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Effects of Quantum Fluctuations on Contact Probabilities
of a Tunneling Pair in Dense Coulomb Liquids
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Path-integral Monte Carlo calculations for a tunneling pair in dense Coulomb liquids are
formed to investigate effects of quantum fluctuations of the surrounding particles on its
tact probability. We thereby find that the probabilities are enhanced significantly by the q
tum fluctuations at low temperatures. By calculating various correlation functions and effe
potentials for the tunneling pair, we demonstrate that the enhancement is associated with
nified and coherent quantum fluctuations of the surrounding particles near the tunneling
[S0031-9007(96)01254-9]
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Nuclear reaction is an elementary process of major
portance in ultrahigh-pressure liquids [1] such as th
realized in shock-compression experiments [2] and th
predicted in the interiors of dense stars including wh
dwarfs and neutron stars [3]. Theoretical prediction
abundances of nuclear elements synthesized in the s
nova process of a white dwarf may change sensitively
pending on the rates of nuclear reactions adopted for
stellar interior [4]. Possible realization of nuclear fusi
has been pointed out [5] for shock-compressed liquid m
als. Nuclear reaction rates [5] are, in general, proportio
to the contact probability of a pair of nuclei which tu
nel through the repulsive Coulomb potential at short d
tances. In a dense liquid, the contact probability may
enhanced significantly in sensitive ways by the screen
action of the surrounding nuclei due to internuclear ma
particle correlations [5,6]. First-principles calculations
the contact probability of a tunneling pair are indispensa
for accurate evaluations of the reaction rate in such liqu

Much effort has been devoted to evaluation of the c
tact probability of two particles in the Coulomb liqu
[5], i.e., an assembly of charged particles with same s
In the existing theories for that problem, quantum flu
tuations of the surrounding particles in the liquid we
ignored or assumed to be negligible, and the contact p
ability was calculated by exploiting the effective pa
potential derived from the radial-distribution function f
correspondingclassicalsystems [6–9]. Through mode
calculation for the tunneling probability of a physical va
able coupled to a macroscopic system, however, Cald
and Leggett [10] demonstrated significance of quan
fluctuations in the macroscopic system at the tunne
process. It is therefore expected for the Coulomb liq
at low temperatures, where the thermal de Broglie wa
length of a particle is comparable to the tunneling distan
that the effective pair potential and hence the contact p
ability of the tunneling pair are affected substantially by
quantum fluctuations of the surrounding particles.
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In this Letter, we perform path-integral Monte Car
(PIMC) calculations for a tunneling pair in dense Coulom
liquids at various conditions and show that the cont
probabilities of the tunneling pair are enhanced sign
cantly by inclusion of the quantum fluctuations of the s
rounding particles. Mechanisms for such enhancemen
investigated by considering effective potentials for the t
neling pair and various correlation functions for the qu
tum fluctuations.

We consider a one-component plasma (OCP) [5,
consisting ofN point particles (chargeZe, massM) in
volume V, whose positions are denoted asri for i [
h1, 2, . . . , Nj; uniform background charges with dens
2ZeNyV are assumed to satisfy the charge neutra
condition. The Coulomb coupling parameter [5,11]

G ;
bsZed2

a
(1)

with the ion-sphere (or Wigner-Seitz) radiusa ;
s4pNy3V d21y3 and the inverse temperature in ener
units b ; 1ykBT . It has been shown through Mon
Carlo calculations for the internal energies that
classical OCP solidifies atG ­ 172 180 [12–14]. The
wave-mechanical nature of a particle may be character
by [15]

z 3y2 ; Ls
p

Gyad , (2)

with the thermal de Broglie wavelengthL ; s2h̄y
pd

p
byM. For strongly coupled (i.e.,G ¿ 1) OCP’s

with z . 1, the fluctuation volume of a particle may b
dominated by its quantum spread since the character
width for the short-time thermal vibration of a particle
ay

p
G as exemplified in the ion-sphere model [11].

The normalized radial-distribution function at ze
separation, i.e., the contact probability, is defined in
Feynman path-integrals as [6,16]
© 1996 The American Physical Society
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gs0d ­ V
fffPN

i­1

R
ri s0d­risb h̄d D rissd expfs21yh̄d

Rb h̄
0 dsH ssdggggr12ss0d­0

P
N
i­1

R
ri s0d­ri sb h̄d D rissd expfs21yh̄d

Rb h̄
0 dsH ssdg

(3)
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at any imaginary times0; for simplicity we takes0 ­ 0.
Hererijssd ; jrissd 2 rjssdj,

H ssd ­
NX

i­1

M
2

Ç
d
ds

rissd
Ç2

1Ussd , (4)

and Ussd ­ usssr1ssd, r2ssd, . . . , rN ssdddd, where us y1, y2,
. . . , yN d denotes the total Coulomb energy for the O
with the particles located atyi si [ h1, 2, . . . , Njd. We
assume the periodic boundary condition for the sys
and calculate values ofu by using the Ewald’s method
Exchange processes are ignored in Eq. (3), the vali
of which will be discussed in a preceding paragraph.
Eq. (3), each quantum particle is represented as a
in the interval of the imaginary times ­ f0, bh̄g. The
characteristic width of a loop corresponds to the quan
spread of a corresponding particle. In the present for
lation [Eq. (3)], the value ofgs0d is related to the contac
probability of two loopssi ­ h1, 2jd at s ­ s0.

In the semiclassical (SC) approximation togs0d, we
regard the surrounding particlessi [ h3, 4, . . . , Njd as
classical particles. The corresponding quantitygSCs0d
in the SC approximation is defined by the right ha
side of Eq. (3) by assumingUssd ­ USCssd ; usssr1ssd,
m

ty
n
op

m
u-

d

r2ssd, x3, . . . , xN ddd where xi ; rissd is the time-averaged
position with Assd ; s1ybh̄d

Rb h̄
0 dsAssd for any func-

tion A. In former calculations for the contact probab
ity [7–9], quantum fluctuations of the surrounding par
cles were ignored as in the SC approximation. The r
gs0dygSCs0d defines the enhancement factor for the c
tact probability of a pair in a OCP due to quantum flu
tuations of the surrounding particles. In the limit of lo
densities, bothgs0d andgSCs0d reduce togCouls0d, which
is defined by the right hand side of Eq. (3) withN ­ 2; a
semianalytical formula forgCouls0d is known [17]. In the
limit of low temperatures, the average ofr12ssd in the nu-
merator of Eq. (3) withN ­ 2 increases fromr12ssd ­ 0
at s ­ 0 to r12ssd ­ az at s ­ bh̄y2 and then decrease
to r12ssd ­ 0 at s ­ bh̄ as a function ofs [6,7].

By transforming Eq. (3), we obtain the following fo
mula for the enhancement factor:

gs0d
gSCs0d

­
kexpfbUssd 2 bUSCssdgl
kexpfbUssd 2 bUSCssdgl0

(5)

where the averagesk· · ·ls0d, i.e.,k· · ·l andk· · ·l0, are defined
as
kAss0dls0d ­
fPN

i­1

R
ris0d­risb h̄d D rissdAss0d expf2s1yh̄d

Rb h̄
0 dsH ssdggsssr12s0d­0ddd

fPN
i­1

R
ris0d­risb h̄d D rissd expf2s1yh̄d

Rb h̄
0 dsH ssdggsssr12s0d­0ddd

(6)
tation

,
e

ch
for any functionA. In the derivation of Eq. (5), we have used the equality expsss 2 s1yh̄d
Rb h̄

0 dshH ssd 2 Ussd 1

USCssdjddd ­ expf2s1yh̄d
Rb h̄

0 dsH ssdg exphs1yh̄d
Rb h̄

0 dsfUssd 2 USCssdgj in the kernels of path integrals [Eq. (3)]. A
value ofgSCs0d is likewise obtained as

gSCs0d ­
kexpfbUSCssd 2 bU12ssdglSC

kexpfbUSCssd 2 bU12ssdglSC
0

gCouls0d . (7)

Here the averagesk· · ·lSC and k· · ·lSC
0 are defined in similar ways by Eq. (6) but withUssd ­ USCssd; U12ssd ;

sZed2yr12ssd.
We perform PIMC calculations for the liquid OCP’s to obtaings0dygSCs0d and gSCs0dygCouls0d following the

Metropolis algorithm [18]. A polynomial fitting formula [13] for the Ewald potential is used to accelerate compu
speed. The imaginary-time intervalf0, bh̄g is divided into n slices [19] with equal spacings:sa ­ bh̄ayn with
a ­ h0, 1, . . . , nj. We adopt the primitive approximation [19] to calculate the action in Eq. (6); that is,

NY
i­1

Z
ri s0d­risb h̄d

D rissd exp

∑
2

1
h̄

Z b h̄

0
H ssd

∏
ø C

∑ NY
i­1

n21Y
a­0

Z
drissad

∏
exp

∑
2

Mn

2bh̄2

n21X
a­0

DR2
a,a11 2

b

n

n21X
a­0

Ussad
∏

,

(8)

whereDR2
a,a11 ;

PN
i­1 jrissad 2 rissa11dj2 andC is a constant. Atr12ssd ø 0, the action is dominated by the term

sZed2yr12ssd. Because of its singularity atr12ssd ­ 0, correct behaviors ofgs0d at r ø 0, i.e., the cusp condition [11,17]
may not be satisfied in the PIMC calculations with finite values ofn. To reproduce the correct formula [17] for th
action atr12ssd ø 0, we modify the termsZed2yr12ssd at s ­ h0, s1, sn21j contained inUssd [Eq. (8)] assZed2fyr12ssd
with f ­ 1 2 expf2

p
8Gnyp2r12ssdyaz 3y2g. Values ofgSCs0dygCouls0d [Eq. (7)] are calculated by usingN ­ 100

and n ­ h20, 50j at G ­ h10, 30, 50, 90, 170j and z ­ h0.5, 1, 2j; 5 3 107 configurations are used to calculate ea
average. The difference ingSCs0dygCouls0d between the cases withn ­ 20 and 50 is smaller than the error bars,0.2
2727
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0.3; that is, no substantialn dependence is ob
served. All the values ofgSCs0dygCouls0d are fitted
to within errors of 60.3 by the formula lnfgSCs0dy
gCouls0dgfit ­ 1.132G 2 0.0094G ln G 2

5
32 Gz 2s1 1 a1

z 1 a2z 2 1 a3z 3d with sa1, a2, a3d ­ s20.0348,
20.1388, 0.0222d. Here the z 0 term is taken from
Ref. [20]; thez 2 term, from Ref. [6].

Table I lists values of the enhancement fac
gs0dygSCs0d in Eq. (5) calculated by usingN ­ h50, 100j
and n ­ 20 at G ­ h30, 90, 170j and z ­ h1, 2j. Both
averages in the numerator and denominator of Eq. (5)
obtained by using3.2 3 109 sN ­ 100d and 2.0 3 108

sN ­ 50d configurations. Since bothUssd and USCssd
in Eq. (5) are macroscopic quantities in proportion toN,
fluctuations ofUsSCdssd make relatively large error bar
for gs0dygSCs0d in spite of such long runs. We find i
Table I that (i) the enhancement is significant atG $ 90
andz ­ 2 and (ii) the value of lnfgs0dygSCs0dg increases
asz 3 while it is linear inG. Since quantum spread of
surrounding particle in the PIMC run atsG, z d ­ s170, 2d
is ,0.3a in radius, which is much smaller than th
mean interparticle distance,1.8a, we expect that furthe
inclusion of the exchange processes will alter the valu
gs0dygSCs0d to a negligible amount.

It is useful in the investigation of the mechanism
for such significant enhancement,gs0dygSCs0d, to derive
effective potentialwsrd experienced by the tunneling pa
at r12 ­ r and to compare it with the correspondin
potential wSCsrd in the SC approximation. We firs
calculate the differentDwsrd of the potentials betwee
the tunneling pairs atr12 ­ r andr12 ­ 0:

Dwsrd ;

*
fUssd 2 Us0dgdsssr 2 r12ssdddd

dsssr 2 r12ssdddd

+
0

. (9)

Then wsrd ; ws0d 1 Dwsrd is obtained by determining
ws0d to satisfygs0d ­ gws0d wheregws0d is defined by
the right hand side of Eq. (3) but withUssd ­ wsssr12ssdddd
in H ssd. The potential wSCsrd is obtained in the
PIMC runs for the SC approximation through a simi
procedure.

Figure 1 (bottom) depicts thez dependence o
bwSCsrd 2 bsZed2yr calculated in the PIMC runs with
sN , nd ­ s100, 200d at G ­ 170. We find in Fig. 1 (bot-
tom) that the screening action of the surrounding partic

TABLE I. Values of gs0dygSCs0d [Eq. (5)] calculated in the
PIMC runs withn ­ 20. c denotes the sequential number
configurations used to calculate each average in Eq. (5).

G z N c gs0dygSCs0d

170 2 100 3.2 3 109 7.4 6 1.4
170 2 50 2.0 3 108 7.7 6 2.8
90 2 100 3.2 3 109 3.0 6 0.5
30 2 100 3.2 3 109 1.3 6 0.3
170 1 100 3.2 3 109 1.3 6 0.3
90 1 100 3.2 3 109 1.1 6 0.2
30 1 100 3.2 3 109 1.0 6 0.2
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FIG. 1. Values of the effective potentialswsrd and wSCsrd
calculated in the PIMC runs withsN , nd ­ s100, 20d at
G ­ 170: (top) bwsrd 2 bwSCsrd at z ­ h1, 2j; (bottom)
bwSCsrd 2 bsZed2yr at z ­ h0.5, 1, 2j.

becomes weaker asz increases in the SC approximatio
At the tunneling process in the SC approximation,
surrounding particles located atxisi [ h3, 4, . . . , Njd
arrange themselves to lowerbwSCsrd as a result of their
interactions with the tunneling pair. The increase
bwSCsrd at largerz may be attributed to the magnifie
fluctuations ofr12ssd in the interval of times ­ f0, bh̄g.
The differentials bwsrd 2 bwSCsrd at G ­ 170 and
z ­ h1, 2j are shown in Fig. 1 (top). Here we obser
substantial lowering of the effective potential atz ­ 2,
which is in accordance with the significant enhancem
of gs0dygSCs0d at z ­ 2 [cf., Table I].

We investigate mechanisms for such lowering ofwsrd
as compared towSCsrd, by considering interparticle corre
lations of the quantum fluctuationsdrissd ; rissd 2 rissd
si [ h1, 2, . . . , Njd. We introduce correlation function
defined as

Dszd ; kjdrissdj2dsz 2 zijdl0 , (10a)

Fszd ;

*
jdrissd ? drjssdj2dsz 2 zijd

jdrissdj2 jdrjssdj2

+
0

2
1
3

, (10b)

with zij ; jrissd 2 rjssdj for any pair of i [
h3, 4, . . . , Nj and j [ h1, 2j. Function Dszd mea-
sures magnitude of the fluctuations at distancez from
the averaged position of a tunneling particle;Fszd, their
interparticle coherence. As references forDszd and
Fszd, corresponding functionsDhszd and Fhszd for the
homogeneous OCP in which no tunneling processes
assumed, are defined by Eqs. (10) but with the ave
k· · ·l0 replaced byk· · ·l for any pair ofi, j [ h1, 2, . . . , Nj.
Values of Dszd and Dhszd calculated in the PIMC runs
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FIG. 2. Values of the correlation functionsFszd, Fhszd,
Dszd, and Dhszd [Eqs. (10)] calculated in the PIMC run
with sN , nd ­ s100, 20d at sG, z d ­ s170, 2d: (top) Fszd at the
tunneling,Fhszd for the homogeneous OCP; (bottom)Dszd at
the tunneling,Dhszd for the homogeneous OCP.

with sN , nd ­ s100, 20d at sG, z d ­ s170, 2d are displayed
in Fig. 2 (bottom);Fszd and Fhszd at the samesG, z d,
In Fig. 2 (top). We observe in Fig. 2 (bottom) th
Dszd , Dhszd ø 0.025 for z . 1.8a and that the value
of Dszd increases linearly asz decreases forz # 1.8a.
Through comparison betweenFszd and Fhszd in Fig. 2
(top), we find coherent quantum fluctuations of
surrounding particles forz # 2.7a in the tunneling
process, while no quantum coherence is observed fo
homogeneous OCP.

Such magnified and coherent quantum fluctuati
of the surrounding particles may act to compress
tunneling pair. Figure 3 depicts the normalized rad

FIG. 3. Values ofPsrd [Eq. (11)] andPSCsrd calculated in
the PIMC runs withsN , nd ­ s100, 20d at sG, z d ­ s170, 2d.
t

e

the

ns
he
l-

distribution function for the surrounding particles ats ­ 0
defined as

Psrd ;
V
N

NX
i­3

kdsssr1s0d 2 ris0d 2 rdddl0 (11)

and the corresponding functionPSCsrd in the SC approx-
imation, both of which are calculated in the PIMC run
with sN , nd ­ s100, 20d at sG, z d ­ s170, 2d. We find in
Fig. 3 that the surrounding particles inPsrd, in fact, ap-
proach closer on the average to the tunneling pair
r # 1.6a than in PSCsrd. Hence the repulsive forces o
the surrounding particles toward the tunneling pair a
stronger inPsrd as compared to inPSCsrd, resulting in
enhancement of the contact probability.

In summary, we have performed PIMC calculatio
for the contact probability of a tunneling pair in dens
OCP’s. We have found that the enhancement factor
to wave-mechanical nature of the surrounding partic
takes on significant values atG $ 90 and z ­ 2. We
have demonstrated that the enhancement is assoc
with magnified and coherent quantum fluctuations of t
surrounding particles near the tunneling pair.
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