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Bridge functions, the neglected terms in the hypernetted-chain (HNC) theory of classical fluids, are ex-
tracted with high precision from Monte Carlo (MC) simulation data for classical one-component plas-
mas. The MC bridge functions are extended by the use of the exact short-range Widom expansion and of
long-range boundary conditions arising from the compressibility sum rule. An explicit analytic expres-
sion for the bridge functions is then obtained, leading to improvement on the HNC scheme. Accuracy of
the improved HNC scheme is confirmed through comparison with the MC results and by examination of
the thermodynamic consistency. The extracted bridge functions are compared with those of other

theoretical schemes.

PACS number(s): 52.25.Kn, 61.20.Gy, 61.20.Ne

1. INTRODUCTION

The classical one-component plasma (OCP) is a system
of identical particles (called ions) with electric charge Ze
which are embedded in a rigid uniform background of
compensating charges [1]. In a theoretical treatment of
dense OCP fluid, the hypernetted-chain (HNC) approxi-
mation [2,3] is known to provide an accurate description
of interparticle correlations and thermodynamic func-
tions [1]. The HNC approximation ignores the bridge
functions or the contributions arising from the bridge di-
agrams, in the logarithm of the radial-distribution func-
tion, that is, the potential of mean force [4]. The HNC
scheme is good at portraying long-range correlations in a
Coulombic system [1], while the bridge functions account
for strong correlations at short distances.

Bridge functions are collections of closely-connected
diagrams [4]. Rosenfeld and Ashcroft [5] assumed that
the bridge functions as such would not depend on details
of the potential and thus should have a nearly universal
functional form. The bridge functions of the OCP were
thereby replaced by those of hard-sphere systems, which
were short ranged and stayed negative (repulsive) over
the whole range of interparticle separations. The bridge
functions for the OCP, a system with the softest interpar-
ticle potential, thus provide a crucial test for such a
universality hypothesis. Breakdown of the universality
ansatz in the vicinity of the first peak of the radial distri-
bution function g(r) was earlier demonstrated through a
calculation of the lowest-order bridge diagrams in the
OCP [6]. Evaluation of the bridge functions, therefore,
plays the essential part in an attempt to improve on the
HNC approximation scheme. A successful improvement
over the HNC scheme will be useful for an accurate treat-
ment of thermodynamic functions and the associated
phase properties in multicomponent charged systems [1].

Interparticle correlations sampled by Monte Carlo
(MC) simulation methods enable one to calculate accu-
rately the interaction energies in the OCP. The bridge
functions over the entire regime of interparticle separa-
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tion, however, cannot be derived directly from such simu-
lations, owing to lack of information in both short- and
long-range limits. The strong Coulomb repulsion at short
distances makes it impossible to sample g(r) at r=O0.
Since size of the MC cell is finite, the simulation data on
g (r) can be obtained reliably only up to approximately a
half of the cell size.

The purpose of the present paper is to extract bridge
functions accurately from the MC data for the OCP
correlation functions and then to develop a scheme of im-
provement over the HNC approximation by the use of
the bridge functions so extracted. For such an OCP, a
number of exact boundary conditions exist for the bridge
functions in the analytic formulas of the short-range ex-
pansions and in compressibility sum rules for the struc-
ture factors. We shall use these conditions for extrapola-
tion of the MC data over the entire regime of interparti-
cle separations.

In Secs. IT and III, extrapolations of the MC data for
the correlation functions toward short- and long-range
regimes are considered. We examine possible errors aris-
ing from the extrapolation processes in Sec. IV, and
thereby present accurate fitting formulas for the extract-
ed bridge functions, which lead to an improved HNC
scheme in Sec. V. Section VI discusses the consequences
arising from departure from the universality ansatz [5]
found in the present results and compares these with a
previous calculation due to Poll, Ashcroft, and DeWitt
[7]. Concluding remarks are given in Sec. VII.

II. EXTRAPOLATION OF THE MC DATA
TO SHORT RANGES

Since the ions are assumed to obey the laws of classical
statistics, an equilibrium state of the OCP with tempera-
ture T and number density n is determined by a single
Coulomb coupling parameter " defined as

'=(Ze)’/akyT , (1)

where the ion-sphere radius is given by
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a=(3/4mn)'"3 . )

Following the pioneering work of Brush, Sahlin, and
Teller [8], a number of investigators [9—-11] performed
MC simulations to elucidate the correlation properties of
the OCP under strong-coupling conditions (I"'>1). In-
crease of I" beyond unity leads to emergence of short-
range order in the OCP, which is reflected in an oscilla-
tory behavior of g (7); the plasma is expected to undergo
a freezing transition in a bcc-crystalline state at around
'=180.
The radial-distribution function is formulated as [4]

g(r)=exp —%+h(r)—c(r)+B(r) . (3)
B

Here ¢(r)=(Ze)*/r is the Coulomb potential, and ¢ (r) is
the direct correlation function, related to the total corre-
lation function,

h(r)=g(r)—1,
through the Ornstein-Zernike relation,

h(r=c(r+n [drc(lt—rDh(r) . @)

The B (r) in Eq. (3) is the bridge function representing all
the bridge-diagram contributions. Physical contents of
B (r) have been elucidated in terms of correlation formal-
isms based on the density-functional theory [1,6].

Equation (3), coupled with Eq. (4), constitutes a basic
set of equations for the correlation functions in the
theory of liquid structures. One of the closure schemes
for these sets of equations, the HNC approximation,
adopts B (r)=0in Eq. (3).

The set of relations (3) and (4) can alternatively be used
for a rigorous determination of B (r) once g (r) is known
by some means. With such a purpose in mind, we have
carried out MC simulations for g () in the OCP fluids at
four levels of Coulomb coupling: I'=10, 40, 80, and 160.
The number of particles confined in the cubic MC cell of
size L was N =1024, so that L =16.2a. The long-range
nature of the Coulomb potential has been accounted for
through combination of the periodic boundary conditions
with the Ewald sum technique. We have generated
7X10° configurations for each run and calculated g(r)
with 200 bins in the range of 0 <r <L /2.

The scheme illustrated by the flow chart of Fig. 1 has
been set out to extract the bridge functions from the MC
values of g (7). Exact boundary conditions at short dis-
tances and sum rules for the structure factors are
effectively used for the extrapolation of the finite-range
MC data. In this section, we take up extrapolation to the
short-range regime.

Features in the short-range correlations have been
studied extensively in conjunction with enhancement of
nuclear reaction rates in dense materials by Coulomb
screening [12]. The screening potential H(r) may be
defined in terms of g (#) as

H(r)_ T

T 7/a + Ing(r) . (5)

Comparison between Egs. (3) and (5) clearly indicates a

Short-range
expansion for
H(r), Eq. (6)

Extension of g(r)
beyond the MC
cell boundaries

Long-wavelength
<—|Iimit of S(q). Eq
FT, (10) 9

J
A 4
B(n
FIG. 1. Schematic diagram of the extraction process for the

bridge function B(r) from the MC radial-distribution function
g (r) where FT denotes Fourier transform.

close connection between B (r) and H(r), the latter of
which can be sampled directly by the MC methods.

It has been proved [13] that H(r) has a short-range ex-
pansion in a power series of x2[ =(r/a)?] as

%Q%=h0—h1x2+h2x4+ cee (6)
The coefficient A, is known [14] to take on I' /4 for an
OCP; the values of h, for binary-ionic mixtures have
been likewise obtained as a function of the charge ratio
[15].

The coefficient 4, is related with a mean-square value
of the microscopic forces acting on a given test particle
with charge 2Ze [13]. Let ®(r) be the Coulomb potential
(in units of kzT) acting on that test particle at r from all
other N particles forming the OCP with charge Ze. The
coefficient 4, is then calculated in the ensemble of MC-
generated configurations as

2
FZ
- 7
> 32’ e

a4
hy=—
2 384

where r| represents one of the Cartesian components of r,
and ( ) means the ensemble average. The values of 4,
calculated in accordance with Eq. (7) were tabulated in
Table 4 of Ref. [15]. Within the accuracy of the MC
sampling, we have thereby concluded that A, =0; the
computed values, smaller in magnitude than the extent of
errors, are far smaller than 4, =T /4.

Combining these short-range analyses with the MC-
sampling of H(r) in the intermediate distances [15], we
have derived an accurately parametrized expression for
the OCP fluid (5 <T" <180):

P d
dr?

do
dr,

2
A —32—3‘4— for x <2B

H(r) _
kpTT | 4 —Bx+ % exp(CVx —D)

(8)
for 2B<x <2,
where the fitting parameters are given by

A=1.356—0.0213 InI"’, B =0.456—0.013 InT, ©)
C=9.294+0.79 InI', D=14.83+1.31 InT" .
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III. EXTRAPOLATION OF THE MC DATA
TO LONG RANGES

Let us now turn to the treatment of the long-range
part. See the right-hand side in Fig. 1. To extrapolate
the MC values of g(r) toward the cell boundaries and
beyond, we note the compressibility sum-rule relation
(16],

-1

2
K
limS(g)= |24 52| (10
qg—0 q K
where

gp=[4mn(Ze)*/kyT1"/?

is the Debye wave number; k=(dn/0P);/n and
ko=1/nkgT are the isothermal compressibilities of the
OCP and of the corresponding ideal-gas system, respec-
tively.

The static structure factor S(gq) can be calculated for
each value of ' by Fourier-transforming the MC values
(r <L /2) of g (r) with its extension for » = L /2, in accor-
dance with

S(g)=1+4mn fowdr[g(r)—-l]rsinqr . (11)

Extension is performed so that g(r) tends to unity ex-
ponentially at large distances as shown in Fig. 2. Figure
3 shows the values of S(q) so calculated at I'=160, and
compares these with the values of the structure factor
directly calculated [17] in the wave-number space at the
same I" according to

1
S(@)=7{pgp—q) - (12)
Here

N
pq= 2 expliqr;), (13)
j=1

o
a
T

Ing(r)
o
-

= e BT
T T T

r/a r/a

FIG. 2. Asymptotic behavior of the OCP radial-distribution
function g(r) at long distances. The dots and the solid curves
depict the MC and the corresponding extended results, respec-
tively.
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FIG. 3. The static structure factor S(g) of the OCP at
I'=160. The solid curve denotes the results obtained by
Fourier-transforming the MC g (r) with its extension; the dots,
those directly calculated (Ref. [17]) in the wave-number space.
The inset magnifies the long-wavelength behavior of S(q). The
open circles are the Fourier-transformed values; the dots, the
direct results in the wave-number space; the open triangles, the
long-wavelength asymptotic results, Eq. (10). The solid curve
refers to the interpolated results, Eq. (14).

refers to a density fluctuation with wave vector q, which
we have chosen equal to one of the reciprocal lattice vec-
tors of the MC cells. We see that the two independent
calculations are in good agreement with each other,
though the values of Eq. (12) direct from the MC data are
substantially scattered.

The inset in Fig. 3 magnifies the long-wavelength be-
havior of the Fourier-transformed S(gq) at =160, and
compares it with the asymptotic result, Eq. (10). The ex-
tension thus enables us to connect the Fourier-
transformed results smoothly in aq >3 and the long-
wavelength asymptotic results (10) in ag <1.5 using a
Padé-type formula,

_ 1+o0,9*+0,9*+0,9°
ap/q*+ro/k+T1g7 +7yg% +73g°

S(q) (14)

The adjusted values for o; and 7; are listed in Table I.
The inset in Fig. 3 also compares the interpolated values
for S(g) with the direct results; mutual agreement is ex-
cellent.

IV. THE EXTRACTED BRIDGE FUNCTIONS

Having thus extrapolated the MC values of the correla-
tion functions toward the short and long ranges in the
preceding sections, we are now in a position of extracting
the bridge functions in the entire regime of the interparti-
cle separations. We begin by noting that the direct corre-
lation function c (r) can be calculated from the corrected
S'(g) through the Ornstein-Zernike relation in the wave-
number space,

1
ne(g)=1———— , 15)
g S(q) (
where the Fourier-transformed results, Eq. (11), were
used for ag >3 and the interpolation, Eq. (14), for ag < 3.
The resulting values of ¢ (r) are shown in Fig. 4. These



1054

HIROSHI IYETOMI, SHUJI OGATA, AND SETSUO ICHIMARU

TABLE I. Fitting parameters in the interporation formula (14) for S(q).

r

g g3 g3 T T2 73
10 —0.01161 0.048 46 —0.003 425 1.065 —0.096 51 0.002015
40 0.051 14 —0.05204 0.005 664 —1.8190 0.4100 —0.01563
80 0.03037 —0.01705 0.000703 8 —0.9260 0.2521 —0.008 565
160 0.03961 —0.033 19 0.002 324 —4.337 0.9490 —0.034 94
numerical data for c (r) are fitted in a short range as mulas derived for the bridge functions.
c(r) The extraction process for B(r) described above con-
lir% T =dy+d,x*+d,x*, (16)  tains errors inherent in the procedures of extrapolating
r—

where the coefficients d; are expressed with a polynomial
form in InT" as

dy=—1.406+0.0706 InI'—0.0121( InT')? ,
d,=0.277+0.0318 In['+0.008 14( InT")? , (17
d,=—0.209+0.0999 InT —0.0274( InT")? .

We also calculate H (r) using the same S(gq), and com-
pare the result with the fitted results, Eq. (8) in Fig. S.
Consistency of the short-range and long-range treatments
based on Egs. (6) and (10) is revealed by the excellent
overlapping of the two calculations in the range,
l<r/a<2.

We then derive B (7) using

H(r)

B(r)y=——

ky T h(r)t+c(r), (18)

where the values of H(r) are taken from Eq. (8) in
r/a <1.5 and from the raw MC data in r/a > 1.5. The
extracted bridge functions are displayed in Fig. 6. We see
that the bridge function essentially acts as an additional
repulsive short-ranged potential in the exponent of Eq.
(3). Although this feature conforms to the universality
hypothesis adopted by Rosenfeld and Ashcroft [5], a
small attractive part, nonexistent in the hard-sphere
bridge function, is here observed unmistakably near the
first peak of g(r) at the large I" values (80 and 160).
Consequences stemming from such an attractive part will
be discussed later in connection with explicit analytic for-

r=10
I =40
r=80
r=160

i

08 1

FIG. 4. The direct correlation function c(r) of the OCP cal-
culated with the corrected S(g) for various I'. The symbols and
the solid curves denote the numerical values and the associated
short-range-expansion results, respectively.

the MC values of g(r) and of correcting the long-
wavelength behavior of the S(q) so derived. To estimate
extents of such errors, therefore, we feed back the ex-
tracted bridge functions to the set of integral equations,
(3) and (4), and examine consistency of the solutions in
reference to the input MC data.

Figure 7 shows such a comparison; the calculated
values of g (r) are indistinguishable from the original MC
data. Figure 8 also shows that the solution for S(gq) at
I’'=160 is consistent with the Fourier-transformed result
obtained from the MC values of g (r) and its extension,
except for a slight difference in height of the principal
peak. The excess internal energy U,, calculated from the
g (r) through

ex R

N 2

[ dr¢(rig(n—1] (19)

is listed in Table II, along with the direct results obtained
in the MC simulations. The resulting energies recover
the original values with excellent accuracy. Table III
also checks on the compressibility sum rule: a require-
ment that the isothermal compressibility calculated from
the equation of state should be equal to the compressibili-
ty determined from the long-wavelength behavior of S (q)
through Eq. (10). This serves as a stringent test of inter-
nal consistency between the thermodynamic functions
and the correlation functions. The compressibility sum
rule is satisfied within 5%.

Having thus assessed the accuracy of the extraction
procedure, we now advance an analytic formula explicitly

FIG. 5. The screening potential H(r) of the OCP at I' =160.
The solid curve depicts the results based on Eq. (8); the crosses,
those based on the corrected S(gq); the dots, those calculated in
the HNC scheme.
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FIG. 6. The bridge function B(r) of the OCP for various I'.
The solid circles are the extracted values. The solid and dashed
curves represent the fitted results based on Egs. (22) and (25), re-
spectively.

for the extracted B (r). The short-range behavior of B (r)
is set as
limM=—b0+b1x2+b2x4 . (20)
r—0 T
The parameters by, b;, and b,, are obtained through
combination between Eq. (8) and the short-range parame-
trization of ¢ (7) in Eq. (16) as

by =0.258—0.0612InI"+0.0123( InI")>*—1/T,
b, =0.0269+0.0318 In["+0.008 14( InI")? , 1)

In light of the functional behavior for B(r) in Fig. 6,
we adopt the formula,

b,
by

B(r) _
r

2

(=bo+cx*+c,x%+cyx?) exp

(22)

FIG. 7. The radial-distribution function g (r) of the OCP for
various I'. The solid curves represent the results calculated
with the extracted bridge functions; the dots, the original MC
data.

"

8 12

FIG. 8. The static structure factor S(g) of the OCP at
I'=160. The solid curve is the result obtained with the extract-
ed bridge function; the dots, the Fourier-transformed values
from the MC g (r) with its extension.

This form guarantees that Eq. (22) recovers the short-
range expansion (20) to the quadratic order with the pa-
rameters b, and b, given by Eq. (21). The remaining pa-
rameters c; in Eq. (22) are to account for the attractive
part near the first peak of g () at large I values. Follow-
ing the cases of b;, we express the optimized c; as func-
tions of InI":

¢,=0.498—0.280 In["+0.0294( InT")? ,
¢, =—0.412+0.219In"'—0.0251( InT')? , (23)
¢3=0.0988—0.0534 InT"+0.006 82( InI")? .

Although these results do not conform to the relation
b,=c,—b?%/2b,, we take c, as the premier quantity over
b,, since the fit of Eq. (20) has been based only on a
short-range parametrization.

Summing up, we conclude that the bridge functions for
the OCP have been extracted nearly within the computa-
tional errors inherent in the simulations over the entire
regime of the interparticle separations in the parametric
domain 5 <T" < 180.

V. IMPROVED HNC SCHEME

The analytic formula (22) in conjunction with Egs. (21)
and (23), substituted for B (r) in Eq. (3), completes the set
of the equations leading to improvement of the HNC ap-
proximation. Since all the parameters in the bridge func-
tions have been predetermined, the numerical complexity
in the improved HNC (IHNC) scheme proposed here
does not exceed that in the original HNC scheme.

TABLE II. Negative of the excess internal energy (in units of
NkgT) in various schemes. MC refers to the values directly ob-
tained in the MC simulations (Refs. [10,11]); BF, those calculat-
ed with the extracted bridge functions; HNC, those in the HNC
scheme.

r MC BF HNC
10 7.996 7.971 7.935
40 34.26 34.24 34.00
80 69.73 69.72 69.26
160 141.04 141.01 140.26
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TABLE III. Examination of the compressibility sum rule.
MC lists the negative of the inverse isothermal compressibility,
—Ko/K, calculated from the MC equation of state (Refs.
[10,11]); BF, the values derived from the long-wavelength limit
of S(g) based on the extracted bridge functions; HNC, those
from the long-wavelength limit of S (q) in the HNC scheme.

r MC BF HNC
10 2.62 2.76 3.42
40 14.3 13.9 19.6
80 30.1 29.7 42.2
160 61.9 60.1 88.6

The validity and accuracy of the IHNC scheme are
confirmed through various points of examination: the
correlation functions, the thermodynamic functions, and
the compressibility sum rule. Figure 5 shows that the
screening potential with the ITHNC scheme excellently
reproduces the MC and Widom-expansion values. In
Figs. 9 and 10, the IHNC results for g (r) are favorably
compared with the corresponding MC results at ' =80
and 160. Figure 11 shows the energy increments AU,
defined as

AU,

UCX
=—=_10.895929T , 24
NkzT  NkyT 24

with a subtraction of the Madelung energy of a bcc
Coulomb lattice, a large fraction in U,,. The error in U,
with the IHNC calculation relative to the MC values
monotonically decreases as a function of I', from 0.40%
at =10 to0 0.03% at I' =160. Finally, the compressibili-
ty sum rule is examined in Fig. 12, demonstrating the
thermodynamic consistency maintained in the IHNC
scheme.

VI. DISCUSSION

As we have remarked earlier, the bridge function re-
sulting from the present scheme of extraction has a small
attractive part near the mean separation of particles at
strong coupling, indicating a deviation from the univer-
sality ansatz [S]. To elucidate the role of such an attrac-

2 T T T T T T T
15 L+
OIS
(@]
- MC
05 | —— IHNC b
----- IHNC-SR
0 4 L 1 I I 1 I
1 4

r/a

FIG. 9. The radial-distribution function g(r) of the OCP at
I'=80. The solid and dashed curves denote the results in the
THNC schemes with the full-range fitting (22) and the short-
range fitting (25) for B (r), respectively; the dot, the original MC
data.
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25

. MC
05 ] —— IHNC
;- IHNC-SR

FIG. 10. Same as in Fig. 9 at ' =160.

tive part, we single out the short-range part of the bridge
function using the fitting formula (22), but with ¢, =0
and ¢;=0:

BSR(r) bl

—F—=(—bo+c|x4)exp —;O—xz , (25)
with the parameter ¢; determined as

¢;=0.157—0.101InT"+0.0109( InT")? . (26)

The fitted results based on Eq. (25) are likewise exhibited
in Fig. 6. The bridge function as a short-ranged repulsive
potential is accounted for by Eq. (25), whereas the attrac-
tive part around r/a =2 is not reproduced. The radial-
distribution function, the internal energy, and the
compressibility associated with the long-wavelength limit
of S(q) are then calculated with Bgg(r); these results are
included in Figs. 9-12 for comparison. Comparison of
these with the results based on the full-range fitting (22)
reveals that the nonuniversal correction with a small at-
tractive part plays a quantitatively important role in
describing the Coulombic correlation effects under the
strong-coupling conditions.

The present results for B (r) should be compared with
the previous calculation by Poll, Ashcroft, and DeWitt
(PAD) [7], who studied a single case of OCP with
I’'=100. We first note that the present scheme has an ad-

35 et
3 PP
25 - - -
é L
)
3 i
< 15L — MC ]
I - - HNC
1 * IHNC
| + IHNCSR |
PR RS S B BN S
05 0""50 100 150 200
r

FIG. 11. The energy increment AU ,, Eq. (24), of the OCP as
a function of T in various schemes. The solid circles and trian-
gles are the values calculated in the IHNC schemes with the
bridge functions (22) and (25). The solid curve refers to the re-
sults based on the MC equation of state (Refs. [10,11]); the
dashed curve, those in the HNC scheme.
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FIG. 12. The isothermal compressibility « of the OCP as a
function of T in the various schemes. The solid circles and tri-
angles are the values calculated from the long-wavelength limit
of S(g) in the IHNC schemes with the bridge functions (22) and
(25). The solid curve represents the results from the MC equa-
tion of state (Refs. [10,11]); the dashed curve, those from the

long-wavelength limit of S(g) in the HNC scheme.

vantage in that B(r) is accessible even in the short-range
region where practically g(r)=0. The bridge functions
obtained in the two schemes are shown in Fig. 13, where
the “present” refers to that based on the fitting formula
(22). The PAD bridge function, which is limited to
r>1.1a, comparatively emphasizes the short-range
repulsive part. Although the bridge functions in both
evaluations show a departure from the universality, the
attractive part in PAD appears near the second peak of
g (r), not around the first peak as in the present B(r).
The results demonstrate a sensitive dependence of the
bridge function on the procedure of extraction adopted.
The following discussion is in order to illustrate these
points further.

In the extraction scheme of PAD, an iterative algo-
rithm with a refinement based on the mean spherical ap-
proximation was employed to extrapolate the MC values
of g (r) in the OCP. During the steps of iteration, howev-
er, errors due to their adopted extraction scheme have
been accumulated, eventually giving rise to divergence in
the compressibility obtained from the long-wavelength
limit of S(g). They were able to stabilize the iterative
calculations by incorporating the so-called 1/N correc-
tion term to the MC values of g(r); they identified the
1/N correction so adopted as representing a difference
between the canonical and grand-canonical radial-
distribution functions. They concluded by stressing im-
portance of executing a grand-canonical OCP simulation
to derive the correlation functions including B (r).

Their conclusion, however, is misleading in light of the
definition of the OCP system itself. By definition, the
OCP assumes the presence of a rigid neutralizing back-
ground to maintain the overall charge neutrality; the
OCP model thus inhibits fluctuations in the total number
of particles and hence conforms only to the canonical en-
semble [4]. The essential differences between the canoni-

=100

Present ]
PAD

T

T

o
T

-0.050--'-'“-"'“
r/a

FIG. 13. The bridge function B(r) of the OCP at I'=100.
The solid curve is the present values obtained with the fitting
formula (22); the filled circles, those of Poll, Ashcroft, and
DeWitt (PAD, Ref. [7]).

cal and grand-canonical calculations in predicting the
radial-distribution functions and the free energies in the
thermodynamic limit have been well documented [18]. It
has not been proved, however, that the 1/N correction
form [19] adopted by PAD has a relation in physical con-
tent with such differences. In contrast, the present ex-
traction scheme has succeeded, within the canonical en-
semble, in extracting the bridge functions for the OCP
with an accuracy comparable to the original MC data.

VII. CONCLUDING REMARKS

We have extracted the bridge function of the OCP
from the MC calculations in a nearly exact manner over
the whole range of interparticle separations; it is hoped
that the present results will stimulate further develop-
ments in the liquid structural theories. The IHNC
scheme for the OCP has been obtained by accurately
fitting the extracted bridge functions to analytic expres-
sions. The scheme will provide a theoretical device fun-
damental to the study of thermodynamic and correlation
properties for multi-ionic plasmas. Recently the screen-
ing potentials of the OCP have been successfully general-
ized to those of multi-ionic plasmas using scaling laws for
length and energy based on the ion-sphere model [15].
Such a generalization of the IHNC scheme will be dis-
cussed separately.
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