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SUMMARY  Signal processing antennas have been studied
not only for interference suppression but also for high-resolution
estimation of radio environment such as directions-of-arrival of
incident signals. These two applications are based on the com-
mon technique, that is, null steering. This tutorial paper re-
views the MUSIC algorithm which is one of the typical high-
resolution techniques. Examining the eigenvector beam patterns,
we demonstrate that the high-resolution capability is realized by
steering nulls. The considerations will be useful for understand-
ing the high-resolution techniques in the signal processing anten-
nas. We then describe a modified version of MUSIC (Root MU-
SIC). We show the performance and robustness of the method.
Furthermore, we introduce radar target identification and two-
dimensional radar target imaging. These study fields are new
applications of the signal processing antennas, to which a great
deal of attention has been devoted recently.

key words: null steering, superresolution technique, MUSIC al-
gorithm, Root MUSIC, radar imaging

1. Introduction

Signal processing antennas have different fields of appli-
cation. One of them is suppressing interference signals
by steering pattern nulls[1]—[8]. This feature is impor-
tant for radio communications and radar systems. An-
other application is high-resolution estimation of ra-
dio environment. We can estimate arrival directions
and polarizations of incident signals[9]—[17], and scat-
tering behavior of radar targets[18]—[25]. This tech-
nique is closely related with modern spectral estima-
tion[26]—[28], and reveals much higher resolution ca-
pabilities than the conventional Fourier transform meth-
ods such as the periodogram or the Blackman-Tukey es-
timator [28]. (The most fundamental method of bearing
estimation is scanning a main beam of a phased array.
This is equivalent to estimation of the periodogram [ 10].
The resolution is, however, limited by the aperture size,
which is referred to as the Rayleigh limit.)

Many high-resolution techniques have been pro-
posed and studied, for example, the Capon’s method
(minimum variance estimation) [29], the MUSIC algo-
rithm [30], the maximum entropy method and several
other versions of the linear prediction method [28]. The
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performance of the techniques has been reported [31]—
[36]. The high-resolution bearing estimation is actu-
ally related with the null steering technique stated pre-
viously. Gabriel demonstrated that the linear prediction
filter is identical in configuration to a sidelobe canceller,
and that the Capon’s method is realized by the adap-
tive null steering array with the directional gain con-
straint[9].

This tutorial paper is written on purpose to em-
phasize the relation between the high-resolution capa-
bility and null steering, and to introduce some recently
developed techniques. First, we explain the MUSIC
algorithm from the viewpoint of steering pattern nulls.
The considerations will be useful for an intuitive under-
standing of MUSIC which is one of the typical estima-
tion methods. We then introduce a more recent and ro-
bust method, a modified version of MUSIC (Root MU-
SIC[14]). Furthermore, we describe other applications
of the signal processing antennas. Specifically, we con-
sider radar target identification and two-dimensional
radar imaging. These fields have been studied exten-
sively for recent years.

2. MUSIC Algorithm

The MUSIC algorithm presented by "Schmidt[30] re-
lies on an eigenanalysis of a correlation matrix of in-
cident signals. The basic idea had been proposed by
Pisarenko [42] for estimating spectral lines from time
series. The MUSIC algorithm differs from other typi-
cal methods in that it utilizes noise eigenvectors. Since
Schmidt proposed the MUSIC algorithm, the perfor-
mance has been compared with that of other tech-
niques[31]-[33].

We assume that D narrow-band signals are inci-
dent on an N-element array antenna as shown in Fig. 1
(N > D). We also assume that any two of the sig-
nals are incoherent each other. We represent an ana-
lytic signal of ith signal at a reference point (origin)
by s;(t) (¢ = 1,2,---,D). Note that an analytic sig-
nal has a complex value. Readers who are unfamiliar
with analytic signal notation are referred to the litera-
ture[7]. We express the “mode vector” of the ith signal
as v(f;), where 6; denotes the arrival direction of the
signal. v(6;) is an N-dimensional column vector. Each
component of v(6;) represents the relative phase at each
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Fig. 1  Array antenna and signal environment.

antenna element. The relative phase depends on the lo-
cation of the antenna element and arrival direction 6;.

For a linear equispaced array as shown in Fig. 1,
v(6;) is expressed as

—q2md ging, _—422md oing.
’0(9,) — [1 e I % sin 6; e j22%< sin 6,

. efj(Nfl 21d gin 9, ]T (1)

where A and d denote the wavelength of the signal and
the element spacing, respectively Also, 7 denotes trans-
pose.

We introduce a D-dimensional column vector s(t)
and an N x D matrix A as follows.

s(t) = [s1(t) s2(t) -+ sp(®)]” ©)
A= [v(61) v(f2) - v(6Dp)] (3)

We represent the analytic signal of the output from
the kth antenna element by zx(t) (¢ = 1,2,---,N).
z(t) contains internal noise as well as the incident sig-
nals. We define an N-dimensional column vector x(t)
as

() = [z1(t) 22(t) -+ an (b)) 4

Since the bandwidth of each signal is narrow, x(t)
is given by

x(t) = As(t) +n(t), (%)

where n(t) is an N-dimensional column vector which
denotes internal noise. The internal noises are assumed
to be zero-mean complex Gaussian processes with vari-
ance (power) of o2, statistically independent of each
other and the incident signals.

Here, we express the correlation matrix of x(t) as
R,,. Thus, we have

R, =< z(t)z(t)! >, (6)

where < - > and ¥ denote ensemble average and com-
plex conjugate transpose, respectively.
From Egs. (5) and (6), R, is given by
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R,, = ASAY 4+ 571, (7
where
S =< s(t)s(t) >. ' (8)

Note that I denotes an N x N identity matrix.

Moreover, we represent the eigenvalues of R, by
Am and the corresponding eigenvectors by e, (m =
1,2,---,N). We assume that \; = Ay = --- 2 Ay

Since the signals are incoherent, the matrix S is
nonsingular, and we have the following expression[30].

MZX22Ap>App=-—-=Ay=0> (9)

D eigenvalues are larger than the noise power (o2),
and the remaining (N — D) eigenvalues are equal to the
noise power. Thus, we can estimate the number (D) of
the signals from the eigenvalue distribution.

The eigenvectors corresponding to the eigenvalues
of 02 are referred to as the noise eigenvectors. The MU-
SIC algorithm uses the eigenstructure of the correlation
matrix. The mode vectors of the signal are orthogonal
to the noise subspace which is spanned by the noise
eigenvectors. Then, we have

egv(ﬁi)zo m=D+1,D+2,--- N
i=1,2,---,D. (10)
Here, we define the function P,,,sc(0) as
v(6)"v(9)
Prusic(0) = — , (11)
Y lem v(@)F
m=D+1

where v(0) denotes the continuum of all possible mode
vectors. From Egs.(10) and (11), it is seen that
Ppusic(0) has sharp peaks at 6; (i =1,2,---, D). Thus,
we may estimate the signal arrival directions by search-
i]flg Pmuszc<9) .

Now, we clarify the reason why the MUSIC al-
gorithm has a high resolution capability. We consider
the array antenna using the eigenvector e,, as shown in
Fig.2. e (k=1,2,---, N) are the components of the
eigenvector e, and * denotes the complex conjugate.
The analytic signal of the output is given by

Ym(t) = eg x(t). (12)

Furthermore, the antenna pattern of the array is
expressed: as

gm(0) = |eg v(0)|. (13)

This is referred to as the eigenvector beam pat-
tern[2]. Especially, the antenna pattern corresponding
to the noise eigenvector is called the noise eigenvector
beam pattern.

Now, we introduce the multiple beam antenna
shown in Fig. 3. Each output y,,,(t) is given by Eq. (12).
We define the output vector y(t) and an N x N matrix

Q as
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- yn (8] (14)

Q=1 . |. (15)

Then, we have

y(t) = Qz(t). (16)

It is seen that the array pattern corresponding to the mth
port is g, (6) which is given by Eq. (13). Since R, is
an Hermitian matrix, @ is a unitary matrix. That is,
QQY = Q" Q = I holds. From these results, it is seen
that the array shown in Fig. 3 is the orthogonal multiple
beam array.

From Egs. (11) and (13), we obtain

v(0)"v(9)

~ .

> {om)
m=D+1
Also, from Egs. (10) and (13),

gm(0:) = |efs v(6:)] =0

m=D+1,D+2,--- N
i=1,2,---,D (18)

holds. The (N — D) arrays which are determined by
the noise eigenvectors form nulls on the signals. From

Pmusic(e) = (1?)

ym(t)

Fig. 2 Array antenna using eigenvector e,.
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Fig. 3 Multiple beam array antenna using N eigenvectors.
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Eq.(17), we see that Py,sic(0) has peaks in the signal
arrival directions 8; (i = 1 ~ D) in which the arrays
having the patterns g,(6) (m = D+ 1,D +2,---,N)
form the nulls. From these results, it may be said that
the MUSIC algorithm estimates the signal arrival direc-
tions by detecting the nulls of noise eigenvector beam
patterns in the multiple beam array. Since pattern nulls
are in general sharp, the MUSIC algorithm achieves a
great angular resolution beyond the Rayleigh limit de-
termined by the array aperture. This is the reason for
the high resolution capability of the MUSIC algorithm.

Now, we show the numerical results. A linear ar-
ray of five elements having an equal spacing of half a
wavelength has been considered. We assume that two
uncorrelated signals are incident on the array from the
angles §; and 0 relative to broadside. We represent
the signal-to-noise ratio of them by SNR; and SNR,.
Also, we assume that the exact (ensemble average) cor-
relation matrix R,, is available. The more snapshots
of data we use, the more accurate correlation matrix we
can estimate.

Eigenvector beam patterns are shown in Fig. 4.
Since the array has five antenna elements, we have five
eigenvector beam patterns. Figure 5 shows only the
noise eigenvector beam patterns. It is seen that the nulls
of the patterns are forced exactly in the signal arrival
directions. This is consistent with the analytical con-
siderations stated previously. Moreover, we see that the
MUSIC algorithm successfully detects the signal arrival
directions as shown in Fig.6. (D denotes the estimated
value of the number of signals.)

If the incident signals are coherent (magnitude of
correlation coefficient = 1), the matrix S is singular,
and the expressions (9) and (10) do not hold. In this
case, we need spatial smoothing preprocessing before
the MUSIC algorithm [37],[38].
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Fig. 4  Eigenvector beam patterns. The arrows indicate the
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Fig. 6 Radio direction finding using the MUSIC algorithm
(1). The arrows indicate the signal arrival directions. 61 = 0°,
62 = 10°, SNRy = 30dB, SNR; = 20dB, N =5, D = 2.

3. Root MUSIC Algorithm

Now, we describe Root MUSIC [ 14] which is a modi-
fied version of the MUSIC algorithm. In order to avoid
confusion, the MUSIC algorithm stated previously is
occasionally referred to as Spectral MUSIC.

When the SNR is low and/or snapshots of data are
few, the estimation accuracy of the correlation matrix
R, is poor, and the MUSIC algorithm degrades the
performance as shown later. In these situations, Root
MUSIC reveals better performance.

Although (Spectral) MUSIC is applicable to gen-
eral array configurations, we need a linear equispaced
array for Root MUSIC. We introduce an N-dimensional
vector z given by

7~ W=D (19)

We define S,,(z) using z and the noise eigenvector
em as
Spm(z) = 2T e, m=D+1,D+2,---,N. (20)

Also, the Root MUSIC polynomial Q(z) is defined
as
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Fig. 7 Results of the Root MUSIC algorithm. The arrows
correspond to the signal arrival directions. 1 = 0°, 2 = 5°,
SNR; = SNR; = 10dB, 50 snapshots, N =5, D = 2.

Z Sm(2)S2(1/2). (21)
m=D-+1
From Egs. (1), (10) and (20), we see that
Q(z — i 2md sln‘%) =0 (22)

holds. If z = re’¢ is one of the roots, then from Eq. (21),
it is seen that z = 2e/¢ is also the root of Q(z) = 0.
Thus, we have root pairs with the same argument in the
z-plane. We see that the roots on the unit circle (r = 1)
are double roots.

Using Egs. (20)—(22), we can formulate the Root
MUSIC algorithm as follows.

1. We obtain the roots of the equation Q(z) = 0.

2. We have D double roots on the unit circle in the
z-plane. These roots correspond to the actual inci-
dent signals.

3. From the arguments (—2Z%sin6;) of these roots,
we can estimate the arrlval directions 4; (i =
2,---,D).

The other roots which do not lie on the unit circle
do not correspond to the signals, and are referred to as
spurious roots. In an actual case where we have finite
snapshots, the roots corresponding to the signals depart
slightly from the unit circle. Discriminating the actual
signal roots from the spurious roots is an important is-
sue. ‘
From Egs. (1), (13) and (20), we see that g,,(0) =
|Sm (2 = e~7%3*5in6)| holds. Thus, we can say that Spec-
tral MUSIC treats the behavior of S,,,(2) and Q(z) only
on the unit circle in the z-plane. When SNR is lower
and snapshots are fewer, the signal nulls depart from
the unit circle. Occasionally, Spectral MUSIC fails to
resolve signals, but Root MUSIC detects them.

Figure 7 shows the results of the Root MUSIC al-
gorithm. The radio environment is harder than that in
Figs.4—6. Two signals have lower SNR, and are lo-
cated closer. The correlation matrix is estimated using
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Fig. 9  Noise eigenvector beam patterns (2). The arrows in-

dicate the signal arrival directions. 6; = 0°, 85 = 5°, SNR; =
SNR; = 10dB, 50 snapshots, N = 5.

50 snapshots of data. Although the roots correspond-
ing to the signals depart from the unit circle, we can
estimate the arrival directions §; = 0.4°, 65 = 3.8°.

Figures 8 and 9 show the results of the Spectral
MUSIC algorithm.

We cannot detect the two signals, and the nulls of
the noise eigenvector beam patterns are not formed on
these signals.

4. New Applications

We have described high-resolution radio direction find-
ing. In this section, we present new applications of the
signal processing antennas.

Scattering mechanism extraction is important for
radar target identification.  We obtain frequency-
domain data using a stepped-frequency CW system.
That is, we measure the amplitude and phase of the
scattered wave at each frequency in the band. We can
calculate the time-domain (down-range) profile by per-
forming the inverse Fourier transform on the frequency-
domain measurement [39]. However, the resolution of
the time-domain response is limited by the available fre-
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quency band. Many targets are approximated as a set
of discrete scattering centers at high frequency. Super-
resolution techniques can be used to estimate the time-
domain responses. Several study results have been re-
ported [ 18]-[22].

Radar imaging has been studied extensively in re-
cent years[40],[41]. We obtain an image of the target
projected onto a cross-sectional plane. This technique is
two-dimensional estimation. That is, we obtain down-
range (time-domain) and cross-range (Doppler-domain)
data. ‘

Let a target, as shown in Fig. 10, have a two-
dimensional distribution of scattering centers g(z,y),
denoted as the reflectivity density function.

The backscattered data at frequency f and aspect
angle 6 is given by

G(f,0) = //g(w,y)e‘j e sin0+ycost) gy,
(23)

We can obtain G(f,0) by measuring frequency-
domain data at different aspect angles 8, if the variables
fz and f, are defined as

fz= % sinf, f, = ﬁ cos b, (24)
: c

Eq.(23) is written as

G(far fy) = / / o(@,y)e 2T W dgdy.  (25)

We see that g(z,y) and G(f.,f,) are a two-
dimensional Fourier transform pair. G(fs, f,) is the
spatial spectrum, and f, and f, are spatial frequency.
Thus, we can obtain the image of the object g(z,y) by
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performing the two-dimensional inverse Fourier trans-
form of G(fz, fy). This is the basic concept of a syn-
thetic aperture radar (SAR) and an inverse synthetic
aperture radar (ISAR)[40].

If the radar has a wide bandwidth and the target is
observed over a large angular sector, we can achieve the
high resolution. However, this is not possible in many
applications. We assume that the target is well approx-
imated as a set of discrete scattering centers. Then, we
can improve the resolution using modern spectral esti-
mation techniques[23]-[257.

Figure 11 shows an image of an in-flight aircraft
(KC135) using the two-dimensional inverse Fourier
transform [23]. The data were measured air-to-air by an
airborne VHF /UHF radar. Figure 12 shows the image
using the high-resolution technique (two-dimensional
linear prediction[24]). From these figures, we see that
the resolution is improved dramatically by the linear
prediction method.

5. Conclusions

We have described the concept and important features
of the MUSIC algorithm. Also, we have introduced the
modified version of MUSIC (Root MUSIC). We may
say that the estimation in the signal processing antennas
is basically realized by steering nulls. A null is signif-
icantly sharper than a main beam. This is the reason
why we can obtain the high-resolution capability.

The application of the signal processing antennas is
not restricted to bearing estimation, but is expanded to
the radar target identification and radar imaging. The
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high-resolution techniques are in a dynamic growing
area. They may be applied to new other fields such as es-
timation of multipath propagation structure which will
contribute to future digital mobile communications.
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