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The model reanalyses on the screening potential (SP) for the classical one-component plasmas,
presented by Rosenfeld [preceding paper, Phys. Rev. E 52, 2000 (1995)] have been re-examined in light of
the Monte Carlo (MC) simulation data currently available. With due consideration of statistical uncer-
tainties in the MC data, it is shown that these approximation schemes individually may not corroborate
some of the MC data. The assessed value (4, /I'=0.00%0.01) [Ichimaru et al., Phys. Rev. E 50, 2977
(1994)] of the quartic coefficient in the short-range expansion of the SP is consistent with all the data ob-
tained by the first-principles direct MC samplings of 4, and can reproduce MC values of the radial dis-

tribution function and SP uniformly for 10=T =< 160.

PACS number(s): 52.25.—b, 05.20.Gg

I. INTRODUCTION

The screening potential (SP), the balance between the
bare Coulomb repulsion and the logarithm of the radial
distribution function for a charged liquid, plays an essen-
tial role in the theoretical estimation of enhancement for
the nuclear reaction rates in dense stellar matter [1]. The
short-range correlations in a classical one-component
plasma (OCP), which are not directly accessible in a
Monte Carlo (MC) sampling of the radial distribution
functions, have been approached through the first-
principles analyses combining the short-range Widom [2]
expansion of the SP and direct MC samplings of the
potential-field distributions at properly constructed test
charges [3,4].

In the preceding paper [5], Rosenfeld presents a
reanalysis of the SP through sets of approximate model
calculations. Each calculation is correct as far as we can
see. In particular, Rosenfeld points out an error in
another approximate cluster model calculation presented
in Ref. [4]; an erratum for this correction has been pub-
lished [6]. The principal conclusion in Ref. [4] with
respect to the SP, however, is not affected by the correc-
tion, as reasoned in Sec. VI below.

In this paper we re-examine the model reanalyses on
the SP presented in Ref. [5] in light of MC samplings for
the coefficients of the Widom expansion and for the radi-
al distribution functions [3,4,7]. It is thereby shown that
the results of the approximate modeling schemes in Ref.
[5], such as the extrapolation method and the so-called
AJ(i) fits, individually may not be able to corroborate
some of those MC indications. We point out, on the oth-
er hand, that the principal conclusion in Ref. [4], namely,
its Eq. (20) or Eq. (5) below, is consistent with all the
first-principles MC samplings [3,4] of the quartic
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coefficient in the short-range expansion of the SP; more-
over, it leads to an extraction scheme [7] for the bridge
functions, that reproduces the MC values of the radial
distribution functions and hence the SPs uniformly for
10=I'=<160 with the best accuracy hitherto attained.
Thus, contrary to some of the criticisms offered in Ref.
[5], Ref. [7] has shown already that Egs. (20) and (33) in
Ref. [4] are accurately consistent with all the current MC
indications over 10 <T" < 160. Other criticisms in Ref. [5],
related to Egs. (25) and (31) in Ref. [4], have been
answered in Ref. [8].

II. SHORT-RANGE SCREENING POTENTIAL

We consider a classical OCP [1] that consists of N
identical particles of electric charge Ze in a volume V
with a uniform compensating charge; n =N/V is the
average number density. The physical nature of such a
plasma is characterized by a single dimensionless plasma
parameter

2
r= B(Ze) ,
a

(1)

which measures the ratio between the average Coulomb
energy and the average kinetic energy; 8 denotes the in-
verse temperature in energy units, and

1/3

(2)

47n

refers to the ion-sphere radius. Hereafter we shall mea-
sure all the radial distances such as r in units of a.
The SP, H (7), is defined as

BH(="+In[g(r)] . 3)
It is the difference between the bare potential, the first
term on the right-hand side, and the logarithm of the ra-
dial distribution function g(r), and is closely related to
the bridge function [1,7] in the theory of liquids.
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The principal issue under present debate is the short-
range expansion [2] of the SP in a power series of 72,

BH(r)=hy+hr+hr*+hyré+. .., )

around r =0, and in particular the theoretical assessment
of the coefficients, h, and h,, defined by the expansion
above. The coefficient h,, on the other hand, has been
shown [9] exactly to take on the value — I /4.

III. MONTE CARLO SAMPLINGS FOR 4,

The quartic coefficient 4, of the Widom expansion (4)
has been expressed exactly in terms of a certain statistical
average as Eq. (17) in Ref. [4]. This exact expression has
been evaluated directly through the technique of MC
sampling for the eight cases in OCP [3,4]. Table I sum-
marizes the findings. We remark that these results are
the outcomes from mutually independent cases of MC
samplings; the statistical quality of each simulation has
been reflected in the associated error bar. With the com-
bined entry of central value and statistical uncertainty,
each of these eight cases thus constitutes an elementary
MC datum for A, currently available.

On the basis of these data, it has been concluded in
Ref. [4] that the assessment

h,/T'=0.00+0.01 5)

is consistent with all the entries listed in Table I. We re-
mark that such a procedure of assessment is sound and
can stand by itself; no extra “support” from any approxi-
mate model considerations would be needed. Since we
are well aware of the extent of various statistical uncer-
tainties involved, as well as the limits in the MC sampling
procedures as described in Ref. [4], we did not find it
justifiable to explore a possible I dependence out of those
data, however. To answer a point raised in the criticism
in Sec. IV A of Ref. [5], the assessment proposed therein,
h,/T'=0.02+0.01, is inconsistent with the evaluation in
Table I for the cases B2, C2, D1, and D2.

IV. EXTRAPOLATION SCHEMES

Ogata, Iyetomi, and Ichimaru [3] carried out separate
sets of MC sampling calculations for g(r) and thereby
determined a representation f(r;I") for BH(r) over an in-
termediate domain r_;, <r <2. In this expression, r;,
refers to a minimum distance at which the value of BH(r)

TABLE I. The values of the quartic coefficient 4, /T, calcu-
lated by the direct MC samplings in Refs. [3] and [4].

Case r h,/T Reference
Al 160 —0.0007+0.034 [4]
A2 160 0.06+0.13 [3]

B1 80 0.021+0.022 [4]

B2 80 —0.07+0.07 [3]

Cl1 40 0.011+0.015 [4]
c2 40 —0.03+0.04 3]

D1 10 0.004+0.012 4]

D2 10 0.0006-:0.009 3]
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may be meaningfully sampled. The intermediate function
f(r;T') was then extrapolated into the short-range
domain by the use of Eq. (5), resulting in an assessment
for h as given by

ho/T'=1.356—0.0213InI'—(0.456—0.0130In")* .  (6)

Subsequently, Iyetomi, Ogata, and Ichimaru [7] used
evaluations (5) and (6) to build an extraction scheme of
the OCP bridge function that was successful in reproduc-
ing the MC values of the radial distribution function (cf.
Fig. 7 in Ref. [7]) and the SP (cf. Fig. 5 in Ref. [7] and
Figs. 7 and 8 in Ref. [4]) uniformly over 10=T <160 to a
high accuracy. This clearly constitutes the evidence for
the consistency of Egs. (5) and (6) with the MC distribu-
tion functions, including the SP, to answer the criticisms
in Secs. IVC-IV F in Ref. [5]; the schemes suggested in
Ref. [5] individually have not shown such a consistency,
however.

Rosenfeld [10] employed a different extrapolation
scheme, where he set three unknown parameters, hg, h,,
and r, to be determined from the requirement that the
function and its first two derivatives were continuous at
ro between the short-range function (4) and the inter-
mediate function f (r;I"); and obtained

hy/T'=[24(1.368—0.039InI")*] 7! . @)

This formula yields A, /T"=0.030, 0.029, 0.028, 0.026 at
=160, 80, 40, 10, respectively. These values are incon-
sistent with the cases of MC sampling: B2, C1, C2, D1,
and D2, in Table 1.

In Sec. IV B of Ref. [5], as well as in Ref. [10], Rosen-
feld makes a certain remark related to the relative magni-
tude between the connection point ry, and 7 ;,, the
minimum distance at which H (r) can be sampled mean-
ingfully by an MC method. It follows from these
definitions that ry,>r_;, is not a necessary condition for
such an extrapolation, if the intermediate fitting function
can extend itself below r;, to ro when ry <r_;., as Fig. 7
in Ref. [4] may exemplify. It would be good, of course, if
ro > Fmin is realized, since the validity of a given extrapo-
lation scheme could then be tested through a direct com-
parison with the MC data below r,. In fact, such a case
has already been exhibited in Fig. 8 of Ref. [4], where it is
seen that the extrapolation scheme in Refs. [5] and [10]
fails in such a test.

The extrapolation scheme in Ref. [10] for the
coefficient %,, as expressed in Eq. (7), depends on the
derivatives of f(r;T") at ry. Since this function is derived
from the MC samplings of g (r), it may contain consider-
able statistical uncertainties, especially around r =r_;,
(=ry) (cf. Figs. 7 and 8 in Ref. [4]); its derivatives are the
quantities of further questionable accuracy. On the other
hand, as shown earlier, the assessment (5) depends neither
on the intermediate function f (#;I") nor on an extrapola-
tion procedure therefrom.

V. AJ(i) FITS

Alastuey and Jancovici [11] derived an overall approxi-
mate fit of BH(r) over the whole interval, 0<r <1.6,in a
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polynomial,
BH(r)=ho+hir2+hir*+hrs . ®)

It should be noted that these authors have correctly
termed this expression “an overall approximate fit ...
over the whole interval 0<r <1.6” and that Eq. (8) is a
polynomial fit, whereas Eq. (4) in the present study
represents the short-range expansion around r =0. The
set of the coefficients {4;} in Eq. (4) should therefore be
different, both by definition and in practice, from {4/} in
Eq. (8). In Ref. [11], the coefficient 4, was computed
through a binary-ionic-mixture equation of state ex-
pressed approximately as a linear superposition of an
OCP equation of state obtained by Hansen, Torrie, and
Vieillefosse [12], and k] was assessed at —I'/4. The
remaining coefficients, k5 and A%, were the fitting param-
eters for an intermediate function such as f(r;I") and
were given the following values:

h3/T'=0.039, h3/T'=—0.0043 . 9

We have not misidentified this 4; with the 4, defined in
Eq. (4), to answer a remark made in Sec. IV A of Ref. [5].

In Ref. [5], Rosenfeld then extended the Alastuey and
Jancovici approach and set the so-called “AJ(i) fits,”
where i seems to denote the number of terms in a polyno-
mial such as Eq. (8). Although no descriptions have been
given in Ref. [5] as to the numerical procedures for the
determination of {A;} and the extent of the errors in the
resultant fits, it is obvious that Rosenfeld has
misidentified the 4) so obtained with the h, defined in
Eq. (4). Furthermore, his best estimate, AJ(5), in Fig. 1 of
Ref. [5], disagrees with the MC indications in Table I for
the cases A1, B2, and C2.
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VI. OTHER MODEL CALCULATIONS

A number of approximate cluster model calculations
assisted by the so-called ‘“Onsager-molecules” concept
have been described in Ref. [5]. There have been no com-
plete pictures of the radial distribution function and SP,
however, presented in these calculations in such a way as
to exhibit consistency with the MC indications, such as
those summarized in Refs. [1] and [4]; the same is true
with the approximate cluster models in Ref. [4] as
corrected in Ref. [6]. We recall, however, that the com-
bination of Egs. (5) and (6) has led to such a complete pic-
ture in Ref. [7].

In these connections, we may add a reservation with
regard to the dependence of the model calculations in
Ref. [5] on the Onsager-molecules concept, in order to as-
sess an asymptotic behavior of 4 in the limit of ©'— 0.
It is well known [1] that the classical OCP in the limit of
I' — « is a bee array of point charges, where the distribu-
tion functions, such as the radial distribution function,
are expressed as superpositions of the three-dimensional 8
functions located at the bcc-lattice points. The distribu-
tion functions thus exhibit extremely singular behaviors,
so that one finds both {4;} in Eq. (4) and {4/} in Eq. (8)
to be ill-defined quantities in these circumstances.

Finally, some comments in Sec. IV of Ref. [5], concern-
ing Egs. (25) and (31) in Ref. [4], are related to the issues
involving the binary-ionic-mixture equations of state,
which have been adequately answered in Ref. [8].
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