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Dynamical scaling law in the development of drift wave turbulence
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The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region,
which is set to be slightly larger than the characteristic wave nurnb&valuating the inverse ion Larmor
radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential
vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys
a dynamic scaling law fok<\. The dimensional analysis with the assumption that the energy transfer rate
€ in the inverse cascade is constant with time leads to the scaling fds(k,t)
=N 2% TR (KK (1))[ K(t) ~ N34~ Y8 =38 with a scaling functionF(x), which turns out to be in good
agreement with numerical experimentS§1063-651X97)08205-9

PACS numbds): 47.27.Eq, 52.35.Ra

I. INTRODUCTION perpendicular to the strong magnetic field uniformly applied
to plasma[11]. Furthermore, the time evolution of the flow

The large scale dynamics of the atmosphere and oceafis the geostrophic equilibrium in the planetary atmosphere,
on the earth or the magnetofluid under the uniform, strongvhich is called the quasigeostrophic potential vorticity equa-
magnetic field are described approximately by the two-ion, is also described by this equatid®]. The CHM equa-
dimensional fluid dynamics. The two-dimensioriaD) tur- ~ tion Is written as
bulence has been extensively studied theoretically and nu-
merically since _19605_, and the special properties differ_ent i(V2¢—)\2¢)+J(¢,V2¢):0, 1)
from the three-dimension#&BD) turbulence have been clari- at
fied. In particular, it is shown that in comparison with the
energy cascade theory of the 3D isotropic homogeneous tul¥hereV=_(d/dx,d/dy), J(a,b)=asb,—a b, . Here ¢(r,t)
bulence by Kolmogoroy1], the 2D turbulence generally has denotes the electrostatic potential in plasma or the geo-
two quadratic invariantsthe energy and the enstrophy Strophic stream function at the positior=(x,y), andX is
which makes the existence of the dual cascades possible, i8¢ characteristic wave number representing the ratio of the
the energy is transported to the small wave-number Gide systgm_ size to the ion La_rmor radius or the Rossby radllus. In
verse cascadeand the enstrophy is transported to the largethe limit of A\—0, Eq.(1) is reduced to the 2D NS equation.
wave-number side(direct cascade This fact yields two 1he existence of nonvanishing separates Eq1) from the
types of energy spectr&(k)~k >3 in the inverse cascade 2D2 NSzeqliatlon. Equatiofl) can be rewritten by operating
region andE(k)~k 23 in the direct cascade regi¢g—4. As A=V " as
a result the energy is concentrated in large scale eddies in the

physical space in the course of time and the self-organization (1, :f D(r—r")J(¢(r',t),V3 o(r’,t))dr’, (2)
of large scale structure of vortices is observed. These are the ot T ’ ’
important characteristics of the 2D turbulence. . )

Moreover, direct numerical simulations of the turbulence ) 1 ekt 1 )
have been extensively carried out in 1980s and the structure D(F— ") = (277)2j N2+ k]2 dk=5_Ko(A|r=r'D,
of the physical space in the turbulent field have been attract- ®)

ing researcher’s attention. Particularly in the 2D decaying
Navier-StokegNS) turbulence5-7], it was proved that the whereKy(z) is the modified Bessel function of the second
coherent vortices self-organize and stably exist for a longind. Equation(3) stands for the interaction kernel it field
time. In addition these coherent vortices dominate the dyand N1 represents its interaction range. The interaction
namics of this system, in which vortices with the same sigrrange is infinite in the limit oin— 0, while in the limit of
coagulate each other into larger ones. This dynamical prox—> the interaction becomes local, D(r—r’)
cess is closely connected with the energy transfer in the=\~28(r—r"). In this system, several works have been car-
wave-number space. ried out for the freely decaying turbulent® and the forced
Recently one of the 2D turbulent systems, the Charneyturbulencd8,10]. It is found that Eq(1) has the same char-
Hasegawa-MimaCHM) equation, is studied theoretically acteristics as the NS equation for a large wave-number re-
[8] and numerically{9,10]. This equation approximately de- gion k>\ and the statistical law specific of the CHM equa-
scribes the dynamics of the electrostatic field on the planéion for k<<\. Furthermore, the shell model of the CHM
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equation is proposed and studies from the viewpoint of the TABLE I. The asymptotic forms of characteristic time scales

dynamical systems theofyL3] start to be carried out. e,y and the energy spectruii(k) for different k regions. The
The fundamental aim of the present paper is to investigatépper(lower) part corresponds ta <k (k¢<\), k¢ being the en-

the formation process of the large scale turbulent fluctuatio§rgy injection wave number. The energy spectrum korks

maintained by the inverse cascade of the energy randomkf>kr) is determined by the enerdgnstrophy cascade process.
injected at the narrow band region located at the wave nunr

berk; (>\). Especially we aim to study the statistical char- A<kt
acteristics of the vortical quasicrystal structure in the case of k<\ A <k<ki kj<k
k<) observing the development of the turbulent ﬂuctuationTE N2e— U383 1323
[10]. - N2y~ 132 3

The paper is organized as follows. In Sec. Il we briefIyE(k) N2e2/3—11/3 23503 72%3
review the scaling law of the energy spectrum in the CHM
equation. In Sec. lll we present the results of the numerical >k
simulation of the CHM equation with the random forcing at k<<k¢ ki<<k<) A<k
the narrow band wave-number region. Then we derive the T R
scaling law of the structure function of the potential vorticity "E A N DA € _"1/3
field in connection with the numerical results. In Sec. IV we U ATk 7

. . ey . . /31, — 11/ /31, — /3, —
briefly discuss the possibility of the intermittency effect on E(k) N N 7”3
the scaling law and summarize our results.

whereg(x)=[f(x)]*°. Let k; be the wave number around
which the energy is injected. F&k;, the process is domi-
nated by the energy transfer, while fkr-k; the enstrophy
Equation(1) contains two fundamental conserved quanti-cascade is dominated. The energy specti(k) defined via

II. SCALING LAW OF THE ENERGY SPECTRUM
IN THE CHM EQUATION

ties, the total energ and the total enstrophy as E=[E(K)dk==,(k*+\?)|¢y|? is, therefore, supposed to
be
1
_ 2 2 1274y — 2 2 2
E= LZJ' [(V¢) +A d’ ]dr ; (k +A )|¢k| ) (4) E(k)w)\262/3kfll/%(k/)\) (k<kf), (1oa
1 E(K)~N29%%5g(kIN)  (k>kq). (10b)
U=FJ [(V2¢)2+)\2(V¢)2]dr=; K2(K2+M\2)[ [, f
5 In order to determine the asymptotic forms of the above sta-

tistical quantities, we consider the following two cases:
where ¢, denotes the Fourier component given via
o(r,t)==,4eX". The shape of the energy spectrum is A<Ki, Ki<\. (12)
formed by the dual cascades of these two conserved quanti-
ties; one can obtain the scaling law of the energy spectrunit is easy to see that when we consider the dasa in Eq.

by using the Kolmogorov-type dimensional analy$s9]. (6), the X dependence in the CHM equation is incorporated
The equation of motion fot,(t) is written by into the time by putting—t/\2. So thex dependence of the
dynamics does not appear explicitly. Theegion under con-
doy 1 sideration is temporally steady and the energy spectrum has

no time dependence. Therefore, the intensitypgfis inde-
pendent ofn, andE(k) in Egs. (108 and (10b) is propor-

Tt - R KAk K P 6)
k/

The dimensional analysis yields tional to 2. The prefactoin? in E(k) comes from the sec-
ond term in Eq.(4). Consequently, the scaling function
D~ N2k AT (KIN), (7)  g(x) should be finite forx—0. On the other hand, for

_ _ k> N\, the CHM equation has the characteristics of the NS
e~ Nk B 3f(kIN), p~NBk 67, 3f(k/N), (8)  equation, and therefore statistical quantities are independent
of N\, which is compatible with the asymptotic form
where the energy transfer rate(~E/t) and the enstrophy g(x)=x? (x>1). This givesrg , and E(k) quite different
transfer ratep (~U/t) are assumed to be constant with time, from those fork<<\. These results are summarized in Table
respectively, in the energy cascade region and in the enstro-
phy cascade region. The timeg and 7, respectively, rep-
resent the energy transfer time scédeldy turnover timg
and the enstrophy transfer time scale. Moreovgk) and
f(X) (=(1+x?)[f(x)]?) are dimensionless function$(x)

IIl. NUMERICAL SIMULATION AND SCALING LAW
OF THE STRUCTURE FUNCTION

being finite forx<1 andf(x):X2 for x>1. From Eq.(8), To investigate the formation process of the turbulent field,
e and 7, are evaluated as we consider the random injection of energy and take the
dissipation into account. The CHM equation with a damping

e~N2e YK ¥g(kIN),  Tu~N%n Y 2g(k/N), term and a forcing term is represented by the Fourier com-

9 ponent of¢ as
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FIG. 2. The time evolution of the energy spectriifk,t).

In the process of time evolution, the energy is located in
the narrow region arounkl just after the switch on of the
forcing, and it is transported to the small wave-number side
(the inverse cascagl@s well as to the large wave-number
region (the direct cascade The developing process of the
turbulent fluctuation is divided into two time regions. In the
process of the energy injection the energy spectrum has a
single peak structure and its peak position moves to the small

(e) (f) wave-number region. If we define the timewhen the peak
arrives at\, the coherent vortices being a characteristic of

FIG. 1. Snapshots of the potential vorticity fiell=V2¢  the NS equation are formed duringrt, . The spatial distri-
—\?¢ at (a) t=2, (b) 20, (c) 40, (d) 60, (¢) 100, (f) 200. White  bution of vortices is at random fart, , while they form the

(black region indicate£>0 (<0). quasicrystal structure for>t, and the time evolution be-
comes slow in accordance with that the transport of the en-
deéb, 1 ergy to the smla_ll wave-number side also becomes sIow._We
WTE m - E (KXK") | k=K'|2yr by—ir define the pos_ltlon of a peak of the energy spectrum_at time
k’ t askq,(t), which moves to the small wave-number side. In

the time region\ <k,(t) <ks the system dynamics is similar
+ v(|k|?)P(—|k|2py) + Fo(k,t) | (12 to the NS equation. Thenk,(t) is evaluated as

Kn(t)~ e Y2432 provided that we carry out the discussion

similar to Egs. (6)—(9) for A—0. The time defined by

o 3 g A~Km(t)),
Here we put the hyperviscosify=2 andv=3.0X10"°. The

system size is fixed ak =2, the parameter is put as
A =50. MoreoverF¢(k,t) represents the forcing term in the
wave-number space applied to the narrow shell of
51=<k;=54, and therefore. <k;. We consider the form of represents the characteristic time transferring from the be-
Fe(k,t) as Fe(k,t)=i(kxf(k,t)),, where the real and havior of the NS turbulence to the special behavior of the
imaginary parts of components &fk,t) are chosen to be CHM turbulence.

normal random numbers with the mean value 0 and the vari- The time evolution of the potential vorticity field is shown
ance/0.5. The initial condition is chosen such that~0 in Fig. 1. The figure shows that the peak of the energy local-
which is a random value with small intensity compared withized atk; in the first time stage moves to the small wave-
the forcing term and the pseudospectral metfof is used number side with the increase of the width. This process
by dividing the physical space into 25®56 points under corresponds to the formation of coherent vortices and the
the periodic boundary condition. The numerical integrationincrement of the characteristic length of the system due to
is carried out by using the Runge-Kutta method of the fourtithe coagulation of vortices. Hetg is the time when the peak
order with the time incrememit=2.5x10 3. We observe of the energy spectrum reachks The structure similar to
the evolution of the potential vorticity &(r,t) the quasicrystal of the potential vorticity field reported in
=(V2=\2) (r,1). [10] is observed at>t, . The time evolution of the energy

t)\~6*1/3)\*2/3, (13)
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spectrum is shown in Fig. 2, which confirms the!'®law in 50 - . .
the energy inverse cascade region.
To investigate how the typical distance among neighbor- 40
ing vortices with the same sign, the characteristic spatial
scale of the system, evolves with time, we observe the struc-
ture functionS(k,t) of £(r,t) in each time as 30
_ 2 =
S(k,t)=<U &(r,t)e " rdr > (14) =
where(- - -) denotes the average taken over the orientation
of k. S(k,t) is characterized by the peak heidhj,(t) and
the characteristic wave-number defined as
A
> ks(kt) 10
— k=0
k()= ——. (15
> S(k,t)
k=0
. . S 10°
By noting thatS(k,t) has a single peak, the peak position is 0
well approximated byk(t). k(t) and S,,,(t) are plotted as 10°
the function of timet in Fig. 3, which asymptotically take .
the power-law forms 10
— 10°
k() ~t™%  Spalt)~t?, (16) =
- = 107
where #=0.37 andB=1.8. If k(t) is regarded as the peak g I
position of S(k,t), 27/k(t) evaluates the lattice constant of 75)
the quasicrystal structure which is observedttett, . 10° L
We can estimate the exponentsand 8 from the afore- N
mentioned Kolmogorov-type dimensional analysis by corre- 10
sponding the self-organization process of this quasicrystal to 10 |
the energy inverse cascade process in the Fourier space. We
evaluated the eddy turnover timg [Eq. (9)] from the di- 107 L '
mensional analysis for the energy transfer rate. This time 10 100
scale can be regarded as the life time of the eddy with the t

wave numbek. On the other hand, the characteristic wave
numberk, of the eddy which disappears at a timafter the
start of the injection of the energy is given as
e~\%, 8 3. From this, we can evaluate the time depen-
dence ofk; as

ke~ N3 18 =38 17)

On the other hand, to obtain the asymptot&Sgf,(t), we
use the relation between the energy specti(k) and the
structure functiors(k,t),

kS(k,t
E(k,t)= ?Si_h)\; (18

and Eq.(109 in the case ok<<\. This combination of Egs.
(109 and(18) immediately leads to

S(k,t)"“)\4€2/3k_14/3. (19)

This asymptotic form is valid fok_(t)<k<)\. The fluctua-
tion in the regiork(t) <k<\ is steady because the shape of

___FIG. 3. The time evolution of the characteristic wave nun{agr

k(t) and (b) the peak heightS,,(t) of the structure function
S(k,t). The slopes—3/8 and 7/4 are the theoretical values with
#=0 and —0.36 and 1.6 denote the values in the c#se0.1,
respectively.

Now, if we suppose thdtt~k_(t) andS,,,(t) is replaced
by Sk(t)], the insertion of Eq(17) into Eq.(19) yields

Smax(t) — 7\1/265/4t7/4. (20)

Thus one findsy=3/8 andB=7/4, which turn out to be in
good agreement with the numerical resiitg. 3). Further-
more, one should note that the evaluatiort,ofEq. (13)] is
also obtained from Eq17) by putting\ ~k(t,). In order to
investigate the temporal evolution o$(k,t), we plot
S(K,t)/Spadt) vs k/k(t) for different times in Fig. 4. The
figure clearly indicates the existence of the dynamical scal-
ing law as

ion in thi i k,t —
the structure function in this region does not depend on the Stk,t) = F(K/k(1)), 21)

time [15].

Smat)
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FIG. 5. The time evolution of the enerdy per a unit area at

FIG. 4. Scaling plots 0B(k,t)/Sya(t) Vs k/K(t) at t=40, 80, (0200

120, 160, 200.

whereF(x) is a scaling functiofi16]. From Fig. 4, the scal- tion of the energy transfer rate. The energy injectel&s
ing function asymptotically takes the forms not only transported to the small wave-number side, but also
a portion of the energy is transported to the large wave-
F(X)~X"7 (x>1), F(X)~x® (x<1). (22  number region where it is dissipated. Therefore, if the tem-
) ) poral change of the amount of the energy transported to the
The exponenty=14/3 determined from Eq19) agrees with g wave-number region is random, the fluctuation of the
the observation in Fig. 4. Sinagis not related to the energy enerqgy transfer rate is observed. It is widely believed that the
inverse cascade, we have no theory concerning with the der,ctuation of the energy transfer rate in the 3D turbulence is
termination of 6. Numerical study shows$~3, which is  g|ated to the intermittency of small scale dynamics, con-
consistent with the result of the energy spectrum of freelysisied of high-vorticity regions and rather low-vorticity
decaying tuzbulence in the low wave-number regiof9h  (regulaj regions in the spadel7,18. In this sense the origin
1.€., E(k)”k ' . of the fluctuation of the energy transfer rate in the 2D turbu-
Finally, let us estimate the Re.ynolds number Re. In thggnce is different from that in the 3D turbulence.
casep=2, the Reynolds number is evaluated by the rate of \yjthout going into the statistical law of the fluctuation of

the nonlinear term and the dissipation term in Ep) as €, we take into consideration the effect of the intermittency
\~1VE|2 pheqomenologically by pu.ttingﬂ*g. The substitution of
Re~ —— 54 (23  this into Egs.(17) and (20) immediately leads to the modi-
v fication

Here we usedb~\ ~*\E~t*2 (see laterand the character- L
istic lengthl = 27/k(t)~t%®. Therefore, the Reynolds num- k() ~\¥ =708 g ()~ AR (24)
ber monotonously increase with time. At200, we get

Re~10" from Figs. 3 and 5. Although the excess exponeatmust be in principle calcu-

lated from the CHM equation, if we estimate=0.1 from
Fig. 5, one getk(t)~t~°%3% and S,(t)~t*%. Numerical
Until now, we have studied the time evolution of the char-results seem to be compatible with this analysitg. 3).
acteristic spatial scale in the turbulent field from the scaling In the present paper we have investigated the statistical
viewpoint. The scaling law is based on the Kolmogorov-typecharacteristics in the developing process of the turbulent
dimensional analysis with the assumption that the energfield described by the CHM equation with the random forc-
transfer ratee is temporally and spatially constant in the ing at the narrow band wave-number region. Consequently,
energy inverse cascade region. Numerical experiment showse found out the dynamical scaling law aS(k,t)
that this is a quite good assumption. Figure 5 shows the time= A\ Y24 7F (k/k(t)), [k(t)~\%% Y8&~3%8] using the
evolution of the energ¥ per a unit area. If the energy is Kolmogorov-type dimensional analysis, which turned out to
transfered to the small wave-number side in a constant ratée in good agreement with the numerical simulation pro-
the energ)E is proportional to time [E=t) because the dis- vided that the energy transfer rate is constant in time. More-
sipation is negligible in this region. However Fig. 5 showsover, we have discussed the revision of the scaling exponents
the asymptotic formE«=t!~¢ with a nonvanishingd in a by taking account of the effect of an intermittency as consid-
sufficient time. The excess exponehts due to the fluctua- ering the time dependency of the energy transfer rate

IV. DISCUSSION
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e~t~? In this connection, we attempt to consider in the caseand the decaying one is quite large, and we must deal with
of freely decaying turbulence of the CHM equation. In thisthis scaling law more carefully.

case, the energy is almost constant in a long time region. So,

if we put =1, Eq. (24) yields k(t)~t~ ¥4 Sp(t)~tY2 ACKNOWLEDGMENTS
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