §=arctan (ws/w:). We used here the separable
Kaiser window given by

ley1— (m/N)?1h[ay1— (n/N)?]
Fa) ’

|n|=N

wr(m, n) = |m|SN

0, otherwise
(37)

with =12 and ¢=6.0 to confine the support of f(m, n)..
The obtained basic filter was 12X 12 NSHP FIR filter
with r=3.56. We, therefore, let L=3 from Eq. (29).
The log magnitude response of the obtained filter is
shown in Fig. 5.

Example 3: General magnitude function—In this
example, we show the result of the approximation of
an arbitrary magnitude function. Let the function
shown in Fig.6(a) be the desired log magnitude
response. We generated this magnitude function from
estimated power spectral data taken from a 128 % 128
face image. Using the rectangular window

I, |m|<N, |n|sN

wr(m, n) ={ -(38)

0, otherwise

with N =8, we obtained the 8 X8 NSHP basic filter
with #=2.51. Although L=2 is sufficient to stabilize
the designed 2-D LMA filter, we let L =3 to reduce the
approximation error. Figure 6(b) shows the log
magnitude response of the designed filter. Note that
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Fig.5 Example 2. Log magnitude response of the designed
filter with L=3, N=12, and ¢=6.0.
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Fig. 6 Example 3.
(a) Desired log magnitude function.
(b) Log magnitude response of the designed filter
with L=3, N=8.

the root mean square (rms) log magnitude error
defined by

(ejwm7 ejwzt) l

1
Crms = {Fog 2

k<K
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i (39)

where K is the DFT size, is e;ns=0.16 dB. In addition,
the obtained filter can be used to implement a realiza-
ble Wiener filter?.

—20 logio[ D{ w1k, war)

5. Conclusion

We have developed a technique for designing
stable 2-D digital filters which can approximate arbi-
trary magnitude functions. We introduced a class of
filters referred to as 2-D LMA filters to realize recur
sively computable and stable systems drived from the
2-D spectral factorization problem. The design proce-
dure is straightforward and simple. Filter coefficients
are given by the 2-D complex cepstrum coefficients
which can be efficiently computed using 2-D FFT
algorithm. We presented a stability condition under
which we can easily guarantee the stability of the
designed filters. We also discussed parallel implemen-
tation of the 2-D LMA filters.
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