808

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO.5 MAY 1993

[PAPER

Time Series Analysis Based on Exponential Model
Excited by t-Distribution Process and Its Algorithm
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SUMMARY In this paper, a new time series analysis
method is proposed. The proposed method uses the exponential
(EXP) model. The residual signal is assumed to be identically
and independently distributed (IID). To achieve accurate and
efficient estimates, the parameter of the system model is calcu-
lated by maximizing the logarithm of the likelihood of the
residual signal which is assumed to be IID ¢-distribution. The
EXP model theoretically assures the stability of the system. This
model is appropriate for analyzing signals which have not only
poles, but also poles and zeroes. The asymptotic efficiency of the
EXP model is addressed. The optimal solution is calculated by
the Newton-Raphson iteration method. Simulation results show
that only a small number of iterations are necessary to reach
stationary points which are always local minimum points. When
the method is used to estimate the spectrum of synthetic signals,
by using small ¢ we can achieve a more accurate and efficient
estimate than that with large . To reduce the calculation
burden an alternative algorithm is also proposed. In this algo-
rithm, the estimated parameter is updated in every sampling
instant using an imperfect, short-term, gradient method which is
similar to the LMS algorithm.

key words: exponential model, t-distribution, M-estimate, time
series analysis, finite-length cepstrum

1. Introduction

The estimation of parameters of a time series has
been a widely addressed problem. In many cases and
also in the conventional linear prediction (CLP)
method, the autoregressive (AR) system model is used.
In the CLP method, the coefficients of the models are
calculated to minimize the sum of the square of the
residuals. The autocorrelation and the covariance
methods are wusually utilized to calculate the
coefficients of the predictor.)). Unfortunately, the con-
ventional method can achieve good estimation results
only when the encountered driving source is a Gaus-
sian process.®~® It is well known that in many cases
the source is of a quasi-periodic nature with spiky
excitation which is not a Gaussian process, such as
voiced-speech signals, etc. For these kinds of processes
the obtained results from the CLP is biased and
inefficient.®-® The obtained estimates are very much
affected by the strong signal parts. We cannot accurate-
ly and efficiently estimate the parameters, such as for-
mant frequencies and bandwidths.
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To improve the accuracy and the efficiency of the
estimator, we proposed recently the assumption that
the residual signal has z-distribution with a small «
degree of freedom and the use of the autoregressive
(AR) system model.®® When g=co, we get the
Gaussian distribution. This case is equivalent to the
CLP method. The z-distribution with small « has
more probability on its tail than with large @. By using
the small ¢ assumption, we assume that the residual
signal is more spiky than in the Gaussian assumption.
By doing so, the optimal predictor is calculated by
assigning a large weighting factor for the small ampli-
tude residuals and a small weighting factor for the
large amplitude residuals. In this way, the effect of the
large amplitude signal on the obtained predictor is
reduced, so that we can get less biased and more
efficient estimates. The nature of the equation enables
us to theoretically guarantee the stability of the inverse
system in the conventional autocorrelation method
only. In our previous method, the stability of the
obtained inverse system can only be shown experimen-
tally. Since in many cases, such as the speech analysis,
the stability of the inverse system is one of the impor-
tant factors,” extending our previous result, in this
paper we propose an estimation method by assuming
that the residual signal is a f-distribution process to
achieve accurate and efficient estimates and use the
theoretically stable exponential (EXP) system model.
When ¢=o0, we get the similar method proposed by
Imai et al.,® so this method can be seen as a generaliza-
tion or an improvement of that method. The EXP
model can represent poles and zeroes with equal
weight. Thus we can use the EXP model instead of the
ARMA model which has the stability problem.

Furthermore, to reduce the calculation burden, an
alternative algorithm is proposed. In this approach,
the estimation result is updated in every sampling
instant using an imperfect, short-term, gradient which
is similar to the LMS algorithm.®® This algorithm is
particularly useful in the implementation using real-
time systems.

This paper is arranged as follows. The prelimi-
nary discussions and the derivation of the asymptotic
efficiency are given in Sects. 2 and 3, respectively.
Section 4 describes the method of calculating the solu-
tion and the basic properties of the proposed method.
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The alternative algorithm is explained in Sect. 5. The
simulation results are presented in Sect. 6, and this
paper is concluded in Sect. 7.

2. Preliminary Discussions

We consider a zero mean stationary time series s;
which is generated by feeding a certain IID random
process into a p-th order exponential model EXP(p).
The signal is observed along a window 0=i= M —1.
The number of samples of M is assumed to be large, M
—oo. The signal outside the window is consider to be
zero. The transfer function of the exponential model
EXP(p) is

H(z)=KD(z), (1)
D(z) =exp{§}lcjz‘j}, K=exp c. (2)

The coefficients ¢;, 1<j=p, represent a finite length
cepstrum coefficient. The gain factor is K. The
impulse responses of D(z) and 1/D(z) have an infinite
length. Therefore the EXP model is appropriate for
modeling signals which have not only poles, but also
both poles and zeroes. The EXP model in Eq. (1) can
be represented by

H(2) =1 3)
where
A(z)= Z.ooajz‘j, a=1 (4)

is the inverse system transfer function, so that the
residual samples e;; 0<i<M —1; can be calculated
from the signal samples s;; 0=i=M —1; by

si=a; % s:. (5)

The sign “3*” stands for convolution.
Similar to our previous result,®® in this paper we
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(a) The estimation model used in the CLP method.
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(c) The estimation model used in this paper.

Fig. 1 The block diagram of various estimation models.
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assume that the probability density function (PDF) of
the residual signal &; is known. The models used in
the CLP, in our previous paper,”” and in this paper are
shown in Figs. 1(a), 1(b) and 1(c), respectively.

The joint PDF of the observed signal s can be
expressed in the term of the joint PDF of the residual
signal &, where

EM—l]T,

(6)

s=[s0 51+ sy-1]" and e=[ep & -

by the following relation:”

q{s}=[J]q{e}. ‘ (7)

The joint PDF of the signal and the residual are
denoted by g{s} and g{e}, respectively. The Jacobian
of the transformation Je/ds is the matrix J. The
determinant of the matrix, |J|, can be calculated using
a way similar to that in the AR model.” By assuming
that e;,=0 for i <0, we get |J|=1, so that the joint PDF
of the signal is

glst=qle}=TL/ (e.(e)), ®)
where
c=[c ¢ ¢ ). (9)

The joint PDF is also known as the likelihood func-
tion of the samples.® In this paper, it is assumed that
the probability density function (PDF) f (e:(c)) of
the residual signal is ¢-distribution with @ degree of
freedom f,(x) defined as®

atl
fa(x):Jb% F§<§>> <1+x_21)(a+1>/2~ (10)
a

Please note that f; (x) is the Cauchy distribution and
fw(x) is the Gaussian distribution with zero mean and
unity standard deviation. When « is small, the PDF
has more probability on its tail than when ¢ is large.

The optimal coefficient ¢ is sought with the
maximum likelihood method (MLM) by maximizing
the logarithm of the likelihood function L (ele):

max L (ele) =log [T fe(es(e)) = 2 o(ei(e)).

(11)
where
p(x)=log fu(x). (12)

For estimation purposes, the PDF has to have a finite
second order moment.® Since the second order
moment for ¢<3 is infinite, in this paper we use = 3.
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3. The Asymptotic Efficiency of the EXP Model

By using the MLM approach, the estimation
results will have a PDF which is asymptotically Gaus-
sian with the variance matrix defined as®:®

var={E;(d"d)}{E&(H)} ",
Ee(y(x) = [y(x)g(x) dx (13)

The probability distribution function of the residual
signal is denoted by G(x) and its corresponding
probability density function (PDF) is g(x). Gener-
ally, the exact PDF of the residual signal g(x) is
unknown. Therefore, we assume that the PDF is f(x)
which might be different from g(x). The gradient

vector d is
_[0L(ele) OL(ele) AL (elc) T
d—[ acy ocs dcp (14)
where
oL (ele) M1
96‘1 - lgoﬁb(&‘) Ei-t»
¢(x):a"a(xx), 1=i<p. (15)
The Hessian matrix H is
_ azL(E|C) g1 2 /
H=C S —p+H e

where the elements of H' and H? are given by

le,szjgl O (&) €imrEics, ¢ (X) :%&X)—,

I1=r=pand 1=s5=p, (17)
M-1
H2 .= 2_0¢(5i) Eir_s, 1=r<pand I=s=p.

(18)

By assuming that the number of samples M is
large; M—oo; the first term in Eq. (13) can be writ-
ten:

st
Ec;(d™d)=] : : (19)
np,l e npyp
where
_ oL (e|c) aL(elc)}
nT’S_EG{ ocy dcs
M1
— [ ()90 dr S eimreine (20)

The signal s; is assumed to be obtained by convolving
the excitation signal &; with the impulse response of
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the system H (z). Hence, the excitation at a certain
time i determines the signal which occurs on that
particular time or after and not before. Therefore &;
and s;—, for >0 are independent and Eq. (19) can be
simplified to become

Ec(de):EG(¢z(Ei))V (21)

where

M-1
Ves= Z_OEi—rei—s, 1<r=<pand 1<s=p. (22)

are the elements of matrix ¥. The second term in Eq.
(13) can be calculated in a similar way and the result

18
EE(H) =E&(¢' () V'V
+2Ec(¢(e)) Ec(¢ (e)) VIVH

+EE(P(e)) V¥V (23)
where the elements of matrix V'* are
VEs=Vorrs, 1=r=pand 1=s=p. (24)

Since the residual or the excitation signal is indepen-
dently and identically distributed (IID) and the num-
ber of samples M is large enough, M —oo, we have
=0 for r=s

M-1
Vis= 2. El-,rei,s%E{EﬁrEi—s} {
i=0 :f:o fOl' r=s

(25)

Thus the second and the third terms in Eq. (23) are
zero and by using Eq. (21), we can rewrite Eq. (13) to
become

_Ec(¢*(e))
Var="pz(gen) © (26)

The asymptotic efficiency is defined as®

AEFF={Ipvar}™. 27
The Fisher information matrix Ir, defined as®
_ dg (1) \2
oc
Li=E)\—F———], 28
F G( g(Ez‘) ) ( )

is the minimum possible variance matrix, when f (x)
=g(x). Using the same approach to get Eq. (21), we
can rewrite Eq. (28) to be

g (=9l Yy iy = 99(x)
=B 45 v, d0=22L )

so that the asymptotic efficiency is

I _ Es(¢* (&)
AEFF= Vioe =g rar 7
—g(e) \>* T EE(¢ (&)’
vlocEG( Q(Ei) )
(30)
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and 7 is the unit matrix. Equation (30) shows that the
asymptotic efficiency of the EXP model is equal to the
efficiency of the AR and ARMA models.®

The efficiency of an estimator based on the f-
distribution assumption depends on the degree of free-
dom of @. Our previous investigation® indicates that
the AR estimator with ¢=co assumption is efficient for
the Gaussian process only. For heavy-tailed processes,
this kind of estimator is inefficient. Since the efficiency
of the EXP and AR models are equal, we can conclude
that an EXP estimator with ¢=o0 is also efficient for
the Gaussian process only. This estimator is the same
with the method proposed by Imai et al.®) On the other
hand, our previous result also shows that the AR
estimator with small ¢ is efficient for both Gaussian
and heavy-tailed processes. Therefore, to achieve an
efficient EXP estimator, we have to use small .
Hence, we recommend using the small ¢ z-distribution
assumption to analyze signals, whose PDF are un-
known and which might be heavy-tailed, to achieve
efficient estimates, and to use the EXP model to get a
theoretically stable system.

4. The Solution Method and the Basic Properties

The algorithm for solving the optimization prob-
lem and the basic properties of the proposed method
are given in the following sections.

4.1 The Solution Method

By using Eq. (10), the logarithm of the likelihood
function L (e|¢) can be rewritten to be
L(ele)=Na—L(e), (31)

where

L) =5 Fliog(14-£(/95) 3y

atl
No=M log Jc1y7 Fié) > (33)

To get a scale invariant estimate, ; is normalized
with §. Since the mean and the variance of the
residual are very sensitive to outliers, we use the
median which has been proved to be very robust® for
the scale estimate. The outliers here are the innovation
outliers (IO)® which are possibly due to the lack of
knowledge about the PDF, so that the actual PDF of
the residual signal deviates from the assumption.
Thus, we use

§ =median |e,;|, 0<i<M—1 (34)

as the robust scale estimate of the residual.
The residual signal can be calculated in two ways.
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The first method is by utilizing the convolution for-
mula in Eq. (5). The second way is by calculating the
inverse Fourier transform of the spectrum of the resid-
val which is calculated by

E(e™)=A(e™) S (e™), (35)

where E (e’”), A(e’?) and S (e’®) are the Fourier
transform of the residual, the inverse system transfer
function and the Fourier transform of the input signal,
respectively. Please note that in the second way, since
the Fourier transform is calculated by FFT, we have to
use the circular shift for the shifted signal.

Since N, is a constant, maximizing L (g|e) in Eq.
(31) is equivalent to minimizing L(c¢) in Eq. (32).
Equation (32) is minimized by the Newton-Raphson
iteration procedure as follows:

Ge*V=GeW - (36)

where k denote the iteration number, = —d and d is
given in Eq. (14).

Since in practice the exact Hessian matrix is not
always positive definite, in the iteration we use a
positive definite matrix G

G1,1 o Gup

G=| i : (37)
Gp,1 o Gpp

where
Gr,s:L—gj‘leEi—rei—swi, I=r<pand 1=s=p.
as? =
(38)

w;= L = (39)

1+ (e:/5)*

Two criteria

ﬁ(L”)g 1074 and | £ — L=D] = 104
=\ Oc; -

(40)

are used to terminate the iteration. Simulation results
show that 107" is a suitable value for stopping the
iteration. No further significant improvement can be
obtained even when a value lower than 107 is used.
Only the number of iterations will increase.

The initial coefficient ¢© is calculated by using
the recursive method® from its AR model which is
obtained from the CLP method with a Hamming
window. After the optimal coefficients are obtained,
the gain factor K is calculated by taking the square
root of the sum of the square of the residuals.

The analysis method explained in this section uses
a block of M data samples, within a window 0<i< M
—1, to calculate the optimal solution, so that we call



812

this approach the block analysis algorithm.
4.2 The Basic Properties

The basic properties of the proposed method are
as follows:

1. In the iteration, instead of using the exact Hessian
matrix which is not always positive definite, a
positive definite matrix G is used. The simulation
results show that by using this method, only a few
iterations are needed to reach stationary points.

2. Since matrix G is always positive definite (see
appendix A), the Cholesky decomposition method
is used to calculate the new c.

3. The simulation results on many signals show that at
the stationary points, the Hessian matrix is always
positive definite, so that we can be sure that we can
always get a local minimum point.

4. The stability of the obtained system D(z) is theoret-
ically assured. However, it cannot be realized
directly since D(z) is not a rational form. Fortu-
nately, we can use the LMA filter which can accu-
rately approximate the EXP system.®

5. When g=oc0, we get the same approach as the
method proposed by Imai et al.®®

5. The Alternative Algorithm

By utilizing the algorithm proposed in the previ-
ous section using small @ we can get efficient estimates
for many kinds of processes, including Gaussian and
heavy-tailed processes (see the discussions in Sect. 3
and simulation results in Sect. 6). Since the calcula-
tion burden is very high, it is difficult to implement the
algorithm in the real-time systems, using the general
purpose DSP chip for example. To reduce the calcula-
tion burden, in this section we propose an alternative
calculation algorithm. In this approach, instead of
using a block of M data samples along a certain
window, the estimate parameter is updated at every
sampling instant.

In the algorithm, the coefficients of the predictor
are calculated by using the imperfect, short-term, gradi-
ent as in the LMS algorithm® (see Fig.2). At a
certain time instant, K+ 1, the coefficients are calcu-
lated by

LMA Filter /

S 1 i = €;
— =exp|— ) ¢z
D(z) j=1 !

/_Equation (41

Fig.2 The adaptation block diagram of the alternative algo-
rithm.
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D= B g ® (41)
where
ErEh—
g7=lg @ g - @), g=—7F Tz
(sk/s)
H——ia

(42)

The convergence factor is ¢ and the scale § is calcu-
lated by

§=median |e;|, k—scl<i<k. (43)

The calculation time to get the scale § is propor-
tional to the value of sc/. Experimental results show
that the larger value of sc/, the longer time is needed to
reach the steady state, but we can get more efficient and
accurate estimates. Compromising the above
mentioned factors, the calculation and transient times
on one side, the accuracy and the efficiency on the
other side, we selected sc/=25.

To further reduce the calculation burden, instead
of using the convolution or the FFT approach which
require many calculations to get &;, the EXP model is
approximated by the log magnitude approximation
(LMA) filter®®

D%z) =exp(—F(z)) =R (—F(z))
1+ZL:BL,1(_F(Z>)Z
= (44)
1+§1BL,Z(F(Z))I
where
F(2) :é‘,lcjz’j. (45)

We use L=4 and the same B coefficients as in the
adaptive cepstral analysis.*? Since, by cascading two
stages of the LMA filter, we can obtain a more accurate
approximation,? in this paper we use the cascade
structure with

»
Fi(z)=cz ! and F(z)= chqz’q. (46)
=

Readers who are interested in the implementation of
the LMA filter are referred to the Ref. (11). The gain
K in Eq. (1) is also updated in every sampling instant
by

K=y®, ®=rt-D4 (1-)) & (47)

where ¢ is the predicted power of the residual at the
time k. The parameter A is chosen experimentally and
in all simulations we used A=0.98. By using this
approach, the calculation burden is very much
reduced, so that it is possible to implement the algo-
rithm in real-time systems.
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6. The Simulation Results

The two proposed methods, the block and the
alternative algorithms, have been implemented and
tested on several signals. The following are the reports
of those testings. ‘

6.1 The Block Analysis Algorithm

The output signals from an exponential system
EXP (11) excited by various signals are used as the
synthetic signals. The transfer function of the system is

45
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Fig. 3 The estimation results of EXP model, excited by a 400
Hz pulse train and using a rectangular window.
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11
Dirue(2) :exp{qZ:}lcff”ez‘q}, (48)

Without losing generality, the gain factor K is chosen
to be one. The true coefficient of the EXP model is
denoted by ¢i™°; 1=<¢=11. The sampling frequency is
10 KHz. The coefficient is obtained by analyzing one
frame of real human speech with the proposed method
using @=o0. The first synthetic signal is generated by
exciting the system with a 400 Hz pulse train.

We tried to estimate the spectrum of the system
from the output signal. The signal was analyzed every
msec using a 25.6 msec window. As many as 800
frames were analyzed. Various values of ¢ and p=11
were applied. Figure 3(a) shows the ideal spectrum of
the system, the obtained estimate spectrum from the
proposed method with ¢=10 and with ¢=o0, and the
periodogram for a frame where the obtained estimate
spectrum using @=oo gives the largest error. The
periodogram 1is plotted using a solid thin line.
Although the ideal spectrum is actually plotted by a
dotted line, it coincides with the estimated spectrum
using @=10, which is plotted using a solid line.
Therefore we can see only one solid line. By denoting
the ideal and estimated spectrum as Diue(e’®) and
D (&), respectively, from each frame the mean square
error (MSE) was calculated,

s
MSEZZL/ {20 1og10| Dirye (€7°) |
nTJ-r
—20 logy|D (/) |1 dw

Np ru
=—2—j:1(6‘ °—¢;)? NZ(

20 >27 (49)

lOglo e

where ¢; is the estimated EXP coefficients. From those
800 MSE values obtained from the corresponding 800
frames, the average and the SD of the MSE were
calculated and plotted as a function of ¢ in Figs. 3(b)
and 3(c), respectively. Figures 3(b) and 3(c) show
that by using small @ we can get a smaller error and
more efficient estimates than that by using large «.
This is because we analyzed a heavy-tailed signal and
it is consistent with the efficiency discussion in Sect. 3.

To simulate more complex heavy-tailed processes,
we generate the second synthetic signal by exciting the
same system as above with a random binary signal.
The signal is generated by using a non-linear operation

—1if n=-0.75

rbs;=1 11if r=0.75 (50)

0 otherwise,

where rbs; is the random binary signal and #; is the
random noise which has a flat PDF between — 1 and 1.

We carried out the same experiment as above. The
obtained estimate and ideal spectra, again for a frame
where the resulting estimated spectrum using @=oo
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Fig. 4 The estimation results of the EXP model, excited by a
random binary signal and using a rectangular window.

produces the largest error, are shown in Fig. 4(a). The
average of the MSE as a function of « is depicted in
Fig. 4(b). Figure 4(c) shows the SD of the MSE.
From Fig. 4(a) we can see that by using small @ we
can get a more precise spectral estimate than that with
large a.. Figures 4(b) and 4(c) also show that the
accuracy and the efficiency of the estimator can be
improved by using small a.

In addition to the above simulations, we have also
applied a 25.6 msec Hamming window in the analysis
and the results are shown in Figs. 5 and 6 for the pulse
train and the random binary inputs, respectively.
These figures show that the Hamming window
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Fig. 5 The estimation results of EXP model, excited by a 400
Hz pulse train and using a Hamming window.

improves the accuracy and the efficiency of the
estimator with ¢=oc0. For a simple impulsive input,
the pulse train input, the improvement by using a small
@ is insignificant. The difference between the obtained
estimate spectrum with ¢=10 and @=oc0 is small, so
that in Fig. 5(a) we can only see one solid line. For
a more complex impulsive input such as the random
binary signal, the improvement by using a small «
remains significant.

Those simulations indicate that the accuracy and
the efficiency of the proposed estimator depend on «.
By using small @, we can achieve accurate and efficient
estimates for many kinds of processes, the Gaussian
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Fig. 6 The estimation results of the EXP model, excited by a
random binary signal and using a Hamming window.

and the heavy-tailed processes. All the plotted results
in Figs.3 to 6 are calculated by using the FFT
approach. Since the results from the convolution
approach are the same, those results are omitted.

To compare the performance of the proposed
method with our previous proposal which uses the AR
model and assumption that the residual signal is ¢-
distribution with @ degree of freedom,® we carried out
the same experiments as above using an AR model
estimator. The obtained average and SD by using the
rectangular and Hamming windows for both synthetic
signals are plotted in Figs. 3 to 6. In the experiment, we
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Fig. 7 The estimation results of the ARMA model excited by a
random binary signal, using AR and EXP models with
a rectangular window.

used 25th-order AR estimator. When a smaller order
AR model is used, the average and SD of the MSE will
be higher. Those figures show that although a high
order AR model has been used, the average MSE is still
high. This mean that the AR model cannot accurately
estimate the EXP time series. From those figures, we
can also conclude that for analyzing an EXP signali, we
can achieve higher efficiency by using the EXP model
than by using the AR model.

Besides that, we have tried to estimate the spec-
trum of a complex spiky ARMA signal.. The signal
was generated by exciting an ARMA system which has
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10 poles and 2 zeroes with a random binary signal. In
the analysis, we used a rectangular window, and 25th-
order AR and EXP models. The ideal spectrum, the
obtained estimate spectra by using AR and EXP
models with ¢=10 for a frame where the obtained
spectrum estimate using the AR model produces the
largest spectrum error, are shown in Fig. 7(a). We
calculated the average and SD of the MSE using the
same method as above and plot them as a function of
a in Figs. 7(b) and 7(c), respectively. Figure 7(b)
shows that the average of the MSE from the EXP
model is smaller than from the AR model. These
results indicate that the EXP model can produce a
closer spectrum estimate for the ARMA signal than the
AR model. The obtained SD from the EXP model is
also smaller than from the AR model, so that it can be
concluded that for analyzing the ARMA signal we can
achieve a higher efficiency by using the EXP model.
When the Hamming window or the 400 Hz pulse train
excitation is used, we get almost the same results.
Thus, those results are omitted. Finally, therefore we
recommend using the EXP model to analyze unknown
signals which in general may contain poles and zeroes,
and also to use the small @ to achieve accurate and
efficient estimates.
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(a) For u = 0.02 and g = 0.2, both using @ = oco.

2~0E+2 T T T
a=3
1.0 4
£a}
@ 1.08-2f W= 0.06 -
——u = 0.2
1.0E-4} ‘ i
1.0E-6 ' s I
0 3000 6000 9000 12000

k

(b) For = 0.06 and p = 0.2, both using e = 3.
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All simulations show that, indeed, only a small
number of iterations are needed to get stationary
points. At stationary points, the Hessian matrix is
always positive definite. Furthermore, the simulations
show that it is always possible to get accurate and
efficient estimates by using small ¢. Hence, in practice
we recommend to use small ¢; ie. a=20.

6.2 The Alternative Algorithm

In the alternative algorithm, the estimated parame-
ter is updated in every sampling instant. Therefore,
similar to the LMS algorithm, there are two important
factors which determine the performance of the algo-
rithm, the transient and the steady state. Both of those
factors were examined and reported in this subsection.
The transient is investigated by measuring the progres-
sion of the MSE between the ideal and the estimated
spectra as a function of the iteration number k after
setting ¢“=0. The obtained MSE as a function of the
k for the 400 Hz pulse-train excitation with p£=0.02
and ©«=0.2, both using =00, are shown in Fig. 8(a).
Those two curves show that the usage of larger ¢ will
speed up the transient. The two curves for £=0.06 and
#=0.2, both using ¢=3, which are depicted in Fig. 8
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(a)For 4 = 0.0075 and 1 = 0.075, both using o = co.
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(b) For y = 0.02 and p = 0.075, both using = 3.

Fig.9 The progression of the MSE of the alternative algorithm
as a function of iteration number k£ for the EXP model
excited by a random binary signal.

Fig. 8 The progression of the MSE of the alternative algorithm
as a function of iteration number k for the EXP model
excited by a 400 Hz pulse-train.



SANUBARI et al: TIME SERIES ANALYSIS

(b), behave in the same way.

By comparing Figs. 8(a) and 8(b), we can con-
clude that we get a slower transient when small ¢ is
used; please compare the curves for £=0.2 using a=3
and ¢=oo0. To encounter this problem, when we use
small @, we have to use larger x than when @g= is
applied. Please compare the case for g=co and py=
0.02 with the case using =3 and £=0.2. From Figs.
8(a) and 8(b), the merit of using small @ can be clearly
understood. By using small «, after the transient has
deceased, we can obtain a smaller MSE than when
large « is used.

The same investigation was conducted for the
random binary excitation. The obtained results for «
=00 using £=0.0075 and 1=0.075 are shown in Fig.
9(a). In Fig. 9(b), the progression of the MSE for «
=3, with £=0.02 and ©=0.075, are depicted. Those
results behave in the same way as in the 400 Hz
pulse-train excitation.

In the second simulation, we investigate the behav-
ior of the MSE after the transient has ended. We used
various values of @ and . The MSE was computed at
every 100 psec or each sample. We calculated the
average and the SD of the MSE from 800 samples. The
results for the pulse-train excitation are shown in Fig.
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(a) The average of the mean square of the spectra.
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Fig. 10 The estimation results of the alternative algorithm for
the EXP model excited by a 400 Hz pulse train, using
the convergence factor £=0.02 and x=0.2.
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10 for £=0.02 and x=0.2. When y is assumed to be
constant, by using small ¢ we can achieve more accu-
rate and more efficient estimates than with large a.

Figures 8 and 10 show that by using ¢=3 and
=0.2, we can settle the transient faster and also get a
more accurate and more efficient estimate than by
applying a=oc and ¢=0.02. The obtained average
and SD of the MSE for the random binary excitation
are shown in Fig. 11. By comparing Figs. 9 and 11, we
can conclude that those results behave in the same way.

From Figs. 3(b) and 10(a), which show the aver-
age of the MSE, we can conclude that for a simple
excitation (400 Hz pulse train in this case) the usage of
the alternative algorithm does not affect the accuracy
of the estimator. From Figs. 3(c) and 10(b), we can
see that the SD is also not affected.

On the other hand, by comparing Figs. 4(b) and
11(a), and Figs. 4(c) and 11(b) we can clearly see that,
although the usage of the alternative algorithm reduces
the performance of the proposed method, the merit of
using small « is still significant. The efficiency and the
accuracy of the alternative algorithm using ¢=3 and ¢
=0.075 is still much better than that of the block
analysis using ¢=o0. Thus, by using the alternative
algorithm with small ¢ we can implement the algo-
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Fig. 11

The estimation results of the alternative algorithm for

the EXP model, excited by a random binary signal,
using a convergence factor £=0.0075 and x=0.075.
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rithm using real-time systems and achieve accurate and
efficient estimates.

An adaptive analysis approach using ¢=0 has
been developed and reported to be fast enough to be
used for analyzing time variant signals, such as the
speech signal.'V From the above simulation results, we
can conclude that by using small ¢ and a carefully
selected p, we can get an adaptive analysis method
which is comparably fast with ¢=o0, and additional
merit accurate and efficient estimates.

7. Conclusions

A new time series analysis method based on the
exponential model and assumption that the excitation
signal has an IID ¢-distribution has been proposed.
Theoretically, the estimator is efficient for many kinds
of processes, the Gaussian and heavy-tailed. The
simulation results show that when the signal is spiky or
heavy-tailed, we can achieve accurate and efficient
estimates by using small . When we use the small
degree of freedom of ¢, the proposed EXP estimator
can achieve more accurate and more efficient estimates
for EXP and ARMA signals than the AR estimator.
Since the EXP estimator is appropriate for analyzing
signals which have poles and zeroes, it can be used to
replace the ARMA model which has a stability prob-
lem.

To reduce the calculation burden, an alternative
algorithm has also been proposed. By using small ¢
and a carefully selected 1, we can get a fast conver-
gence algorithm. The accuracy and efficiency of the
estimator is comparable with the block analysis
method.

Future research efforts are directed toward the
application of the proposed method, the way of select-
ing the proper p, and calculating optimal «.
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Appendix A: The Proof of the Positive Definite
Property of G

We can write for any b, k=0, 1, .-+, p,

M-=1+p §2 2
‘2—0 {(abp_j£i7p+j> Wi}go.

Equation (A-1) can be manipulated to become

b b
22 b 2. b,
r=0 t=0

(A-1)

g

Cior&i—w; 20, (A-Z)

I

0

The residual is non-zero in the range of 0=i<M —1
when the convolution approach is used, so that ba=M

—1. When the FFT approach is used, the residual is
non-zero in the range of 0<i< M+ gq; g=max{r, 1},

so that ba=M+gq. Equation (A-1) can be
manipulated to become

p B

Z_}Obr;_]obzGr,t =0 (A-3)

for any real b,, 0= r= p, which proves that matrix G is
a positive definite matrix.
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