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Screening potential, the balance between the bare Coulomb repulsion and the potential of mean force
in a charged liquid, plays an essential role in the theoretical estimation of enhancement for the nuclear
reaction rates in dense stellar matter. For the accurate assessment of the screening potential at short in-
terparticle separations, we revisit the first-principles calculations for the coefficients of the Widom ex-
pansion and undertake extra-long Monte Carlo samplings in specifically designed binary-ionic systems.
The results are compared with those obtained from an approximate estimation based on extrapolation
from intermediate distances. We also present model calculations of the screening potential with two-ion
clusters, which shed light on the relation between the short- and intermediate-range behaviors.

PACS number(s): 52.25.—b, 05.20.Gg

I. INTRODUCTION

The interparticle correlations and thermodynamic
properties for various realizations of dense plasmas [1]
have been investigated by computer simulation methods
and by analytic means. In the simulation approach, the
radial distribution functions for such plasmas have been
sampled successfully by the Monte Carlo (MC) method
[2-5] with the Metropolis algorithm [6].

Screening potential [7] is the balance between the bare
Coulomb repulsion and the potential of mean force in
such a charged liquid. Screening potentials at short in-
terparticle distances play an essential role in the theoreti-
cal estimation of enhancement for the nuclear reaction
rates in dense stellar matter [8]. The short-range correla-
tions, which are not directly accessible in such a sampling
of the radial distribution functions, have been ap-
proached through the first-principles analyses combining
between the short-range Widom [9] expansion of the
screening potential and direct MC samplings of the
potential-field distributions at properly constructed test
charges [10].

In the statistical theory of classical ensembles [11], it
has been shown that the screening potential is intimately
related to the increments of free energies between two
realizations of many particle systems—a one-component
plasma (OCP) and a corresponding binary-ionic mixture
(BIM) plasma—before and after the nuclear reactions
[8,12]. The seminal calculations for the enhancement fac-
tor for the thermonuclear reactions by Salpeter and Van
Horn [13] were based on such a concept, where the free-
energy increments were evaluated in terms of the ion-
sphere model of Salpeter [14]. As improved construction
of ion clusters over those of the ion-sphere model may
shed new light on the nature of the screening potentials.

Separately, the short-range screening potentials were
approached by a method of extrapolation [15-17] from
the domain of intermediate distances where reliable infor-
mation was available for the radial distribution functions.
These may be termed as indirect methods, since the quan-
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tities defined in short ranges are inferred from intermedi-
ate distances comparable to the average interparticle
spacings. No unambiguous predictions can be expected
in such a scheme, however, since the results depend on
the assumptions that one adopts for the extrapolation.

In this paper, we reexamine the first-principles calcula-
tion for the coefficients of the Widom expansion and per-
form extra-long MC samplings in the specifically
designed binary-ionic systems [1,10]. We thereby evalu-
ate the coefficients in significantly improved statistical ac-
curacy, with the results which should settle an issue
raised from the point of view of an approach based on ex-
trapolation calculations [17,18]. We then present model
calculations of the screening potential with improved
constructions of two-ion clusters. The results, albeit ap-
proximate, corroborate the findings in the MC sampling
calculations and shed light on the relation between short-
and intermediate-range screening potentials.

II. SHORT-RANGE SCREENING POTENTIAL

A. Radial distribution function

We consider a classical OCP [8] consisting of N identi-
cal particles of electric charge Ze in a volume V with a
uniform compensating charge background; n =N /V is
the average number density. The physical nature of such
a plasma is characterized by a single dimensionless pa-
rameter,

2
r=BZe)
a

) (1

called the plasma parameter, which measures the ratio
between the average Coulomb energy and the average
kinetic energy; B denotes the inverse temperature in ener-
gy units, and

1/3
3

4mn

a= (2)
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refers to the ion-sphere radius.

In a classical plasma, the joint distribution function be-
tween two particles separated at a distance r,, —that is,
the radial distribution function g(r,,)—is defined and
calculated as

dry exp(—BFHin)

S
glr,)= ll v QNfdr3

(3)

Here the potential energy for a system consisting of N
charged particles with relative spacings r;; =|r;—r;| and
the neutralizing background (with the charge density
—p,.) is given by

(Ze)? Ze
ﬁin = ~Pe dr
t lfi%‘iN Tij P 151’25Nf |1‘ —r|
Pe
+1 ’
zfdrdr =]
= 2 (Zey Wy _(r, .y (4)
2<isn T
In Eq. (3),
Qszdrldrz"'drNexp( —BHiy) (5)

is the configuration integral for the N-particle system, and
the function Wy _, in Eq. (4) singles out the sum of all in-
teractions except the ones involving the particle 1. The
radial distribution functions are the probability densities
of finding another particle 2 at a distance r,, away from a
given particle 1, and are normalized so that they ap-
proach unity as the interparticle separations tend to
infinity; particles separated at extremely large distances
are not correlated with each other.

B. The Widom expansion of the screening potential

The screening potential is defined as
2

Hin=1%2 4 1
r B
It is the difference between the bare potential, the first
term on the right-hand side, and the potential of mean
force represented by the second term. The latter poten-
tial stems from a sum of a certain class of Mayer dia-
grams in the statistical-mechanical theory of liquids [11]
and does not mean a real potential in the sense of particle
dynamics. The screening potential is related closely to
the bridge function in the theory of liquids [11,19], and
plays an essential part in the theoretical treatment of an
enhancement factor for the nuclear reaction rate due to
many-body correlation [8].

It is instructive to investigate the short-range behavior
of the screening potentials by expanding Eq. (6) in a
power series of 72 as

BH (r)=BH (0)+h,(r /aY+h,

In[g(r)] . (6)

r/ayt+ - . 7

When calculating the coefficients in this expression, we
find it instructive to rewrite Eq. (3) as
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r

2
exp [ B(Ze)

_ {exp(=2B¢))

( exp(—B¥))?
< exp[ —B¥(r')] exp[ —BY(r' +1)]) )
(exp(—2BY)) '
Here
Y= 3 (Ze) 9)
2<isn T

and the statistical average { ) in Eq. (8) is defined and
calculated as

(f _r2)>
fdrldrz codryf(r,—r,)exp(—BWy_,) 0
{
fdrdr2 ccdryexp(—BWy )

The value of the screening potential at » =0 may be
evaluated by noting that the excess part F,, of the
Helmholtz free energy—that is, the interaction free
energy —for the N-particle system is given in terms of the
configuration integral (5) as

1 QN
F,=——=1n (1
“ BN
For an OCP, one thus derives a relation [12],
H(0)=-L jpdexpl =26¢))
(exp(—BY))

=F§}M(N,0)—F£;M(N~z,1) , (12)

where FE™M(N | N,) denotes the excess free energy of a
BIM plasma consisting of N, ions with charge number Z
and N, ions with charge number 2Z. Extension of Eq.
(12) to a multi-ionic plasma is straightforward [5].

C. Coefficients of the expansion

We now perform a short-range expansion of Eq. (8) in
a power series of r?, which may be expressed as [9,12]

B(Ze)?
r

—BH(0) |g(r)

o

> .13
BIM

Here z represents one of the Cartesian components of r
and the statistical average denoted by { )ppy is defined
and calculated in accordance with

_1\V,.2v
(—1)r <e By

V§0 (2v)! az"

(f(r;—12) ) pim
_ [ drdr, - dryf(r,—r,)exp(—BWy) 14
[ drdr, - - dryexp(—BW}) ’
where
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Wi =29(r)+ Wy_, (15)

refers to the potential energy of a BIM system in which
one “test” particle has an electric charge 2Ze and each of
the rest of N —1 particles has a charge Ze.

In light of Eq. (13), it is now straightforward to calcu-
late the coefficients of the expansion (7); the results are
[10]

hy a’l < 3 |BY >
—_—=—A | R (16)
r 2 a9z r BIM
b e[l oy i
24 oz | T
2 2
_1|8 | |BY >
r 0z r BIM
— a4F3 < __a_ Eldi 2>2 (17)
8 az r BIM ’
Since one calculates
2
< 9z | /sm 6B Av 2Ba? (18)

by partial integrations for a Coulombic system, Eq. (16)
reduces to an identity [12]

—_=——. (19)

Though the last term of Eq. (17) can be rewritten as
—T' /32 in light of the identity (18), we stress that h, /T’
should be sampled without this replacement in Eq. (17)
for securing statistical accuracy in the evaluation.

III. MONTE CARLO SIMULATION STUDIES

A. The coefficient i,

Ogata, Iyetomi, and Ichimaru [10] undertook the
direct MC sampling calculations of Egs. (16) and (17) in a
BIM system with N (=249) particles, of which 248 parti-
cles had a charge Ze and one with 2Ze. Since the value
of h, /T is known by the identity (19), the direct calcula-
tion of Eq. (16) is useful in assessing the statistical accu-
racy of the MC sampling.

Let ¢ denote the number of MC configurations generat-
ed in the Metropolis algorithm. These authors started
with random initial configuration and waited for equili-
bration over the initial period of ¢/N =0—6000; the
subsequent period, ¢ /N =6000— 7000, was then used for
the direct calculations of the coefficients, —4h,/T" and
h, /T, by the MC samplings of Egs. (16) and (17). For
comparison with the present calculations, we list the re-
sults obtained in those calculations by lightface numbers
in the parentheses in Table I. These results are plotted
also in Fig. 1.

On the basis of these data, it has been concluded [8,10]
that

h,/T'=0.00+0.01 . (20)
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TABLE 1. The calculated values of the coefficients, —4h, /T
and h, /T, by the direct MC samplings of Egs. (16) and (17).
The boldface numbers are the results of the present calculations
(N =1000); the lightface numbers in the parentheses are those
of the earlier calculations (N =249) in Ref. [10].

r —4h, /T h,/T Sampling (c/N)
160 0.995 —0.0007+0.034 6000— 68 000
(1.008) (0.06+0.13) (6000— 7000)
80 1.0018 0.021+0.022 6000— 52 000
(0.991) (—0.07%0.07) (6000— 7000)
40 1.0009 0.011+0.015 6000— 28 000
(0.992) (—0.03£0.04) (6000— 7000)
10 0.9996 0.0041+0.012 6000— 16 000
(0.989) (0.0006+0.009) (6000— 7000)

Though the assessment (20) is consistent with all the data
in that series of simulations, it was desired to perform
direct MC sampling calculations with a significantly im-
proved statistical accuracy, because of the relatively large
error bars involved in those calculations especially at
I'=160.

We have thus reexamined the MC sampling calcula-
tions of the coefficients, h, and h,, in a larger system
with N (=1000) particles, of which 999 particles have a
charge Ze each and one with 2Ze. The initial periods of
¢/N =0—6000 were again set aside for thermalization;
the subsequent periods, listed in Table I, were then used
for the direct calculations of the coefficients, —4h, /T
and h,/T’, by the MC sampling. These samplings con-
sumed a sum of 40 h in CPU time with the University of
Tokyo HITAC S-3800/480 supercomputer. These results
have been included in Table I by boldface characters and
in Fig. 1 by the filled circles with thick error bars.

It is noteworthy that the statistical errors have now
been reduced drastically and take on values close to the
case with I’'=10 in the 1991 simulations. In light of the
values sampled for —4h,/I', we might even conclude
that the calculations are statistically as accurate as that
case with '=10. Obviously, the assessment (20) remains
consistent with these improved data.

02}
01f
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_0.2ﬁ

FIG. 1. The values of the coefficient —h,/T" calculated by
the MC samplings. The open circles with error bars represent
the results of the earlier calculations in Ref. [10]; the filled cir-
cles with thick error bars, the present results; the X, the evalua-
tion by Rosenfeld in Ref. [17].
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To examine the origin of improvement in the statistical
accuracy achieved in the present simulation, we plot in
Figs. 2 and 3 the values of [ —4h, /T 5000 and [h, /T J5p00
in the present sampling at I'=160 as functions of ¢ /N.
Here [ - - - ],000 denotes a statistical average in the sense
of Eq. (16) or (17), however, over MC sampled data col-
lected in a short interval of Ac /N =2000. We observe in
these figures that each of the averages, [ —4h, /T ],590 OF
[A5 /T o000, fluctuates enormously around unity or zero,
respectively, and that their fluctuations are in phase more
or less to each other; the use of Eq. (17) thus leads to par-
tial cancellation between large fluctuations stemming
from the first and second terms. Origin of the large
departure from zero in the 1991 calculation of &, /I at
I'=160 may be attributed to such a short interval
(Ac /N =1000) of the sampling. To reduce the extents of
errors involved in the statistical evaluation of h, and h,,
it is therefore necessary to perform very extended MC sa-
plings as we have done in the present case. Establishing
an effective measure in reducing the statistical errors in
sampling of Eq. (16) leading to the identity, h,/I'=—1,
likewise turns out essential for securing the accuracy in
the sampling for #,, since the former quantity enters the
expression for the latter through the last term in Eq. (17).

B. The screening potential at zero separation

Values of the screening potential at zero interparticle
separation, H (0), may be obtained from balances of the
BIM excess free energies in accordance with Eq. (12).
The thermodynamic functions for dense BIM fluids have
been investigated extensively for the construction of
phase-separation diagrams associated with possible freez-
ing transitions in the interiors of white dwarfs [20-22].
Substantial progress has been achieved due primarily to
progress in the MC simulation studies [5].

We consider a BIM fluid in a volume V containing N,
and N, particles of species “1”” and ‘2" with charge num-
bers Z, and Z, (> Z,), and number densities n;=N,/V
and n,=N,/V, respectively. The molar fraction of ‘i’
species is denoted by x,=N,/N, where N=N,;+N,;

1.2,

- i
= I\ A\
— Ao " RV
= ool A VTN AV AN
= 10 r /'\/\,’ \\j L \/ \ /\ N
= | | v \/ L
i % L & T
- 0.91 ! |
0.8! !
0 1 2 3 4 5 6 7
10-* ¢/N
FIG. 2. Sequential evolution of the partial averages

[—4h, /T J,000 in the present MC simulation at I =160. The
solid lines are drawn only to guide the eye.
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FIG. 3. Same as Fig. 2, but for the partial averages
(A2 /T Jao0o-

R,=Z,/Z, denotes the charge ratio. The ion-sphere ra-
dius and the Coulomb coupling parameter of the indivi-
dual species are defined as

3Z. 1/3

4= | : Q21
mn,

I, =(Z.e)B/a; , (22)

where n, refers to the number density of the background
electrons.

The excess internal energy of the BIM in units of N /3
is calculated in terms of the partial radial distribution
functions as

Z,Ze’

r

uBM(Ry,x,T)= 3 =L [ dr [g;(r—1] .

23)

Here and hereafter in this section, we write x =x, for
simplicity.

An extensive MC simulation study [5] of the excess
internal energy (23) for BIM fluids has been performed at
37 different combinations of the parameter values
R,=1{4/3,3,5}, x =0.01—0.5, and I'|=5—200. In ad-
dition the present MC study contributes values of the
BIM excess internal energy at R, =2 and x =0.001 for
the four cases with different values of I';, as listed in
Table II. The results are compared with predictions from
a linear-mixing law; that is,

2
utM(R,,x,T)= 3 x;udH (T, 24)
i=1
where
u2CP ()= —0.898004T +0.96786"'/*
+0.220703T ~1/4—0.86097 (25)

is the OCP excess internal energy in strong coupling
[4,23]. With inclusion of the present cases of sampling
for BIM, the MC results for the deviations,
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BugM =B -l 29

from the linear-mixing values are thus expressed in a
different parametrized form as

V'Rz;—1(xR;—0.11)
R;—0.22
X exp(10.1—10.4x°16)
9 F'ix(1—x)
[T+ 100 exp(—5000x)])>

AuB™(R,,x,T,)=0.32

27)

This fit reproduces the previous MC data [5] for
0.01 <x <0.5 as accurately as in Fig. 2 of Ref. [5]. Com-
parison of Eq. (27) with the present MC data at x =0.001
is given in Table II [24].

The excess Helmholtz free energy for a BIM fluid (in
units of N/pB) is expressed as a sum of the linear mixing
contributions and the deviations therefrom:

BlM_(l x)fOCP(F1)+xfOCP(l-\2)
+AfBM(R,,x)+AfBM(R,,x,T)) .  (28)

Here

V' R;—1(xR;—0.11)

BIM -
AfEM(R,,x,T)=0.32 R,—0.22

1
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fOCP(I')=—0.898004T +3.87144T"!/4—0.882812" ~'/*
—0.86097 InT" —2.52692 (29)

is the free energy for the OCP fluids assuming

2 nZ;
AFBM(Rz,x)= 3 x;In | ——
i=1 ne
1—x
(1=x)n T 73R,
+x1 *Rz 30
xn 1—x +xR, G0

refers to a free-energy contribution of the ideal-gas entro-
py of mixing under the condition of charge neutrality at a
constant density of the background electrons. The last
excess part in Eq. (28) can be evaluated from Eq. (27) via
the technique of the coupling-constant integrations [1,5]
as

exp(10.1—10.4x°%16)

1

Xx(1=2)\ 777700 exp( — 5000%)

(Rz—1)3x (1—x)
1+1.12(R,— 1)x

+0.0551

As we have remarked [5], the deviations (31) in the BIM
thermodynamic functions from the linear mixing evalua-
tions are significant.

The screening potential at zero interparticle separa-
tion, Eq. (12), is thus evaluated as [8]

BH (0)=2f9CP(I)— fOCP(25/3T)

f‘“M(z ,T) . (32)

x=0

In Table III, we compare these evaluations with the
values set forth in Ref. [10],

TABLE II. The BIM excess internal energies u5™ sampled
in the present simulation (cf. Table I) and departures AuB™

from the linear mixing values u ™ in Eq. (24).
r uBM AuB3™M Fit, Eq. (27)
10 —8.0169+0.0007 —0.0021+0.0007 —0.00133
40 —34.336+0.0011 0.001+0.0011 —0.00037
80 —69.886+0.0015 0.0021+0.0015 —0.000 19
160 —141.349+0.0027 0.000+0.003 —0.00009

T, +100 exp(—5000x)
(31)
—
BH (0)o;=T(1.356—0.0213 InT")
—TI'(0.456—0.01301nT")?, (33)

and with those in a linear-mixing approximation,
BH (0)=2f () — £ O (25/°T) . (34)

It is clear that the thermodynamic evaluations (32) agree
closely with the OII evaluations (33). This points to the
accuracy of Eq. (33) and importance of taking into ac-
count the deviations from linear mixing approximation

TABLE III. Values of the screening potential at zero inter-
particle separation evaluated in various theoretical schemes.
BH (0)o; corresponds to Eq. (33); BH (0), the thermodynamic
evaluation (32); and BH (0)py;, the linear mixing approximation
(34).

r BH (0)on BH (0) BH (0)pm
10 11.254 11.328 10.993
20 22.365 22.611 21912
40 44.437 44.800 43.528
80 88.275 88.462 86.425
160 175.325 174.602 171.743
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such as (34) in evaluating the short-range screening po-
tentials through the thermodynamic relations.

IV. CLUSTER-MODEL CALCULATIONS

Calculations of the screening potential may be ap-
proached approximately through consideration of the
electrostatic energies in Coulomb clusters [1,25,26]. Let
an N-particle Coulomb cluster be constructed by N parti-
cles with electric charge Ze situated in a neutralizing
background of uniform charge-density distribution, —p,,
with a volume (2, which satisfies the relation,

p.Q=NZe . (35)

The electrostatic energy of such a cluster is then calculat-
ed as

(Ze)? .

1<i<j<n Tij

Ze
’rj_l'|

EN: Pe 2 fﬂdr

I1SisN

P2

[r—r'| ~

+%fﬂdr dr’ (36)
We then define a quasipotential, meaning a trial screening
potential, by

2
H,(r)=2E1-—E2+-(ZrL) ,

(37
where r denotes the distance between the two particles in
the two-particle cluster.

In Salpeter’s ion-sphere model [14], one calculates E,
for a single particle located at the center of spherical
charge distribution with the ion-sphere radius a in Eq. (2)

and E, for a two-particle cluster with a radius 2134, as
depicted in Fig. 4(a). One thus finds [7]
Hg(r)
B —1.057—1x?, (38)
(Ze) /a

where x =r/a. In this ion-sphere model, therefore, Eq.
(19) is recovered and h, =0.

For an arbitrary value of r (¥0), it has been shown
[26] that a spherical two-particle cluster of Fig. 4(a) does
not always correspond to a configuration with a
minimum of the cluster energy E,. Instead one may con-
sider a spheroidal (SD) structure of Fig. 4(b) or a sphero-
cylindrical (SC) structure of Fig. 4(c) for a two-particle
cluster, in which at each value of r the energy E, is mini-
mized with respect to the variational parameters, £ and
7, under the constraint of Eq. (35). Specifically we define

2 __ 2 S —
A [x;g,n]z_% {M——%g—\/(n+x/2)2+§z+

n+x/2

n—x/2+Vng—x/2+& | _
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(®)

FIG. 4 Schematic views of two-particle Coulomb clusters
with (a) spherical, (b) spheroidal, and (c) spherocylindrical
structures.

a dimensionless screening potential in a cluster model as

H/(r) 2E,—E,
h(x)= = st (39)
(Ze) /a (Ze)*/a x

which may be expressed for each of the elongated clusters
as

5

hc(x)=*1.8~): — A[x;6m]+B&n] . (40)
Here, for a spheroidal cluster, we calculate
3 1—6? 1+6 20 N
A[x:Em]== — , (41)
[x,g 77] 3 63 In 1—0 ]—92
3 -6 |1+6
B[g’n]- 21/3 6 ln 1_9
9 1
——2 [ dxdx’ , (42)
3272 fn X T —x]
with
21172
0= |1— £ (&E<n), (43)
m

which has the meaning of a distortion parameter. The
parameters, £ and 7, become functions of x, after the
aforementioned variational calculations have been per-
formed.

For a spherocylindrical cluster, we likewise calculate

_ P Y A —

—3F2n —
6 n+x/2—V(n+x /22 +E

9 1
dxdx’ )
3272 fn S —

B(&n]=38"—n"—

n—x/2
3
28m (44)
2—(x/2)?
45)
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In this case the deformation parameter is expressed as
27172
0=

1- (46)

E+m

In Figs. 5 and 6, we plot the results of the variational
calculations for 6 and for h.(x) in the models of
spheroidal and spherocylindrical clusters. In both cases,
we observe h,(x) stay above the ion-sphere-model predic-
tion (38), reflecting the fact that the elongated clusters do
have the binding energies greater than the spherical ones.
In the intermediate domain, 0.8 <x <1.8, the calculated
results may be fitted in linear forms,

_|1.25—0.398x (SD) 47)

he(X)= 11 22-0.377x (SC),

as exhibited in Figs. 5 and 6. Such a linear relation in the
intermediate domain of the screening potential was first
discovered by DeWitt, Graboske, and Cooper [15]
through the analysis of MC data [2] for the OCP radial
distribution functions.

For the analyses of the short-range behaviors of the
screening potentials in the improved cluster-model calcu-
lations, we express

h(x)=h(0)+Ex2+Ex+ - . (48)

In both SD and SC cases, we find through direct calcula-
tions

1. d?
=—Ilim——h_.(x
gl 21 x—0 de C( )
1. 1 3%*4 1
=—Ilm |——— =—— (49a)
2! x—0 2 9x? 4
and
1.0 . . ,
o 05} i
0 t : .'
1.1t - SD ]
-, - —IS
LOF ™, |—Fit | 1
« 0.9 E
El% o8t ]
TN
~ 0.7 E
0.6} ]
0.5F ]
04 P P P
0 05 1.0 15 20

r/a

FIG. 5. Distortion parameter and screening potentials in the
cluster-model calculations. The solid curve in the top and the
dots in the bottom represent the results of the variational calcu-
lation for 6 and h.(x), respectively, in the model of spheroidal
(SD) cluster; the dashed curve, Salpeter’s ion-sphere (IS) model;
the solid line, the linear fit, Eq. (33), to the SD cluster values.
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0.8}
0.7}
0.6
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r/a

H(r)
(Ze)*/a

FIG. 6. Same as Fig. 5, but for 0 and h.(x) in the model of
spherocylindrical (SC) cluster.

%0 9’4 3%0 924

dx2 309x? 9x3 360x
(49b)

The identity (19) is recovered in Eq. (49a), and the assess-
ment (20) is again sustained in Eq. (49b). Mathematical
proof of Egs. (49) will be given in the Appendix.

It is instructive to compare implication of these model
predictions, (47) and (49): Equation (47) implies that the
screening potential is different in the intermediate
domain between the SD and SC cases. The values of the
short-range coefficients in Egs. (49), on the other hand,
are the same for both cases. This comparison therefore
signals a warning against an uncritical use of an extrapo-
lation method for estimation of the short-range quanti-
ties. We shall elaborate this point further in the next sec-
tion.

V. METHODS OF EXTRAPOLATION

In 1973, DeWitt, Graboske, and Cooper [15] analyzed
the MC data for g (r) obtained by Brush, Sahlin, and Tell-
er [2] and thereby found a linear relation for the screen-
ing potential, i.e., h(x)=ay—a,x, over an intermediate
domain, 0.9 <x < 1.6. This relation was then extrapolat-
ed toward the short range as
0.1898 _lx2+ L

2
In this work, the coefficient of the quadratic term is —
which differs from that presented here in Eq. (19).

Subsequently in 1978, Alastuey and Jancovici [16] de-
rived an overall approximate fit of 4 (x) in the whole in-
terval, 0<x <1.6, as

h(x)=1.205—

1
2

h(x)=h(0)—1x24+0.039x*—0.0043x° . (50)
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It must be noted that these authors have correctly termed
this expression as “‘an overall approximate fit.” The ex-
pression (50) has not been offered as a short-range expres-
sion in the sense of Eq. (7), though the coefficient of the
quadratic term correctly reproduces the corresponding
coefficient of expansion, —1, as in Eq. (19). It is there-
fore meaningless to compare the coefficient, 0.039, of the
quartic term with an evaluation, such as Eq. (20), of the
coefficient in the short-range expansion.

Finally in 1992, Rosenfeld [17] followed up the extra-
polation method of DeWitt, Graboske, and Cooper [15],
in which the MC data [10] of g(x) in an intermediate
domain have been used for an assessment of the
coefficients of Widom expansion (7) in the short range; in
particular, he obtained

h,/I"'=0.03, at I'=160 . (51)

This value is entered in Fig. 1 as well. Based on an extra-
polation scheme, whose results depend on the adopted as-
sumptions, the evaluation is an approximation. Though
the estimated value (51) is still (barely) allowed by the er-
ror bars in the present direct calculation as listed in Table
I, the observed trends in Fig. 1, coupled with our analytic
model calculations, indicate that this estimate is unlikely
to be supported in a first-principles evaluation based on
Eq. (17) when the size of the MC sampling is further in-
creased.

Rosenfeld recognized such an approximate nature on
the extrapolation scheme and used the results mainly for
justification of his another approximate ‘‘Onsager-
molecule” concept. In his paper [17], Rosenfeld pointed
out differences between the predicted values of h(0) in
his approach and those in Ogata, Iyetomi, and Ichimaru
[10]. In Figs. 7 and 8, we compare the screening poten-
tials obtained in the schemes of Ogata, Iyetomi, and
Ichimaru [10] and of Rosenfeld [17] as well as those sam-
pled by the MC simulation method; plotted therein also
are the values of 4 (0) computed by the thermodynamic
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FIG. 7. Comparison of screening potentials for the OCP at
'=160. The dots represent the MC data [10]; the maximum
extent of statistical uncertainty in the MC sampling points is
1075, unless explicitly shown by vertical bars. The solid curve
depicts the values of the fitting formulas obtained by Ogata, Iye-
tomi, and Ichimaru [10]; the dashed curve, by Rosenfeld [17].
The thermodynamic evaluation of H (0), Eq. (32), is plotted by a
filled diamond.

SETSUO ICHIMARU, SHUJI OGATA, AND KENJI TSURUTA 50

o s T 2
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005

FIG. 8. Same as Fig. 7, but at ' =10. The maximum extent
of statistical uncertainty in the MC sampling points is 10™¢, un-
less explicitly shown by vertical bars.

evaluation, Eq. (32), where deviations from the linear-
mixing law have been properly taken into account. The
results of the present calculations and comparisons,
shown in Tables I and III as well as in Figs. 1, 7, and 8,
clearly indicate the accuracy of the first-principles
schemes that have led to Eqgs. (17), (20), (32), and (33)
[27].
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APPENDIX: PROOF OF EQS. (49)

In the cluster model actual shapes of the clusters are
determined by the parameters, &, and 7, which are relat-
ed as

|2/8* for SD

17 22— £/(38) for SC, \AD

through the condition of Eq. (35). The distortion param-
eters 6 defined by Egs. (43) and (46) is therefore the varia-
tional parameter, instead of §, to calculate the dimension-
less screening potential in the model defined by Eq. (40)
for a given x. The variational calculations are performed
numerically so that

oh, | d

|
=—"(4—-B)| =0,
30 ( ) 0

A2)
36 N (

X

and the values of 6 are obtained as a function of x (see
Figs. 5 and 6).

To calculate the short-range expansion (48) of A .(x)
with respect to x, we write the total derivatives of A (x)
in the second and fourth order as

d> Fh. (4o 'k, _dp Ok,

helx)=—7 dx | ae* |~ dx 060x

e (A3)
x
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and
at, 3 [de ‘o',
a0 T T x| e
valae 3%, do |” 3,
dx | 36%x dx | 36%x?
do|, 3h. _d% 3h. g% &k
dx | 900x3 dx? 30%x dx3 96*
29 o%h 3g 9%h
d-6 c d-0 c (A4)
dx? 303x2  dx* 969x
respectively. Figures 5 and 6 show that
lim6(x)=0, (AS)
x—0
and that
limﬁ
x—0 dx
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takes on a finite value. Hence the second identities in
Egs. (49a) and (49b) are obtained by substituting Eq. (40)
into Egs. (A3) and (A4), respectively, with the condition
(A2).

After straightforward calculations for both SD and SC
cases, we find

3"h n
fim——t = —im 94 =g | (A6)
x—0 Jx" x—0 9x"

3’4 .. 34 . 34 . 3*4

I = = =
AT 303X xo0003x%  xm000%x  x0 309

4 4
=lim a°4 =lim g 4 =0,

= = A7
x—0960°0x x—006%dx? (A7)

where n =1, 2, 3, and 4. Since we may assume that 4, B,
and their differentials are smooth and regular functions at
x =0 and its vicinity, Eqs. (A6) and (A7) lead to the last
identities in Eqs. (49a) and (49b).
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FIG. 4 Schematic views of two-particle Coulomb clusters
with (a) spherical, (b) spheroidal, and (c) spherocylindrical
structures.



