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Quantum Monte Carlo simulation study of free energies and melting transitions in Coulomb solids
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The free energy of a one-component plasma (OCP) in a bec crystalline state is calculated by a quantum
Monte Carlo (MC) simulation method. The partition function in a Feynman path-integral form is sam-
pled over a semiclassical reference system of 128 MC particles, with quantum fluctuations generated ac-
cording to the Wigner-Seitz model. Exchange effects are shown to be negligible. Helmholtz-free ener-
gies of the Coulomb solid, computed at 48 combinations of density and temperature parameters, are
decomposed into harmonic and anharmonic contributions and are fitted to analytic formulas; accuracy
of the result is confirmed through comparison with the Wigner-Kirkwood expansions and with the
ground-state results. The free-energy formulas are applied for calculation of the melting curves in dense
carbon and helium OCP materials, appropriate to interiors of degenerate stars, showing that the melting
curves start to deviate from the classical predictions at around p,, =2 X 10® g/cm? (C) and 2 X 10° g/cm?
(He), far lower than the values predicted by analyses of the Lindemann type.

I. INTRODUCTION

Equations of state for dense plasmas have attracted the
interest of many investigators as fundamental issues in
condensed matter physics, with important applications to
dense stellar materials,! such as those found in the interi-
ors of white dwarfs and crustal matter of neutron stars.
Accurate knowledge on the thermodynamic properties of
the dense plasmas is indispensable for the analyses of
internal structures and evolution of those degenerate
stars.>3

A one-component plasma (OCP), a basic model for
such dense stellar matter, consists of identical particles
with charge Ze embedded in a rigid uniform background
of neutralizing charges.! For a classical OCP either in a
fluid or in a solid state, Monte Carlo (MC) simulation
studies have precisely determined the thermodynamic
functions such as the free energies.* ® The Wigner-
Kirkwood expansion calculation, combined with classical
simulation results, has extended our knowledge up to the
terms on the order of #* in the quantum corrections.’
The properties of the OCP in a bcc-crystalline ground
state have been calculated in the framework of lattice dy-
namics,®!°712 followed by a variational calculation.'?
For the quantum OCP fluids such as electrons and spin-
zero bosons, a variational approach with trial wave func-
tions was used for evaluation of the ground-state ener-
gies.!>!* Furthermore, we mention a direct Green’s-
function Monte Carlo calculation performed for the elec-
tron systems.!> The equation of state for quantum OCPs
at arbitrary temperatures has remained as an outstanding
problem, however, since interplay between the thermal
and quantum effects introduces an additional complica-
tion. Recently the free energies of quantum electron
liquids at arbitrary temperatures have been approached
by the integral equation methods.! !¢

Once accurate equations of state for the OCP are ob-
tained, one can determine the fluid-solid transition
(Wigner transition) by finding an intersection between

47

free energies in these two states. The melting conditions
for the classical OCP have now been well established ow-
ing to analyses through the MC simulations.”% 718
Quantum effects may enter the melting-transition criteria
for such light nuclei as He and C found in degenerate
stars. Early attempts to investigate such quantum effects
include the calculation of the equations of state for dense
plasmas due to Lamb and Van Horn.!” These authors
evaluated the free energy of the solid OCP within the
harmonic approximation, and took into account the lead-
ing quantum correction to the classical free energy in the
fluid state. The melting curves for the various OCPs
were thereby constructed. Nagara, Nagata, and
Nakamura!? developed a reduced-moment expansion
method to partially sum up infinite numbers of the quan-
tum correction terms and studied the melting transition
in the OCP.

Mochkovitch and Hansen® adopted a different ap-
proach based on a generalized Lindemann criterion.
These authors showed that the Lindemann parameter for
the OCP took on significantly different values in the clas-
sical and quantum limits, and thereby devised an interpo-
lation scheme for the Lindemann parameter at arbitrary
temperatures. Although the scheme has merit in that the
melting curves can be approached with information in
the solid state alone, a drawback is that basically it can-
not surpass the Lindemann phenomenology.

In this paper we present quantum Monte Carlo (QMC)
calculations of the free energies in OCP solids based on
the path-integral formulation.?! The calculations enable
one to bridge accurately the known asymptotic results in
the semiclassical and ground-state limits.>!'"!3> We then
address ourselves to the quantum effects on the fluid-solid
transition in the OCP along the line initiated by Lamb
and Van Horn, but now taking additional account of
anharmonic effects in the solid and of the second-order
quantum correction to the free energy in the fluid.

In Sec. II, a path-integral formulation suitable for the
free-energy calculation is described. We introduce a
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reference system which takes into account major parts of
the correlation properties of Coulomb solids; deviations
of the free energy from these reference values are thereby
computed. In Sec. III, the Wigner-Kirkwood expansion
results for OCPs in fluid as well as in solid states are re-
visited, and ground-state properties of OCP solids are
summarized. The numerical results are presented in Sec.
IV. Accuracy of the calculations is confirmed through
comparison of the results with the limiting calculations in
the semiclassical regime and at zero temperature. In Sec.
V, anharmonic contribution to the free energy is isolated
from its harmonic contribution and both contributions
are fitted accurately to analytic formulas which satisfy
the boundary conditions in the semiclassical and quan-
tum limits. Section VI is devoted to an application of the
obtained formulas; the melting curves in carbon and heli-
um OCPs are calculated. The principal results are sum-
marized in Sec. VII.

II. PATH-INTEGRAL FORMULATION
FOR THE FREE ENERGY

When the plasma obeys the classical statistics, its state
in equilibrium at temperature 7" and number density n is
characterized by a single Coulomb-coupling parameter,
defined as

I'=B(Ze)/a . (1)

Here a =(3/47n)!/3 is the ion-sphere radius and f3 is the
inverse temperature in energy units. Quantum effects in
the fluid plasma are measured by the ratio between the
thermal de Broglie wavelength and the ion-sphere radius,

that is,
#V 2B
A= —F- ) (2)
avV'M

where M is the mass of a plasma particle. An alternative
parameter Y, more appropriate to solid plasmas, is given
as

Y =Bhwy=pHV 4m(Ze)’n /3M 3)

where o, is the Einstein frequency in the Wigner-Seitz
model of a Coulomb solid. A quantum plasma at zero
temperature is described in terms of the usual dimension-
less density parameter,

Rg=aM(Ze)*/#* . 4)

Among these parameters, two are independent; they are
mutually related via

]

<A >ref:

ref *

The efficiency of computation depends on accuracy of

the adopted reference system in mimicking the original
system. Here we take the following system based on the
Wigner-Seitz model:
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A=1"27T /Ry , (5
Y=T/V'Ry . 6)

Path-integral formulation of the quantum mechanics
due to Feynman?! enables one to express the partition
function = for the OCP solid with the interaction poten-
tial V as

1 ppi
ﬁfo duH[x(u)] |,

E=|dx D
f xfx(0)=x(ﬁﬁ) x(u)exp

where ™
__ 1 B
x=rr J duxtu), (8)
M [axw) |
_ M | 3x(u
H[x(u)]= > 3u +Vix(u)], 9)

and x={r,r,,...,Iy} represents a set of the particle
coordinates. The path x(u«) in Eq. (7) is a periodic func-
tion of an ‘“‘imaginary time” u with periodicity 3%, and
the path integral is carried out over the whole periodic
paths with a given “time average,” X, defined by Eq. (8).

Difficulties in a direct computation of the partition
function even for classical systems have been well docu-
mented.?> The Metropolis algorithm,”> a powerful
method for importance sampling, does not work for the
partition function itself. A way of calculating the parti-
tion function is thus to introduce a reference system, with
known properties, which has a potential V [x(u)], so
that

2
=M FVelx(u)] . (10)

Hglx(u)) =2 | 9500

ou

The partition function = and hence the Helmholtz free-
energy F can be expressed in terms of the corresponding
quantities of the reference system as

E=E{ exp[ —BAV ) rer » (11)
AF=F=Foy=—pn[(expl =68V Dl (12)
AV =—= [P au(Vix(u)]=Vlx(u)]) (13)
. Bﬁ 0 ref ’

where { 4 ) refers to the ensemble average in the refer-
ence system: '

1 - 1 prpn
= fdxf(o):x(ﬁme(u)A exp ﬁfo d uH [x(u)] | . (14)

V,ef[x(u)]=V(f)+—21‘£w%[x(u)—5c']2. (15)

The first term on the right-hand side of Eq. (15) corre-
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sponds to the classical approximation, and the second
term represents a harmonic interaction of plasma parti-
cles with the Wigner-Seitz spheres. The reference free-
energy F . can then be calculated as

BFref
N

sinh(Y /2)

f ref = Y/2

—~=fcLt3In , (16)

where f; is the free energy of the classical OCP solid
per particle in temperature units. The advantage in the
present choice for ¥V . may be appreciated through the
ability of Eq. (16) in reproducing the leading term in the
quantum corrections, given by Eq. (22) below, as well as
the classical free energy. Equation (16) also yields the en-
ergy of zero-point oscillation, which is only 13% larger
than the correct value [see Eq. (29) below] for the quan-
tum OCP solid.

To execute the path-integral computations in practice
we approximately replace the continuous path x(u ) by a
discrete path with P segments (Trotter decomposition),

{x(0),x(1),...,x(P)=x(0)}, (17)

and thereby establish the isomorphism between quantum
and classical systems:>* One looks upon each quan-
tum particle with coordinate r; as a classical polymer
chain consisting of P atoms with coordinate
{r;(1),r;(2),...,r;(P)}. The polymers in the equivalent
classical system interact with each other in a way as de-
picted in Fig. 1(a). The classical system corresponding to
the reference quantum system with Eq. (15) is also exhib-
ited in Fig. 1(b). The Trotter theorem?® guarantees that
the statistical properties of the classical polymer chain

x(u)=
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(b)

FIG. 1. Schematic pictures for the equivalent classical sys-
tems corresponding to the quantum OCP (a) and the reference
quantum system (b) based on the Wigner-Seitz model. The
dashed lines in (a) refer to reduced Coulomb potentials,
(Ze)?/rP, between the specific atoms (depicted by circles with
the same filling patterns) in polymers. The crosses and shaded
circles in (b) denote the centroid and the associated Wigner-
Seitz sphere for each polymer; the dashed lines refer to the full
Coulomb potentials, (Ze)?/r, between the centroids.

asymptotically approach those of a quantum particle as P o, Pk 2mnk (="
increases. x(n)=x+ 3 a;cos P + > ap
The multidimensional integration in Eq. (14) can be k=t
carried out by a Monte Carlo sampling method. The nu- + O be si 2mnk (18)
merical complexities involved in the computation are re- szl e
duced by utilizing the Fourier representation®"?® for B
x(n)(n=0,1,...,P—1), Equation (14) is then rewritten as
J
2
P/2— P/2 a P/2—1 1 b
(A= fdxexp[—BV(x f da; I f dbjdexp|— 3 N I I , (19)
1—1 j=1 k=12 | 0% =1 2 [0
[
with weight, and the Fourier coefficients, {a;} and {b,}, are
p2 -1 generated according to independent Gaussian distribu-
=(14+8;.p,) 1\24 1—cos 27;" + /3M . tions with standard deviations o .
B#

(20)

The Jacobian J in Eq. (19) arises from transformation of
the variables between the real and Fourier spaces; it plays
no part in the calculation of ensemble averages. The
multidimensional sampling is thus performed indepen-
dently with respect to the variables of integration. The
centroid X is sampled with the classical Boltzmann

III. SEMICLASSICAL AND GROUND-STATE RESULTS

The free energy is expressed by the Wigner-Kirkwood

expansion?’ in powers of #° as

f= BF f(0)+f 1)+f(2 . 21

Here f'© is the free energy of the classical OCP. The
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accurate-fitting formulas for f'© based on the MC simu-
lations are available both in the fluid and solid states.”8
The quantum corrections are given by

2
fm__l% , (22)
f(ze_ﬂ[uﬂr)wmr)ﬂ] (23)
384072 ’
where
a() N 1
J(I‘)=—< —> , 4)
INNZ, v
6 1 N (r;r;)* 1
a ij ‘ik
KM= 33 > ’ 25
9N i;&%k "5' ”3( "5‘ "ii

and r; =|r;|=|r;—r;|.

Hansen and Vieillefosse’ have evaluated J(I') and
K(T'") using the radial distribution functions for the clas-
sical OCPs obtained by MC simulation with N =128 and
250; the three-body distribution function required in the
evaluation of K(I'") was replaced by the Kirkwood super-
position formula. They also provided analytic formulas
for J(I') both in the fluid and solid states, and found that
K (T') could be approximated with the value for a perfect
bec lattice over the whole range of I,

To confirm their results we have repeated the calcula-
tions on the basis of the MC simulations with much
larger number of particles, N =1458; we have directly
evaluated K(I'") without the use of the Kirkwood approx-
imation for ternary distribution functions. Figures 2 and
3 show good agreement between the present results and
those of Hansen and Vieillefosse in both phases.

The free energy of the OCP solid consists of three
parts: the bcc Madelung-energy term, the harmonic, and
anharmonic contributions, i.e.,

F=—0.895929T+ frn+fans - (26)

The results for fyy and f,y in the Wigner-Kirkwood
expansion are given explicitly as

O
0 100

FIG. 2. The function J(I') in the second-order quantum
correction term. The solid and open circles are the MC values
for the OCP in the fluid and solid states, respectively. The solid
and dashed curves refer to the fitting results® for the fluid and
solid OCP.
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FIG. 3. The function K(I') in the second-order quantum
correction term. The solid and open circles are the MC values
for the OCP in the fluid and solid states, respectively. The solid
line refers to the value for the perfect bece lattice.’

2
£35S =—0.845 88+31nY+Y?—1.9038>< 107°Y*,
27
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SCL — __
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The first three terms on the right-hand side of Eq. (28)
refers to the classical anharmonic contribution obtained
by Dubin'® through fitting to the MC results. Recently
Nagara, Nagata, and Nakamura!” and Dubin!® have re-
visited the previous fitting analysis’ to find that the criti-
cal T value for melting in the classical OCP slightly de-
creased from '=178 to ' =172.

The ground-state energy (7 —0) of a quantum OCP
solid with bcc symmetry has been evaluated by Carr,
Coldwell-Horsfall, and Fein!! as

1.328 6T
sy —32mer 29)
V'R
pou__ 0.365T 30)
R

The harmonic (zero-point oscillation) contribution f &}
was obtained through a normal-mode analysis; we cited
there the refined value due to Pollock and Hansen.® The
anharmonic contribution f arises from a first-order
perturbation due to quartic terms in the displacements
and from a second-order perturbation due to cubic terms.
Ceperley'? later confirmed the perturbational result, Eq.
(30), through a variational calculation with a spherical
trial function. The exchange effects on the ground-state
energy of an electron solid were also estimated by Carr,
Coldwell-Horsfall, and Fein,!! adopting an antisym-
metric wave function of independent oscillators, which
were arranged in an antiferromagnetic way on the bcc-
lattice sites. It has thereby been shown that the calculat-
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ed exchange term, vanishing exponentially with increase
of Ry, is completely negligible near the freezing point,'>
R4 =100, as compared with Eq. (30). We expect that the
same conclusion is applicable to the exchange effects in
boson solids.

IV. QMC SIMULATION RESULTS

The QMC simulations are performed for the OCP
solids in a bcc-crystalline state for 48 parametric com-
binations of I" and Y as shown in Fig. 4, where the classi-
cal and quantum melting lines, given'”!® by I'=172 and
estimated!® as Rg=160 (zero-spin bosons), are added for
reference purposes. The cases thus cover the classical as
well as quantum melting regimes. The cubic simulation
cell with periodic boundary conditions contains 128 par-
ticles. The Ewald summation technique is used to handle
the long-range nature of the Coulomb potential. The
fitting formula’ of the Ewald potential in polynomials
significantly reduces the computation time. The quan-
tum fluctuations of the particles are treated with 20
atoms in each classical polymer chain. For calculation of
the free-energy difference Af, Eq. (12) has been expanded
in cumulants and the result has been terminated at the
second order, i.e.,

AfE%<BBT/)ref~ﬁ<(ﬁA_V_<ﬁZ—I})ref)2>ref' (31)

We have generated 4000 statistically independent
configurations to calculate the ensemble averages in Eq.
(31). Convergence both in the Trotter decomposition and
in the cumulant expansion will be discussed later.

Since the simulations are performed for systems with
finite size, the computed results may contain extra depen-
dence on the number N of the particles used. To quench
such an N dependence we have adopted the center-of-
mass correction scheme?® for the A f, that is,

N 3
- _N_ 1

sinh(Y /2)
Y/2

) (32)

where Afqmc denotes the original difference in the free
energies. The scheme thus consists in multiplying the
variational part (sum of the harmonic and anharmonic

L[]

| Rg=160

-y
of
o
F
ol by
o

FIG. 4. Diagram depicting the 48 parametric combinations
in the Y-R; plane where the quantum MC simulations have
been performed.
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contributions) in the free energy by a factor N /(N —1).
The effectiveness of such a center-of-mass correction has
been demonstrated for the classical OCP solids.®

Figure 5 shows the QMC results for Af with and
without the center-of-mass corrections as a function of Y
at various I' values. The same figure also includes the
asymptotic results, Afscp and Af gy, in the semiclassical
and quantum regimes; these are defined as

Afsc,=—0.895929T + f 351 + & — fret » (33)
Afom=—0.895929T+ f M + f & — frer - (34)

We first remark that the center-of-mass correction plays
an important role in the semiclassical regime, where the
extra Y? dependence involved in the raw data are re-
moved in the corrected values. The leading quantum
correction in Eq. (33) is of the order of Y*, since the Y2
term in f IS{% is exactly canceled by the corresponding
term in f_ . We thus see that this cancellation is
preserved by the center-of-mass correction procedure in
Eq. (32). As Fig. 5 shows clearly, the simulation results
approach the zero-temperature calculations almost in-
dependent of T', as Y increases beyond approximately 5.
This trend demonstrates adequacy of the choice, P =20,
in the treatment of quantum fluctuations even at the larg-
est value, Y=40. Excellent agreement between the nu-

g Ty
102 é_ r:200/,/ _; 102
E , 3
104 —é 104
106 L 'YHE 10©
(. 102 L 4102
S ]
= E
P ]
- 104 < 10%
< E
! E
10® ] - ] 10
102 3 E 102
10 410+
108 T ] 106
1 10 100

FIG. 5. Negative of the deviation AF for the free energy
from the reference value in units of NT'8~!. The solid circles
and crosses are the QMC values with and without the center-
of-mass corrections, respectively. The dashed and solid curves
refer to the semiclassical and ground-state results, respectively.
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TABLE 1.
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QMC results for —BAF/NT with the center-of-mass correction. The numbers in

parentheses denote the standard errors in the last digits of the means over 4000 configuration averages.

Y 200 250 300 400 500 1000

1 4.8(3)X107¢%  4.03)X107°% 3.3(2)X107°% 2.4(2)x10°¢ 1.9(1)x107¢ 2.06(6) X 1076

2 65(2)X107°  52(1)X107°  4.3(1)X107° 3.15(9)X107°  2.58(7)X107° 1.35(3)X 1073

3 0.000267(6) 0.000212(5) 0.000 174(4) 0.000 129(3) 0.000 107(3) 5.0(1) X107

5 0.00124(3) 0.00098(2) 0.000 80(2) 0.00059(1) 0.00049(1) 0.000217(5)

7 0.00276(6) 0.002 17(5) 0.00178(4) 0.001 31(3) 0.00109(3) 0.00048(1)

10 0.0055(1) 0.0043(1) 0.003 53(8) 0.002 58(6) 0.002 17(5) 0.00093(2)

20 0.0169(4) 0.0129(3) 0.0103 (2) 0.0074(2) 0.0062(1) 0.002 65(6)

40 0.046(1) 0.0324(8) 0.0251(6) 0.0173(4) 0.0144(3) 0.0060(1)
merical and asymptotic results in the respective limits 9 B
guarantees validity and accuracy of the second-order cu- f EH =—=Bl|—— | coth? Pre s (38)
mulant approximation adopted for Af. As an indepen- 4 2

dent check, we have calculated the third- and fourth-
order cumulants and found no significant contributions
from those higher-order terms.

We finally list all the results for Af obtained in the
present simulations and the estimated standard errors in
Table I. In the error estimates, we have assumed that
the statistical fluctuations involved in the average and
variance of AV are mutually independent.

V. ANHARMONIC CONTRIBUTION

The accuracy achieved in the present simulations en-
ables us to extract the anharmonic contributions f,y
from the QMC results for Af given in the previous sec-
tion. Combining Egs. (12) and (26) we calculate f 5y as

Fan="FregTAf+0.895929 T — fipn - (35)

The harmonic contributions fyy were tabulated by Pol-
lock and Hansen® as a function of Y. The extracted re-
sults for f oy with the statistical errors are shown in Fig.
6 for all the I" values at which the simulations have been
done. The good agreement between the QMC and
asymptotic results are again manifested, except at
I"'=1000. The anharmonic contributions are so small at
such a large " that their evaluations are hindered by the
statistical uncertainties.

Accurate analytic formulas for fy, and f,y are use-
ful for the purposes of applications. To obtain such for-
mulas, we consider a model Hamiltonian for an Einstein
oscillator with an additional quartic term representing
anharmonicity:

2
Hy=P o M 2 jxiqyiizty,

oM (36)

where p and x=(x,y,z) denote three-dimensional
momentum and coordinate of the oscillating particle.
The harmonic and anharmonic contributions to the free
energy in such a model are calculated as

fEy=31n |2sinn | BF2 || | 37

where we have adopted the first-order perturbational cal-
culation for £ in the anharmonic interaction.

Regarding the harmonic frequency « and the
anharmonic-coupling strength / in Egs. (37) and (38) as
fitting parameters, we have obtained the following analyt-
ic formulas for fyy and f .. The harmonic term takes
a form

4102

1073

104

102 710

103 §

104

] 104

P 410°
ol Lo asaal " R, o e " N n L
1 10"y 1 10" vy 102

FIG. 6. Negative of the anharmonic contribution F,y in
units of NT'87!. The circles are the quantum MC values with
standard errors depicted by the vertical bars. The solid curves
are the fitted results. The dashed and dotted curves refer to the
semiclassical and ground-state results, respectively.
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Sfum=31n |2sinh ?Yg(Y) , (39)
with
. .09245Y%+40. 4
g(Y):O7543+0 9245Y°+0.003386Y (40)

1+0.104 6Y2+0.003 823 Y*

For the anharmonic term, we replace o in Eq. (38) with
the Einstein frequency w, and thereby simplify the result-
ing formula, so that

fan=—2L(£Y)Y cothXY /2) , 41

where

P(£)—0.08167P(£)Y*+Q(£)Y*}
1+0.085Y2+R(£)Y®

A new parameter § has been introduced in Eq. (41),

£=Ttanh(8.5/Y)=1'Rg Ytanh(8.5/Y), = (43)

L v)=1Y

(42)

which reduces to the Coulomb-coupling parameters
relevantly both in the classical and quantum limits:
lim £=T,  lim £=8.5VRy . (44)

Y—0

The fitting functions, P(§), Q(&), and R(&), in Eq. (42)
have been parametrized as

P(£)=1.204/£%+19.60/E+6.644X 103 /E* ,  (45)

Q(£)=0.001 805 /£2+0.085 07 /£*+0.009 444P (&) ,
(46)

R(£)=0.08532£%Q(£) . (47)

The semiclassical and ground-state results, Eqgs. (27),
(28), (29), and (30), are built into formulas (39) and (41)
through the parametrization of g(Y), P(§), Q(£), and
R (£). Comparison between the fitted and original values
for fyp shows that the errors in Eq. (39) are confined to
0.04%. The fitted results for f,y based on Eq. (41) are
included in Fig. 6. We see that Eq. (41) reproduces the
simulation results within the statistical uncertainties for
I" =400, where the reliable QMC results are available.

One can derive the equation of state and other thermo-
dynamic quantities from the fitting formulas (39) and (41)
through standard thermodynamic relations. As an exam-
ple, Fig. 7 displays the anharmonic contribution S,y to
the entropy as a function of Y at I"'=200, 300, and 500.
The minimum, separating the classical and quantum re-
gimes, is located around Y =4 for each curve, regardless
of the I' values. The small hump observed in f,y (see
Fig. 6) gives rise to such a transit behavior in S ,y. Har-
monic and anharmonic contributions to the entropy are
also compared in Fig. 7. The magnitude of the anhar-
monic contribution is relatively small except in the quan-
tum regime of Y > 10.
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FIG. 7. The anharmonic contributions (solid curves) in the
entropy as a function of Y for various I', compared with the
harmonic contribution (dotted curve).

VI. QUANTUM EFFECTS ON THE MELTING

As an application of formulas (39) and (41), we exam-
ine the fluid-solid transition in dense carbon or helium
OCP materials relevant to the interiors of white dwarf
stars. It is expected that solid cores may be formed dur-
ing cooling of those stars.

Quantum effects of ions in the solid phase have been
fully taken into account through the use of Egs. (39) and
(41). For the free energy of a fluid OCP, on the other
hand, we use the Wigner-Kirkwood expansion results,
Eq. (21), up to the terms on the order of #* the treat-
ments here are basically semiclassical. Hence we may be
justified to treat only that part of melting which is caused
by the thermal motion of particles.

We thus construct the melting curves with the OCP
fluid equations of state at different degrees of quantum
corrections: the zeroth-order expression (WKO) with f©
alone, the first-order expression (WK1) with £+ @1,
and the second-order expression (WK2) with
FO+ D4 £2 The results so calculated for C and He
plasmas are shown in Figs. 8 and 9, respectively, where
also drawn for comparison are the melting line, =172,
in the classical OCP and the two lines, A=1 and Y=1,
measuring extents of the quantum effects involved. These
calculations clearly demonstrate sensitive dependence of
the transition curve on the treatment of the ionic quan-
tum effects.

The WKO calculations imply that the ionic quantum
effects in the solid phase depress its stability. Inclusion of
the leading quantum correction Eq. (22) to the classical
free energy, which is a positive quantity, acts to enlarge
the domain of the solid phase even over a purely classical
prediction, as shown in the WK1 result. We remark that
the WK1 calculation with omission of the anharmonic
term in the solid free energy is essentially equivalent to
that carried out by Lamb and Van Horn.!®

The second-order quantum correction Eq. (23), includ-
ed in the WK2 scheme, is negative definite and hence
tends to destabilize the solid phase. The departures of
the resulting transition curves from the classical ones are
magnified in the insets of Figs. 8 and 9. Since the leading
quantum corrections are identical in both phases, the be-
havior of the melting curve near the classical regime is
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FIG. 8. Melting curves for a carbon OCP in various schemes.
The Wigner-Kirkwood expansion terms in the free energy for
the fluid OCP are systematically taken into account: WKO
refers to the melting curve obtained with the classical term only;
WK1, that with the leading (first-order) quantum correction in
addition to the classical term; WK2, with the terms up to the
order of #*. The curve designated as MH represents the calcula-
tion based on the Mochkovitch-Hansen scheme (Ref. 20). The
inset magnifies the departure of the melting curve from the clas-
sical condition (dotted line) based on the second-order calcula-
tion (WK2—solid curve); the melting curve obtained without
the anharmonic term in the solid free energy is also included
(dashed curve).

determined by a delicate balance between the quantum
corrections of the second and higher order in the two
phases. To assess the anharmonic effects on the melting,
we have repeated the WK2 calculations, but with the
harmonic term alone; the results are also shown in the in-
sets of Figs. 8 and 9 by dashed lines. The anharmonicity
enhances stability of the solid phase by 10-20 % in the
temperature. The WK2 calculation gives the most accu-
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FIG. 9. Same as in Fig. 8, but for a helium OCP.
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rate result in the present treatments. The strong bending
observed in the melting curves based on the WK2 scheme
implies breakdown of the approximations.

The average mass density p in carbon white dwarfs
usually takes® on a value in 10°~10% g/cm?. For a white
dwarf with accretion from a companion star, which is re-
garded as a progenitor of the type-I supernova, the
relevant range of the mass density is extended?® up to
p=10"" g/cm®. According to the WK2 calculation, the
quantum effects begin to change the classical melting line
beyond p=2X10® g/cm? in the C plasma. The evolution
of the accreting white dwarfs and the mechanism of the
subsequent explosions may therefore be influenced by the
quantum effects as reflected in the melting.

This result contrasts with that of Mochkovitch and
Hansen (MH) based on a generalized (Y dependent) Lin-
demann criterion.?’ Through such calculations these au-
thors arrived at a conclusion that the melting was com-
pletely classical below p=4X10'! g/cm® Figure 8 in-
corporates the transition curve calculated in the MH
scheme, but with fitting parameters so modified as to
reproduce the classical melting condition, T=172. The
modification decreases the critical mass density at which
the quantum effects begin to emerge to 5X10'° g/cm?,
which is still much larger than the present result. The
overestimation of the critical mass density by the MH
scheme is also manifested for the He OCP as shown in
Fig. 9; the critical mass densities are predicted at 2 X 10
g/cm® and 7X 10° g/cm? in the present and MH calcula-
tions, respectively. We remark in passing that the con-
siderable difference between the two predictions may be
ascribed to improper treatment of the #*-correction term
in the interpolation formula for the Lindemann parame-
ter in the MH scheme. Nagara, Nagata, and Nakamura'’
also obtained the critical mass densities considerably
lower than the MH values; their results are 2 X 10° g/cm?
and 3 X 10* g/cm? for C and He OCPs, respectively.

VII. CONCLUSION

We have calculated the Helmholtz free energy for the
Coulomb bcc solid using the quantum Monte Carlo
method. The partition function was represented in a
Feynman path-integral form with no account of the ex-
change effects, and a semiclassical system with the associ-
ated Wigner-Seitz sphere for each particle was adopted as
a reference system. The deviation of the free energy from
the reference value was thereby computed in a wide range
of density and temperature with 128 MC particles. The
excellent agreement between the simulation results and
the asymptotic calculations in the semiclassical and quan-
tum regimes has established the accuracy of the simula-
tions. We then decomposed the numerical results into
the harmonic and anharmonic contributions, each of
which was fitted to an analytic form reproducing both the
semiclassical and the ground-state results.

As an application of the formulas so obtained, we cal-
culated melting curves in carbon and helium plasmas cor-
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responding to the interiors of white dwarfs. The quan-
tum corrections to the classical free energy of the fluid
OCP were systematically taken into account to the order
of #*. The results demonstrate sensitive dependence of
the transition curves on the treatment of quantum prop-
erties of ions in the fluid state. The best result in the
present calculations predicts the critical mass densities,
p=2X10% g/cm?® for C OCP and 2X 10’ g/cm® for He
OCP, at which the deviations from the classical melting
lines become significant; the values are far smaller than
those expected in the analyses based on the generalized
Lindemann criteria.
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