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Effects of Quantum Fluctuations on Contact Probabilities
of a Tunneling Pair in Dense Coulomb Liquids
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Path-integral Monte Carlo calculations for a tunneling pair in dense Coulomb liquids are per-
formed to investigate effects of quantum fluctuations of the surrounding particles on its con-
tact probability. We thereby find that the probabilities are enhanced significantly by the quan-
tum fluctuations at low temperatures. By calculating various correlation functions and effective
potentials for the tunneling pair, we demonstrate that the enhancement is associated with mag-
nified and coherent quantum fluctuations of the surrounding particles near the tunneling pair.
[S0031-9007(96)01254-9]

PACS numbers: 61.20.Ja

Nuclear reaction is an elementary process of major im- In this Letter, we perform path-integral Monte Carlo
portance in ultrahigh-pressure liquids [1] such as thos€PIMC) calculations for a tunneling pair in dense Coulomb
realized in shock-compression experiments [2] and thoskquids at various conditions and show that the contact
predicted in the interiors of dense stars including whiteprobabilities of the tunneling pair are enhanced signifi-
dwarfs and neutron stars [3]. Theoretical prediction forcantly by inclusion of the quantum fluctuations of the sur-
abundances of nuclear elements synthesized in the supeounding particles. Mechanisms for such enhancement are
nova process of a white dwarf may change sensitively deinvestigated by considering effective potentials for the tun-
pending on the rates of nuclear reactions adopted for theeling pair and various correlation functions for the quan-
stellar interior [4]. Possible realization of nuclear fusiontum fluctuations.
has been pointed out [5] for shock-compressed liquid met- We consider a one-component plasma (OCP) [5,11]
als. Nuclear reaction rates [5] are, in general, proportionatonsisting ofN point particles (charge&e, massM) in
to the contact probability of a pair of nuclei which tun- volume V, whose positions are denoted esfor i €
nel through the repulsive Coulomb potential at short dis{1,2,..., N}; uniform background charges with density
tances. In a dense liquid, the contact probability may be-ZeN/V are assumed to satisfy the charge neutrality
enhanced significantly in sensitive ways by the screeningondition. The Coulomb coupling parameter [5,11]
action of the surrounding nuclei due to internuclear many- 5
particle correlations [5,6]. First-principles calculations for r = B(Ze) (1)
the contact probability of a tunneling pair are indispensable a
for accurate evaluations of the reaction rate in such liquids.

Much effort has been devoted to evaluation of the conWith the ion-sphere (or Wigner-Seitz) radius =

,1/3 . .
tact probability of two particles in the Coulomb liquid 47N/3V) and the inverse temperafure in energy

[5], i.e., an assembly of charged particles with same signunits B = 1/kpT. It has been shown through Monte

o : Carlo calculations for the internal energies that the
In the existing theories for that problem, quantum fluc- : o
tuations of the surrounding particles in the liquid WereCI"’lSS'C"’lI ocP solidifies af = 172-180 [12-14]. The_
ignored or assumed to be negligible, and the contact pro vave-mechanical nature of a particle may be characterized
ability was calculated by exploiting the effective pair y [15]
potential derived from the radial-distribution function for
correspondinglassical systems [6—9]. Through model % = AT /a), (2)
calculation for the tunneling probability of a physical vari-
able coupled to a macroscopic system, however, Caldeinaith the thermal de Broglie wavelengtth = (27i/
and Leggett [10] demonstrated significance of quantumr)\/B/M. For strongly coupled (i.e.]' > 1) OCP’s
fluctuations in the macroscopic system at the tunnelingvith ¢ > 1, the fluctuation volume of a particle may be
process. It is therefore expected for the Coulomb liquiddominated by its quantum spread since the characteristic
at low temperatures, where the thermal de Broglie wavewidth for the short-time thermal vibration of a particle is
length of a particle is comparable to the tunneling distancey/+/T as exemplified in the ion-sphere model [11].
that the effective pair potential and hence the contact prob- The normalized radial-distribution function at zero
ability of the tunneling pair are affected substantially by theseparation, i.e., the contact probability, is defined in the
guantum fluctuations of the surrounding particles. Feynman path-integrals as [6,16]
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[0 J e r s Drils) exdl(—1/) J§" dsH (5)]r(s0=0

g(0) =V 3
) [ ormnam Dris) exd(—1/h) [§" dsH (5)]
at any imaginary timey; for simplicity we takesy = 0. | ra(s),X3,...,Xy) Wherex; = r,(s) is the time-averaged
Herer;;(s) = Iri(s) — r;(s)l, position with A(s) = (1/8h) JB" dsA(s) for any func- _
NoMlod 2 tion A. In former calculations for the contact probabil-
H(s) = Z EX ‘ %ri(s) +U(s), (4) ity [7-9], quantum fluctuations of the surrounding parti-

=1 cles were ignored as in the SC approximation. The ratio
and U(s) = u(ri(s),ra(s),....rn(s)), where u(yi,y2,  4(0)/gsc(0) defines the enhancement factor for the con-
.-»yn) denotes the total Coulomb energy for the OCPyact probability of a pair in a OCP due to quantum fluc-
with the particles located a; (i € {1,2,...,N}). We  yations of the surrounding particles. In the limit of low

assume the periodic boundary condition for the systeMyensities, botty (0) and gsc (0) reduce togcour (0), which
and calculate values af by using the Ewald’s methoq.' is defined by the right hand side of Eq. (3) with= 2; a
Exchange processes are ignored in Eq. (3), the validitgemianalytical formula fopcou (0) is known [17]. In the
of which will be discussed in a preceding paragraph. INimit of low temperatures, the average b (s) in the nu-
Eqg. (3), each quantum particle is represented as a l00Rarator of Eq. (3) withV = 2 increases from»(s) = 0
in the interval of the imaginary time = [0, 8/i]. The ats = 010 rio(s) = al ats = BJi/2 and then decreases
characteristic width of a loop corresponds to the quanturg, ria(s) = 0 ats = B as a function ok [6,7].
spread of a corresponding particle. In the present formu- By transforming Eg. (3), we obtain the following for-
lation [Eq. (3)], the value og(0) is related to the contact 13 for the enhancement factor:
probability of two loopsi = {1,2}) ats = so.

In the semiclassical (SC) approximation £0), we g(0) (exdBU(s) — BUsc(s)])
regard the surrounding particleg € {3,4,...,N}) as gs5c(0) = (exd BU(Gs) — BUsc(s) o ()
classical particles. The corresponding quantity (0)
in the SC approximation is defined by the right handwhere the averagés: -)), i.e.,{- - -) and(- - -)o, are defined
side of Eq. (3) by assumin@/(s) = Usc(s) = ul(r(s), | as

[ [ 0= am Dri$)AG") exdl = (1/h) [§7 ds H (5)]1(,,,00~0)
[0 [ 0=y Dri(s) exdl—(1/0) J§" dsH (5)1)(,,,0=0)

for any functionA. In the derivation of Eq. (5), we have used the equality €xp(1/%) f{fﬁ ds{H (s) — U(s) +
Usc(s)}) = exd—(1/h) f("fh dsH (s)]exp{(1/R) f{f” ds[U(s) — Usc(s)]} in the kernels of path integrals [Eq. (3)]. A
value ofgsc(0) is likewise obtained as

Aoy = (6)

(exd BUsc(s) — BUn(s))C 2o (0) 7
(exdBUsc(s) — BUnDC ~ "

Here the averageé--YSC and (-3¢ are defined in similar ways by Eq. (6) but witti(s) = Usc(s); Uja(s) =
(Ze)*/ria(s).

We perform PIMC calculations for the liquid OCP’s to obtaf0)/gsc(0) and gsc(0)/gcou(0) following the
Metropolis algorithm [18]. A polynomial fitting formula [13] for the Ewald potential is used to accelerate computation
speed. The imaginary-time intervgd, 8] is divided into » slices [19] with equal spacings, = Bfhia/v with
a =1{0,1,...,v}. We adopt the primitive approximation [19] to calculate the action in Eq. (6); that is,

,‘lf[]fr,(O)r,(Bﬁ) Dr;(s) exi{_% foﬁh ,’}-[(s)} zC[llf[l:D;f dr,-(Soz)}eX[{—Zj‘g;2 Z:) AR} 11 — % :Z; U(Sa)i|7
(8)

whereAR2 11 = SV, Iri(sq) — ri(sq+1)?> andC is a constant. At,(s) = 0, the action is dominated by the term
(Ze)?/r12(s). Because of its singularity ai,(s) = 0, correct behaviors qf(0) atr = 0, i.e., the cusp condition [11,17],
may not be satisfied in the PIMC calculations with finite values'of To reproduce the correct formula [17] for the
action atry»(s) = 0, we modify the term(Ze)?/r1»(s) ats = {0, s1, s,—1} contained inU(s) [Eq. (8)] as(Ze)>f/ri»(s)
with f = 1 — exd —/8Tv/m2r12(s)/al’/*]. Values ofgsc(0)/gcou(0) [Eq. (7)] are calculated by usin = 100
and » = {20,50} at I' = {10, 30, 50,90, 170} and ¢ = {0.5,1,2}; 5 X 107 configurations are used to calculate each
average. The difference igxc(0)/gcou(0) between the cases with= 20 and 50 is smaller than the error bar8.2-

gsc(0) =

2727
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0.3; that is, no substantialv dependence is ob- T T e T it
served. All the values ofgsc(0)/gcou(0) are fitted = 0_' @QM’W%%EEHEH H_
to within errors of 0.3 by the formula Ifigsc(0)/ o 0562029582588 ; ]
gcout (0)]ric = 1132 = 0.0094 InT — = T'Z%(1 + a; E : it ]
Ctarl®+ asdd) with  (ay, a, a3) = (—0.0348, 0 AL EI .
—0.1388, 0.0222). Here the ¢° term is taken from 1 6l HHE ]
Ref. [20]; the/? term, from Ref. [6]. = AT 1t : Qf%
Table | lists values of the enhancement factor gttt Hitiis il
2(0)/gsc(0) in Eq. (5) calculated by usiny = {50, 100} e
and » = 20 at T = {30,90, 170} and ¢ = {1,2}. Both < 80r y
averages in the numerator and denominator of Eq. (5) are o -100} o
obtained by using.2 X 10° (N = 100) and 2.0 X 108 S 120 et
(N = 50) configurations. Since botl/(s) and Usc(s) ! - Qe .*
in Eq. (5) are macroscopic quantities in proportion\No =, -1401 [+ 02 |1
fluctuations ofU(sc)(s) make relatively large error bars 3‘:’ -160 | -"855566 o =1 [-
for g(0)/gsc(0) in spite of such long runs. We find in yanfeeeeesl £=0.5] 1
Table | that (i) the enhancement is significantiat 90 e
and/ = 2 and (ii) the value of Ifg(0)/g5€(0)] increases 0 02 04 06 O'Sa 112 14 16

as/? while it is linear inT". Since quantum spread of a
surrounding particle in the PIMC run éF, ) = (170,2)  FIG. 1. Values of the effective potentials(r) and wsc(r)
is ~0.3a in radius, which is much smaller than the ca@lculated in the PIMC runs with(N,») = (100,20) at
- ! " [ =170: (top) Bw(r) — Bwsc(r) at ¢ = {1,2}; (bottom)
mean interparticle distancel.8a, we expect that further _ 2 F
. . ! ?wsc(r) B(Ze)*/r at ¢ ={0.5,1,2}.
inclusion of the exchange processes will alter the value o
g(0)/gsc(0) to a negligible amount.

It is useful in the investigation of the mechanismsbecomes weaker asincreases in the SC approximation.
for such significant enhancement0)/gsc(0), to derive At the tunneling process in the SC approximation, the
effective potentialv(r) experienced by the tunneling pair surrounding particles located at;(i € {3,4,...,N})
at r, = r and to compare it with the corresponding arrange themselves to low@wsc(r) as a result of their
potential wsc(r) in the SC approximation. We first interactions with the tunneling pair. The increase in
calculate the differentAw(r) of the potentials between PBwsc(r) at larger{ may be attributed to the magnified
the tunneling pairs at;, = r andry;, = 0: fluctuations ofri,(s) in the interval of times = [0, B7].

_ /UG — U0« — ruk) The differentials Bw(r) — Bwsc(r) at T' = 170 and
Aw(r) = 9)
0

. = {1,2} are shown in Fig. 1 (top). Here we observe
o(r — ria(s)) substantial lowering of the effective potential at= 2,
Thenw(r) = w(0) + Aw(r) is obtained by determining Which is in accordance with the significant enhancement
w(0) to satisfy g(0) = g,,(0) whereg,,(0) is defined by 0f g(0)/gsc(0) at{ = 2 [cf., Table I].
the right hand side of Eq. (3) but witti(s) = w(ri2(s)) We investigate mechanisms for such loweringndf-)
in H (s). The potential wsc(r) is obtained in the ascompared tesc(r), by considering interparticle corre-
PIMC runs for the SC approximation through a similarlations of the quantum fluctuatiosa;(s) = r;(s) — ri(s)
procedure. (i €{1,2,...,N}). We introduce correlation functions
Figure 1 (bottc2>m) depicts the; dependence of defined as
Bwsc(r) — B(Ze)?/r calculated in the PIMC runs with
(N, ») = (100,200) atT = 170. We find in Fig. 1 (bot- D(z) = (|ori(s)*8(z — zij))o (10a)
tom) that the screening action of the surrounding particles
|8ri(s) - 8r;(s)128(z — z)) L 10b
TABLE I.  Values of g(0)/gsc(0) [Eg. (5)] calculated in the [61;(s)2 [8r;(s)? 0 3’ (10b)
PIMC runs with» = 20. ¢ denotes the sequential number of -
configurations used to calculate each average in Eq. (5). with Zij = Ir;(s) — rj(s)l for any pair of i€
{3,4,...,N} and j €{1,2}. Function D(z) mea-

F(z)

r ¢ N ‘ 8(0)/85c) sures magnitude of the fluctuations at distarzcéom
170 2 100 3.2 X 10° 74 £ 14 the averaged position of a tunneling partick(z), their
170 2 50 2.0 X 108 77 x£238 interparticle coherence. As references fbr(z) and
90 2 100 32 x 103 3.0 =05 F(z), corresponding function®,(z) and F,(z) for the
5700 i 183 g% i 189 i; - 8'2 homogeneous OCP in which no tunneling processes are
% 1 100 39 % 10° L1+ 02 assumed, are defined by Eqs..(lo.) put with the average
30 1 100 39 % 10° 10 + 02 (- ) replaced by - ) for any pair ofi, j € {1,2,...,N}.

Values of D(z) and D,(z) calculated in the PIMC runs
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z/a

T T T T . T T distribution function for the surrounding particlessat 0
0.04r . F 11 defined as N
g oo h{ S b P() = 10 D300 — 10 — 1) (D)
w i=3
= 0.02- }} ] and the corresponding functidPc(r) in the SC approx-
T oo01k }H; 4 imation, both of which are calculated in the PIMC runs
' Y5, with (N, ») = (100,20) at (T, ¢) = (170,2). We find in
or GQM’F’M@Fémﬁﬁﬂfﬂ’@fﬁ § Fig. 3 that the surrounding particles R(r), in fact, ap-
I e proach closer on the average to the tunneling pair at
0.030[ L . D ] r = 1.6a than in Psc(r). Hence the repulsive forces of
= [ II o D, the surrounding particles toward the tunneling pair are
= 0028 7 stronger inP(r) as compared to iPsc(r), resulting in
- I [ enhancement of the contact probability.
5 00261 b T In summary, we have performed PIMC calculations
I for the contact probability of a tunneling pair in dense
0.025 soltiatistgstyiedsttitity OCP’s. We have found that the enhancement factor due
U ———— to wave-mechanical nature of the surrounding particles
0 05 1 15 2 25 3 35 4

takes on significant values &t =90 and { = 2. We
have demonstrated that the enhancement is associated

FIG. 2. Values of the correlation function&(z), F,(z),
D(z), and D;(z) [Egs. (10)] calculated in the PIMC runs
with (N, ») = (100,20) at (T, ) = (170,2): (top) F(z) at the
tunneling, F;,(z) for the homogeneous OCP; (bottorb)z) at

with magnified and coherent quantum fluctuations of the
surrounding particles near the tunneling pair.
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