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SUMMARY  This paper addresses approaches to enhancement
of performance of the CMA (Constant Modulus Algorithm)
adaptive array antenna in multipath environments that charac-
terize the mobile radio communications. The cost function of
the CMA reveals that it has an AGC (Automatic Gain Control)
procedure of holding the array output voltage at a constant value.
Therefore, if the output voltage by the initial weights is different
from the object value, then the CMA may suffer from slow con-
vergence because suppression of the multipath waves is delayed by
the AGC behavior. Our objective is to improve the convergence
characteristics by adopting the differential CMA for the adaptive
array algorithm. First, the basic performance of the differential
CMA is clarified via computer simulation. Next, the differen-
tial CMA is incorporated into the eigen-beamspace system in
which the eigenvectors of the correlation matrix of array inputs
are used in the BFN (Beam Forming Network). This BFN cre-
ates the optimum orthogonal multibeams for radio environments
and works helpfully as a preprocessor of the differential CMA.
The computer simulation results have demonstrated that the dif-
ferential CMA with the eigen-beamspace system has much better
convergence characteristics than the conventional CMA with the
element space system. Furthermore, a modified algorithm is in-
troduced which gives the stable array output voltages after con-
vergence, and it is confirmed that the algorithm can carry out
more successful adaptation even if the radio environments are
changed abruptly.
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1. Introduction

Recently, remarkable progress has been made in mobile
communications, and the demand for those is increas-
ing rapidly. However, since the utilization of frequency
spectrum is restricted, quality of radio communication
is degraded by interferences due to closely placed ra-
dio stations (e.g., co-channel interferences) and multi-
path propagation interferences. Therefore, the receiving
systems which can suppress the unwanted signals while
maintaining the desired signal are required eagerly.

It is known that adaptive arrays are one of the effec-
tive measures for suppressing the interferences in multi-
path environments [1]-[6]. Particularly, it is reported
that CMA (Constant Modulus Algorithm) adaptive ar-
ray has the superior performance[1]-[3],[5],[6].
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The CMA adaptive array was developed for the
capture of constant envelope signals and works to elim-
inate the amplitude fluctuations of the array output sig-
nal due to the incidence of interferences. As a reference
for the capture, the CMA has the desired constant am-
plitude of the array output in the cost function, and so
it includes an AGC (Automatic Gain Control) proce-
dure of holding the array output voltage at the constant
value[1]. Therefore, if the output voltage by the initial
weights is different from the object value, then the AGC
procedure is prior to suppressing the multipath waves,
which leads to slow convergence. Even though the array
output amplitude is nearly equal to the expected value
before adaptation (e.g., by the additional AGC circuit
incorporated in the receiver), the optimization with the
steepest descent method reveals slow convergence [6]. In
this paper, accordingly, to make its convergence charac-
teristics much better, we adopt the differential CMA [7]
as the adaptive algorithm .and discuss its performance
in multipath environments.

Furthermore, we try to incorporate the differential
CMA into the eigen-beamspace system [8],[9]. In this
system, we compute the eigenvalues and eigenvectors of
the correlation matrix of array inputs. Based on eigen-
structure methods such as MUSIC[10], we can estimate
the number of incident waves from the number of eigen-
values which are larger than the internal noise power.
The eigenvectors are used for the beamforming weight-
ing in the BFN (Beam Forming Network). This BFN
creates the orthogonal multibeams and works as a pre-
processor of the differential CMA.. The eigenvalues are
equal to the average powers of BFN outputs using the
corresponding eigenvectors as the BFN weighting, and
so we can choose the BFN outputs which are effectively
used in the differential CMA. Also, the number of the
chosen BFN outputs is equal to that of the incident
waves, which enables.the CMA to do the most efficient
processing.

Through computer simulation, we show that the
differential CMA with the eigen-beamspace system has
better convergence characteristics than the conventional
CMA system. In addition, we modify the optimiza-
tion algorithm to get the more stable output voltages
after convergence. Then, via computer simulation,
we demonstrate that this algorithm provides not only
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higher stability but also more successful adaptability to
the changing radio environments.

A brief outline of the paper now follows. In Sects. 2
and 3, we state the principles of the CMA and the dif-
ferential CMA, respectively. Also, in Sect. 3, we present
the basic performance of the differential CMA by com-
puter simulation. In Sect.4, after the concept of the
eigen-beamspace system is explained, the performance
of the differential CMA using the eigen-beamspace sys-
tem 1s discussed. Finally, concluding remarks are glven
in Sect. 5.

2. Principle of the CMA Adaptive Array

The CMA was developed for the capture of constant
envelope signals[1],[2]. The knowledge required in
advance for the CMA is nothing except that the de-
sired signal possesses the constant envelope. Therefore,
the CMA is suitable for the mobile communications in
which it is difficult to extract available information on
the desired signal from the complex radio environments.

Now, we consider a K -element antenna array. Fig-
ure 1 shows a configuration of the array receiving sys-
tem. Let z; and w; represent the input and weight at
1th element respectively, and also X and W denote the
input vector and weight vector, respectively, which are
defined as

X = [z, zx]" )
W:[wl,---wK}T ‘ 2

where T" denotes the transpose. Then, the array output
y is expressed as

y = XTW* 3)

where * denotes the complex conjugate.

The CMA adaptive array works to eliminate the
amplitude fluctuations of the array output signal due to
the incidence of interferences. Thus, the cost function
to be minimized is normally represented as

QW) = B |[|ly* - o*] )
, [\)CJ(I) d
4 Xa(1) W>
w2 D
d @ Y,
. "W,
#K D x[j) "
adaptive processor

x(t): input w: weight y(z) : output

Fig. 1 Configuration of a K-element adaptive array.
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where E[-] stands for the ensemble mean and o is an
amplitude of the array output signal expected in the ab-
sence of signal degradation. Equation (4) is nonlinear
with the array weights, and so the optimum weight vec-
tor cannot be described in a closed form. Therefore, the
optimum weight vector of the CMA is obtained by us-
ing iterative methods. In this paper, we use the steepest
descent method and Marquardt method [11], [12] as the
iterative optimization algorithm.

3. Principle and Properties of the Differential CMA
Adaptive Array

3.1 Principle

As presented in Eq.(4), the cost function of the con-
ventional CMA includes an AGC procedure of hold-
ing the array output voltage at a constant value of o.
Therefore, if |y| is different from o at the initial state,
the suppression of multipath waves is delayed because
of the priority of the AGC precedence.

For improving this, we adopt the following cost
function proposed in Ref.[7].

QW) = &yt = i~ 0P| 0

where y(4) and y(¢—1) are the array output signals sam-
pled at the ith data symbol and (i — 1)th data symbol,
respectively. By minimizing the cost function of Eq. (5),
we obtain the optimum array weights. This algorithm
is called the differential CMA. Since the algorithm does
not specify the amplitude of the array output, it is ex-
pected that it can improve the convergence.characteris-
tics.

Also, it is noted that there may exist a trivial so-
lution: W = 0 in the differential CMA, but it can be
removed by fixing one of the array weights at a constant.

3.2 Properties of the Differential CMA

We discuss convergence characteristics of the differen-
tial CMA. To investigate the basic properties, we use a
linear array of isotropic antenna elements. The element
spacing of the array is a half wavelength of the carrier
frequency and the number of elements is two or three.
We generate a m/4-shifted QPSK signal which is trans-
mitted over several multipath channels. Sampling rate
is equal to 8/T for the symbol duration of T', and all
the signals are not filtered and not disturbed by channel
fading. A series of random binary PN (Pseudo Noise)
codes is utilized as data transmitted and the differential
detection system is used for code detection.

Table 1 gives the detail of radio environment used
in simulation experiments for a 2-wave multipath model.
Angles of arrival are measured from the broadside direc-
tion of array. The internal noises with an equal power
exist at each antenna element, and the input SNR is
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Table 1  Radio environment used in computer simulation of
Sect. 3.2.
angle of .
power arrival delay time
wave 1 0dB 0° 0
wave 2 —2 dB 60° T
Input SNR = 20 dB
20 T T 1st wave
——— 2nd wave
r —— noise
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g -20 ;__l\_______________;
o L Y ~
—40 |- k/l\J | Iy \/
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ol 1
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lteration (times)
(a) steepest descent method
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(b) Marquardt method
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Fig. 2  Output powers vs. iteration (2-element linear array, dif-
ferential CMA).

defined as the power ratio of the first incident wave to
the internal noise. In the CMA optimization, we use 15
snapshots for one update of weight vector. The initial
weight vector is set to Wq = [1,0,---, 0], which means
the initial array pattern is isotropic, and w; is fixed at
1 in the differential CMA. Also, in the conventional
CMA, we let ¢ = 1, which is equal to the amplitude
of the first incident signal.

First, we show in Fig.2 the output powers versus
the iteration number for the 2-element system. From
this figure, both the steepest descent method and the
Marquardt method capture the first incident wave and
suppress the second one. Also, iteration numbers at
which the average BERs (Bit Error Rate) become less
than 10~ are shown in Table 2. For fair comparison,
the stepsizes of the steepest descent method are chosen
so as to make the output fluctuations at the stationary
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Table 2 Iteration numbers at which the average BERs become
less than 109,
differential | conventional
steepest descent 17 33
Marquardt 6 7
20 T 1st wave
——— 2nd wave

———- noise

Power (dB)

0 20 40 60 80 100
Iteration (times)

Fig. 3  Output powers vs. iteration (3-element linear array, dif-
ferential CMA, Marquardt method).
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Fig. 4  Output powers vs. iteration up to 1000 (3-element linear
array, differential CMA, steepest descent method).

state almost the same in the differential CMA system
and the conventional CMA system. It is found that
the convergence rate is raised by the differential CMA
particularly in the case of the steepest descent method.

Next, Figs.3 and 4 show the output powers ver-
sus the iteration number for the 3-element system us-
ing the the Marquardt method and the steepest descent
method, respectively. In the figure, it is noted that both
two waves are suppressed. Since the Marquardt method
provides much higher convergence rate than the steep-
est descent method [6], the suppression of both arriv-
ing waves arises so early. From these figures, we can
conclude that suppression of all the incoming waves as
shown in Figs. 3 and 4 is directly due to excess of the
degrees of freedom of the array. In the background,
there is also the reason that the differential CMA does
not have any reference designating the amplitude of the
array output.
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4. Improvement by Use of an Eigen-Beamspace Sys-
tem

It has been clarified in the previous section that the dif-
ferential CMA may suppress the desired signal as well
as the undesired signals if the number of the degrees
of freedom (K — 1) is larger than that of the incident
waves. Then, we must adjust the number of elements of
the array according to the incident waves in using the
differential CMA.

4.1 Eigen-Beamspace System

Now, in this section, we incorporate the differential
CMA into an eigen-beamspace system|[8],[9] in order
to operate it successfully. Using the eigen-beamspace
system, we can estimate the number of the incident waves
almost exactly. That is why the eigen-beamspace system
is much helpful to the differential CMA. As the similar
beamspace system, the FFT-based beamfomer is often
employed [13]. Indeed it creates a set of orthogonal
beams, but they are not dependent on the powers and
directions of the incoming waves. Therefore, using the
FFT-based beamfomer cannot always offer the accurate
number of the incident waves, which is required by the
differential CMA. From that, it follows that the eigen-
beamspace is preferable to the FFT-based beamspace
for the differential CMA.

In the eigen-beamspace system, eigenvectors of the
input correlation matrix are utilized as the beamform-
ing weight vectors in the BFN. Then, the BFN outputs
are led to the differential CMA. In the following, we
explain the method of beamforming based on the eigen
beamspace. ‘ -
We obtain the correlation matrix from the input
vector X: '

Ryz = E[XXT] (6)

On assumption that the internal noises at the antenna
elements are independent of each other, we get the fol-
lowing relations:

Ry E = EA ' (M
A 2 diag A1, A, - - Ak
E é [91,827' : 'aeK]
Ai (i =1,--+, K) : eigenvalues
e;(1=1,---,K) : eigenvectors
and
MZA2 2 AL> A =-=Ag =P,
2 Amin (8)

where L is the number of the incident waves and P,
is the internal noise power. As shown in Eq.(8), we

1483

#1 #2 #K

Y Ye....Y
* e & o e @ LI B
IBeam Forming Network

weighting with € and summmgl

b1 . . . . . bk BFN ouiput

Fig. 5 Structure of the BEN with an eigen-beamspace system.

can estimate the number of the incident waves (L) from
the number of eigenvalues larger than the internal noise
power [10]. The eigenvectors e;(i = 1,---, K) are used
for the beamforming in the BFN, and the beam outputs
bi(i=1,---,K) are represented as follows:

b=elX (i=1,--,K) )

Since there is a relationship: E[|b;]%] = elT.Rmei =\,
we can see that the beams: br,41,- -+, bx do not include
the incident waves (including only the internal noises),
and we can choose the beams: by,---,by, as the BFN
outputs available for the subsequent differential CMA.
Figure 5 illustrates the method of beamforming in the
BFN. As stated previously, the weight for the b; is fixed
at a constant to avoid the trivial solution: W = 0.

4.2 Properties of the Differential CMA Using an
Eigen-Beamspace System

We carry out computer simulation to compare the dif-
ferential CMA using the eigen-beamspace system with
the conventional CMA using the element space system.
For application in mobile communications, we use here
a 4-element planar array shown in Fig. 6. Table 3 gives
the detailed radio environment for a 2-wave multipath
model. The signal transmitted and the detection system
are the same as in Sect. 3. In this simulation, the signal
is band-limited by the Nyquist filter with the bandwidth
of B = 1/T and roll-off factor of 0.5. Furthermore,
we involve the Doppler effect so as.to examine the dy-
namic characteristics. We suppose that the antenna sys-
tem moves to the direction of 0° at a speed of 60km/h
for the carrier frequency of 1.5GHz. In that case, the
maximum Doppler frequency is equal to about 83 Hz.
The eigenvalues and eigenvectors are obtained from the
first 15 snapshots at the initial state. The other condi-
tions are the same as in Sect. 3.

We show the beam patterns at the BEN outputs in
Fig.7 and the eigenvalues corresponding to their output
powers in Table 4. From Fig.7, it is found that both
beam ! and beam 2 capture the arriving waves and both
beam 3 and beam 4 create nulls in their directions of
arrival. Also, the eigenvalues of beam 3 and beam 4 are
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Fig. 6 Arrangement of a 4-element planar array.

Table 3  Radio environment used in computer simulation of
Sects. 4.2 and 4.3.
le of .
power ar;grrtiavzl delay time
wave | 0 dB 0° 0
wave 2 -2 dB 20° 1.6T
Input SNR = 20 dB

10 ———n
1st wave 2nd wave
o
KA
(0]
e
2
a Y
g o ‘:‘ \,l' beam1
301 Y M| oo beam2
'l' | —r—— beam3
I ! ———= beamé4
-40 b —
-180 ~-90 o] 90 180

angle(degrees)

Fig. 7 Directional patterns of the eigen beams for Table 3.

Table 4 Eigenvalues corresponding to the eigen beams.

beam number | eigenvalue
beam 1 3.30
beam 2 0.777
beam 3 0.00522
beam 4 0.000341

quite smaller than those of beam 1 and beam 2. There-
fore we operate the differential CM A using the outputs
of beam 1 and beam 2.

Figures 8 and 9 show the array output powers ver-
sus the iteration number for the steepest descent method
and the Marquardt method, respectively. The stepsizes
of the steepest descent method in Fig. 8 are determined
so as to make the output fluctuations at the station-
ary state almost the same in the differential CMA sys-
tem and the conventional CMA system. You can see
that the differential CMA system more quickly sup-
presses the second wave than the conventional CMA
system patticularly in the case of the steepest descent
method. Such rapid convergence is obviously due to
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Fig. 8 Output powers vs. iteration (4-element planar array,
steepest descent method).

the use of not only the differential CMA but also
the eigen-beamspace system. In addition, the differen-
tial CMA system provides the higher SINR (Signal-to-
Interference-plus-Noise Ratio) at the initial state. It is
because the beam 1 has a higher gain in the arrival di-
rection of the first wave. In contrast, the conventional
CMA system suppresses more deeply the second wave
and brings more stable outputs of the second wave after
convergence, both in the steepest descent method and
the Marquardt method. It is an advantage of the con-
ventional CMA that has o, the fixed object value of the
output envelope, making the weight update finer and
surer at the stationary state.

We next discuss techniques that enable the differ-
ential CMA system to have more stable stationary char-
acteristics.

4.3 2-Mode Switching System

Now, we focus on the fluctuation of ||y(z)| — |y(i — 1)]],
i.e., the difference of |y| between the adjacent data time
slots to understand the convergence behavior of the dif-
ferential CMA. Figure 10 shows the the difference of
ly| (average among 15 snapshots) versus the iteration



NISHIMORI et al: THE DIFFERENTIAL CMA ADAPTIVE ARRAY ANTENNA USING AN EIGEN-BEAMSPACE SYSTEM

20 T . : — 1istwave
[ I —-— 2nd wave
——— noise
0 K —
. @ L \ )
l - YA NN g N
g 20 b AT s
3 - | Y 1
o
_40 - _
ol oy
0 20 40 60 80 100

lteration (times)
(a) differential CMA using eigen-beamspace system

20 T T T T T 1st wave
——— 2nd wave
" ——— noise
o _
n N ]
= \
5 20 | N —
2 T } LY S
& [ [y et iy
—40 |- \/ yr \ \ 4
~60 P RN R R R
0 20 40 60 80 100

Iteration (times)

(b) conventional CMA using element space system

Fig. 9 Output powers vs. iteration (4-element planar array,
Marquardt method).
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Fig. 10 Difference of |y| vs. iteration (4-element planar array,
steepest descent method).

number in the steepest descent method for the radio en-
vironment of Table 3.

From Figs. 10 and 8(a), it is observed that after
convergence, the difference of |y| is settled at a small
value almost less than 0.1 and the array output power of
the second wave is suppressed down to the noise power
level.

From the results, we introduce here an algorithm of
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Fig. 11 Output powers vs. iteration using 2-mode switching
system (4-element planar array, eigen-beamspace system).

switching the cost functions from the differential CMA
to the conventional CMA when the difference of |y| be-
comes smaller than a given threshold. Although the
algorithm of this type was already proposed as the “2-
mode switching system” in Ref.[7], it is different from
our 2-mode system in terms of the way of switching.
Since the 2-mode algorithm has two advantages of the
high convergence rate of the differential CMA and the
high stability of the conventional CMA, it is expected
that it bears better convergence performance. Further-
more, we propose to get much more stable performance
by reducing the stepsize in the steepest descent method
and by increasing the Marquardt number in the Mar-
quardt method when the cost functions are switched
after convergence.

Figure 11 shows the output powers versus the it-
eration number using the 2-mode switching algorithm
under the radio environment of Table 3. After switching
of the cost functions, the stepsize of the steepest descent
method is reduced by a factor of 1/5 and the Marquardt
number of the Marquardt method is increased by a fac-
tor of 25. Also, the o of the conventional CMA is let
equal to the final |y| in the differential CMA. It is found
that the characteristics of high rate of convergence and
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Table 5  Radio environment used in computer simulation of
Sect. 4.4.
le of
power ar;grr?vZI delay time

wave | 0dB 0° 0

wave 2 -2 dB 50° 1.6T

wave 3 -3 dB 100° 2.2T

Input SNR = 20 dB

high stability are obtained, and also it is confirmed that
it is effective to readjust the stepsize or Marquardt num-
ber after convergence.

4.4 Performance of 2-Mode Switching System under
Changing Radio Environments

Next, we discuss whether the 2-mode system can adapt
itself to changing radio environments. It is supposed
that the third wave arrives suddenly after the 60th itera-
tion. The radio environments are described in Table 5.
The other conditions are the same as in the previous
simulation.

In this simulation, the following iterative algorithm
for computing the correlation matrix is used [ 14]:

(1 — 5 XX (m)
(m=1,2,..) (10)

R.x(0) = XXTf(0)

where m is the iteration number, and R.,(0) and
R,.(m) are the correlation matrices at the initial step
and at the mth iteration, respectively. Also, § is the
forgetting factor and is equal to 0.9 in this simula-
tion. XXf(m) denotes the sample correlation matrix
obtained from the 15 snapshots at the mth iteration.
We are convinced that the radio environment is changed
when the difference of |y| becomes large again dur-
ing the adaptive processing. Then, we compute the
eigenvalues and eigenvectors of R, (m) and make the
eigen beams again. Figure 12 shows the patterns of
eigen beams before and after change of the environment.
From this figure, it follows that the beam 1 and beam 2
in (a) and the beam 1, beam 2, and beam 3 in (b) are
used for the respective CMAs,

Figures 13 and 14 show the output powers ver-
sus the iteration and the difference of |y| versus the
iteration, respectively. The steepest descent method is
used for optimization. In Fig. 14, the cost functions are
switched from the differential CMA to the conventional
CMA when the difference of |y| becomes smaller than
a threshold level of 0.1. Futher, when the difference of
ly| increases abruptly owing to change of the radio en-
vironment, the cost functions are switched again from
the conventional CMA to the differential CMA. From
Fig. 13, it is found that the 2-mode CMA with the eigen
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Fig. 12 Directional patterns of eigen beams for Table 5.

beamspace adapts so quickly itself to the abrupt ar-
rival of the third wave, compared with the conventional
CMA with the element space. Carrying out the further
computer simulation with the different delay times of
the third wave, we obtained the similar results. From
these simulation results, it is confirmed that the 2-mode
system provides the rapid convergence and the high sta-
bility even in case that the radio environment changes.

5. Conclusion

We have discussed the performance of the differential
CMA adaptive array antenna using an eigen-beamspace
system. Via computer simulation, it has been clarified
that the differential CMA provides the rapid conver-
gence relative to the conventional CMA. However, it
has the shortcomings as follows:

e The differential CMA may suppress all incoming
waves if the degrees of freedom of the array are too
enough.

e The stability of the differential CMA after conver-
gence is inferior to that of the conventional CMA.

Using the eigen-beamspace system, we can renovate the
differential CMA to preserve the desired signal and fur-
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ing radio environment (4-element planar array, eigen-beamspace
system, steepest descent method).

ther to have better convergence characteristics than the
conventional CMA with the element space system.

To get more stable performance, we proposed to
use the 2-mode system that switches the cost functions
from the differential CMA to the conventional CMA
after convergence. Through computer simulation, we
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have demonstrated that the 2-mode system has more sta-
ble performance and also that it can adapt itself more
rapidly to change of the radio environments.

In this paper, we have not discussed in detail the
algorithm to get the eigenvalues and eigenvectors of the
correlation matrix. After this, we must discuss and de-
velop the best algorithm for computing them.
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