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Dynamical scaling law in the development of drift wave turbulence
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The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region,
which is set to be slightly larger than the characteristic wave numberl, evaluating the inverse ion Larmor
radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential
vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys
a dynamic scaling law fork!l. The dimensional analysis with the assumption that the energy transfer rate
e in the inverse cascade is constant with time leads to the scaling formS(k,t)
5l1/2e5/4t7/4F„k/ k̄(t)…@ k̄(t);l3/4e21/8t23/8# with a scaling functionF(x), which turns out to be in good
agreement with numerical experiments.@S1063-651X~97!08205-6#

PACS number~s!: 47.27.Eq, 52.35.Ra
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I. INTRODUCTION

The large scale dynamics of the atmosphere and oc
on the earth or the magnetofluid under the uniform, stro
magnetic field are described approximately by the tw
dimensional fluid dynamics. The two-dimensional~2D! tur-
bulence has been extensively studied theoretically and
merically since 1960s, and the special properties differ
from the three-dimensional~3D! turbulence have been clar
fied. In particular, it is shown that in comparison with th
energy cascade theory of the 3D isotropic homogeneous
bulence by Kolmogorov@1#, the 2D turbulence generally ha
two quadratic invariants~the energy and the enstrophy!,
which makes the existence of the dual cascades possible
the energy is transported to the small wave-number side~in-
verse cascade! and the enstrophy is transported to the lar
wave-number side~direct cascade!. This fact yields two
types of energy spectra,E(k);k25/3 in the inverse cascad
region andE(k);k23 in the direct cascade region@2–4#. As
a result the energy is concentrated in large scale eddies in
physical space in the course of time and the self-organiza
of large scale structure of vortices is observed. These are
important characteristics of the 2D turbulence.

Moreover, direct numerical simulations of the turbulen
have been extensively carried out in 1980s and the struc
of the physical space in the turbulent field have been attr
ing researcher’s attention. Particularly in the 2D decay
Navier-Stokes~NS! turbulence@5–7#, it was proved that the
coherent vortices self-organize and stably exist for a lo
time. In addition these coherent vortices dominate the
namics of this system, in which vortices with the same s
coagulate each other into larger ones. This dynamical p
cess is closely connected with the energy transfer in
wave-number space.

Recently one of the 2D turbulent systems, the Charn
Hasegawa-Mima~CHM! equation, is studied theoreticall
@8# and numerically@9,10#. This equation approximately de
scribes the dynamics of the electrostatic field on the pl
551063-651X/97/55~5!/5575~6!/$10.00
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perpendicular to the strong magnetic field uniformly appli
to plasma@11#. Furthermore, the time evolution of the flow
in the geostrophic equilibrium in the planetary atmosphe
which is called the quasigeostrophic potential vorticity equ
tion, is also described by this equation@12#. The CHM equa-
tion is written as

]

]t
~¹2f2l2f!1J~f,¹2f!50, ~1!

where¹5(]/]x,]/]y), J(a,b)5axby2aybx . Heref(r ,t)
denotes the electrostatic potential in plasma or the g
strophic stream function at the positionr5(x,y), andl is
the characteristic wave number representing the ratio of
system size to the ion Larmor radius or the Rossby radius
the limit of l→0, Eq.~1! is reduced to the 2D NS equation
The existence of nonvanishingl separates Eq.~1! from the
2D NS equation. Equation~1! can be rewritten by operating
(l22¹2)21 as

]f~r ,t !

]t
5E D~r2r 8!J„f~r 8,t !,¹ r8

2 f~r 8,t !…dr 8, ~2!

D~r2r 8!5
1

~2p!2
E eik•~r2r8!

l21uku2
dk5

1

2p
K0~lur2r 8u!,

~3!

whereK0(z) is the modified Bessel function of the secon
kind. Equation~3! stands for the interaction kernel inf field
and l21 represents its interaction range. The interact
range is infinite in the limit ofl→0, while in the limit of
l→` the interaction becomes local,D(r2r 8)
5l22d(r2r 8). In this system, several works have been c
ried out for the freely decaying turbulence@9# and the forced
turbulence@8,10#. It is found that Eq.~1! has the same char
acteristics as the NS equation for a large wave-number
gion k@l and the statistical law specific of the CHM equ
tion for k!l. Furthermore, the shell model of the CHM
5575 © 1997 The American Physical Society
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5576 55WATANABE, FUJISAKA, AND IWAYAMA
equation is proposed and studies from the viewpoint of
dynamical systems theory@13# start to be carried out.

The fundamental aim of the present paper is to investig
the formation process of the large scale turbulent fluctua
maintained by the inverse cascade of the energy rando
injected at the narrow band region located at the wave n
berkf (.l). Especially we aim to study the statistical cha
acteristics of the vortical quasicrystal structure in the case
k!l observing the development of the turbulent fluctuat
@10#.

The paper is organized as follows. In Sec. II we brie
review the scaling law of the energy spectrum in the CH
equation. In Sec. III we present the results of the numer
simulation of the CHM equation with the random forcing
the narrow band wave-number region. Then we derive
scaling law of the structure function of the potential vortic
field in connection with the numerical results. In Sec. IV w
briefly discuss the possibility of the intermittency effect
the scaling law and summarize our results.

II. SCALING LAW OF THE ENERGY SPECTRUM
IN THE CHM EQUATION

Equation~1! contains two fundamental conserved quan
ties, the total energyE and the total enstrophyU as

E5
1

L2E @~¹f!21l2f2#dr5(
k

~k21l2!ufku2, ~4!

U5
1

L2E @~¹2f!21l2~¹f!2#dr5(
k
k2~k21l2!ufku2,

~5!

where fk denotes the Fourier component given v
f(r ,t)5(kfke

ik•r. The shape of the energy spectrum
formed by the dual cascades of these two conserved qu
ties; one can obtain the scaling law of the energy spect
by using the Kolmogorov-type dimensional analysis@8,9#.

The equation of motion forfk(t) is written by

dfk

dt
52

1

l21uku2(k8
~k3k8!zuk2k8u2fk8fk2k8 . ~6!

The dimensional analysis yields

fk;l2k24t21f ~k/l!, ~7!

e;l6k28tE
23 f̃ ~k/l!, h;l6k26tU

23 f̃ ~k/l!, ~8!

where the energy transfer ratee (;E/t) and the enstrophy
transfer rateh (;U/t) are assumed to be constant with tim
respectively, in the energy cascade region and in the en
phy cascade region. The timestE andtU , respectively, rep-
resent the energy transfer time scale~eddy turnover time!
and the enstrophy transfer time scale. Moreover,f (x) and
f̃ (x) „[(11x2)@ f (x)#2… are dimensionless functions,f (x)
being finite forx!1 and f (x)5x2 for x@1. From Eq.~8!,
tE andtU are evaluated as

tE;l2e21/3k28/3g~k/l!, tU;l2h21/3k22g~k/l!,
~9!
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whereg(x)5@ f̃ (x)#1/3. Let kf be the wave number aroun
which the energy is injected. Fork,kf , the process is domi-
nated by the energy transfer, while fork.kf the enstrophy
cascade is dominated. The energy spectrumE(k) defined via
E5*0

`E(k)dk5(k(k
21l2)ufku2 is, therefore, supposed t

be

E~k!;l2e2/3k211/3g~k/l! ~k,kf !, ~10a!

E~k!;l2h2/3k25g~k/l! ~k.kf !. ~10b!

In order to determine the asymptotic forms of the above s
tistical quantities, we consider the following two cases:

l!kf , kf!l. ~11!

It is easy to see that when we consider the casek!l in Eq.
~6!, thel dependence in the CHM equation is incorporat
into the time by puttingt→t/l2. So thel dependence of the
dynamics does not appear explicitly. Thek region under con-
sideration is temporally steady and the energy spectrum
no time dependence. Therefore, the intensity offk is inde-
pendent ofl, andE(k) in Eqs. ~10a! and ~10b! is propor-
tional to l2. The prefactorl2 in E(k) comes from the sec
ond term in Eq.~4!. Consequently, the scaling functio
g(x) should be finite forx→0. On the other hand, fo
k@l, the CHM equation has the characteristics of the
equation, and therefore statistical quantities are indepen
of l, which is compatible with the asymptotic form
g(x)5x2 (x@1). This givestE,U andE(k) quite different
from those fork!l. These results are summarized in Tab
I.

III. NUMERICAL SIMULATION AND SCALING LAW
OF THE STRUCTURE FUNCTION

To investigate the formation process of the turbulent fie
we consider the random injection of energy and take
dissipation into account. The CHM equation with a dampi
term and a forcing term is represented by the Fourier co
ponent off as

TABLE I. The asymptotic forms of characteristic time scal
tE,U and the energy spectrumE(k) for different k regions. The
upper~lower! part corresponds tol!kf (kf!l), kf being the en-
ergy injection wave number. The energy spectrum fork!kf
(k@kf) is determined by the energy~enstrophy! cascade process.

l!kf
k!l l!k!kf kf!k

tE l2e21/3k28/3 e21/3k22/3

tU l2h21/3k22 h21/3

E(k) l2e2/3k211/3 e2/3k25/3 h2/3k23

l@kf
k!kf kf!k!l l!k

tE l2e21/3k28/3 e21/3k22/3

tU l2h21/3k22 h21/3

E(k) l2e2/3k211/3 l2h2/3k25 h2/3k23



s
e
o

a

ith

io
rt

in

ide
er
e
e
s a
mall

of

-
en-
We
ime
In
r

n

be-
the

n
al-
e-
ss
the
to

in
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dfk

dt
5

1

l21uku2 F2(
k8

~k3k8!zuk2k8u2fk8fk2k8

1n~ uku2!p~2uku2fk!1Fe~k,t !G . ~12!

Here we put the hyperviscosityp52 andn53.031028. The
system size is fixed asL52p, the parameter is put a
l550. Moreover,Fe(k,t) represents the forcing term in th
wave-number space applied to the narrow shell
51<kf<54, and thereforel,kf . We consider the form of
Fe(k,t) as Fe(k,t)5 i „k3f(k,t)…z , where the real and
imaginary parts of components off(k,t) are chosen to be
normal random numbers with the mean value 0 and the v
anceA0.5. The initial condition is chosen such thatfk'0
which is a random value with small intensity compared w
the forcing term and the pseudospectral method@14# is used
by dividing the physical space into 2563256 points under
the periodic boundary condition. The numerical integrat
is carried out by using the Runge-Kutta method of the fou
order with the time incrementDt52.531023. We observe
the evolution of the potential vorticity j(r ,t)
5(¹22l2)f(r ,t).

FIG. 1. Snapshots of the potential vorticity fieldj5¹2f
2l2f at ~a! t52, ~b! 20, ~c! 40, ~d! 60, ~e! 100, ~f! 200. White
~black! region indicatesj.0 (,0).
f

ri-

n
h

In the process of time evolution, the energy is located
the narrow region aroundkf just after the switch on of the
forcing, and it is transported to the small wave-number s
~the inverse cascade! as well as to the large wave-numb
region ~the direct cascade!. The developing process of th
turbulent fluctuation is divided into two time regions. In th
process of the energy injection the energy spectrum ha
single peak structure and its peak position moves to the s
wave-number region. If we define the timetl when the peak
arrives atl, the coherent vortices being a characteristic
the NS equation are formed duringt,tl . The spatial distri-
bution of vortices is at random fort,tl , while they form the
quasicrystal structure fort.tl and the time evolution be
comes slow in accordance with that the transport of the
ergy to the small wave-number side also becomes slow.
define the position of a peak of the energy spectrum at t
t askm(t), which moves to the small wave-number side.
the time regionl!km(t),kf the system dynamics is simila
to the NS equation. Thenkm(t) is evaluated as
km(t);e21/2t23/2, provided that we carry out the discussio
similar to Eqs. ~6!–~9! for l→0. The time defined by
l;km(tl),

tl;e21/3l22/3, ~13!

represents the characteristic time transferring from the
havior of the NS turbulence to the special behavior of
CHM turbulence.

The time evolution of the potential vorticity field is show
in Fig. 1. The figure shows that the peak of the energy loc
ized atkf in the first time stage moves to the small wav
number side with the increase of the width. This proce
corresponds to the formation of coherent vortices and
increment of the characteristic length of the system due
the coagulation of vortices. Heretl is the time when the peak
of the energy spectrum reachesl. The structure similar to
the quasicrystal of the potential vorticity field reported
@10# is observed att.tl . The time evolution of the energy

FIG. 2. The time evolution of the energy spectrumE(k,t).
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5578 55WATANABE, FUJISAKA, AND IWAYAMA
spectrum is shown in Fig. 2, which confirms thek211/3 law in
the energy inverse cascade region.

To investigate how the typical distance among neighb
ing vortices with the same sign, the characteristic spa
scale of the system, evolves with time, we observe the st
ture functionS(k,t) of j(r ,t) in each time as

S~k,t !5 K U E j~r ,t !e2 ik•rdrU2L , ~14!

where^•••& denotes the average taken over the orienta
of k. S(k,t) is characterized by the peak heightSmax(t) and
the characteristic wave-number defined as

k̄~ t !5

(
k50

l

kS~k,t !

(
k50

l

S~k,t !

. ~15!

By noting thatS(k,t) has a single peak, the peak position
well approximated byk̄(t). k̄(t) andSmax(t) are plotted as
the function of timet in Fig. 3, which asymptotically take
the power-law forms

k̄~ t !;t2a, Smax~ t !;tb, ~16!

wherea.0.37 andb.1.8. If k̄(t) is regarded as the pea
position ofS(k,t), 2p/ k̄(t) evaluates the lattice constant
the quasicrystal structure which is observed fort@tl .

We can estimate the exponentsa andb from the afore-
mentioned Kolmogorov-type dimensional analysis by cor
sponding the self-organization process of this quasicrysta
the energy inverse cascade process in the Fourier space
evaluated the eddy turnover timetE @Eq. ~9!# from the di-
mensional analysis for the energy transfer rate. This t
scale can be regarded as the life time of the eddy with
wave numberk. On the other hand, the characteristic wa
numberkt of the eddy which disappears at a timet after the
start of the injection of the energy is given a
e;l6kt

28t23. From this, we can evaluate the time depe
dence ofkt as

kt;l3/4e21/8t23/8. ~17!

On the other hand, to obtain the asymptote ofSmax(t), we
use the relation between the energy spectrumE(k) and the
structure functionS(k,t),

E~k,t !5
kS~k,t !

k21l2 ~18!

and Eq.~10a! in the case ofk!l. This combination of Eqs
~10a! and ~18! immediately leads to

S~k,t !;l4e2/3k214/3. ~19!

This asymptotic form is valid fork̄(t),k!l. The fluctua-
tion in the regionk̄(t),k!l is steady because the shape
the structure function in this region does not depend on
time @15#.
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Now, if we suppose thatkt; k̄(t) andSmax(t) is replaced
by S@ k̄(t)#, the insertion of Eq.~17! into Eq. ~19! yields

Smax~ t !;l1/2e5/4t7/4. ~20!

Thus one findsa53/8 andb57/4, which turn out to be in
good agreement with the numerical result~Fig. 3!. Further-
more, one should note that the evaluation oftl @Eq. ~13!# is
also obtained from Eq.~17! by puttingl; k̄(tl). In order to
investigate the temporal evolution ofS(k,t), we plot
S(k,t)/Smax(t) vs k/ k̄(t) for different times in Fig. 4. The
figure clearly indicates the existence of the dynamical sc
ing law as

S~k,t !

Smax~ t !
5F„k/ k̄~ t !…, ~21!

FIG. 3. The time evolution of the characteristic wave number~a!
k̄(t) and ~b! the peak heightSmax(t) of the structure function
S(k,t). The slopes23/8 and 7/4 are the theoretical values wi
u50 and20.36 and 1.6 denote the values in the caseu'0.1,
respectively.
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55 5579DYNAMICAL SCALING LAW IN THE DEVELOPMENT OF . . .
whereF(x) is a scaling function@16#. From Fig. 4, the scal-
ing function asymptotically takes the forms

F~x!;x2g ~x.1!, F~x!;xd ~x,1!. ~22!

The exponentg514/3 determined from Eq.~19! agrees with
the observation in Fig. 4. Sinced is not related to the energ
inverse cascade, we have no theory concerning with the
termination of d. Numerical study showsd;3, which is
consistent with the result of the energy spectrum of fre
decaying turbulence in the low wave-number region in@9#,
i.e.,E(k);k4.

Finally, let us estimate the Reynolds number Re. In
casep52, the Reynolds number is evaluated by the rate
the nonlinear term and the dissipation term in Eq.~12! as

Re;
l21AEl2

n
;t5/4. ~23!

Here we usedf;l21AE;t1/2 ~see later! and the character
istic lengthl52p/ k̄(t);t3/8. Therefore, the Reynolds num
ber monotonously increase with time. Att5200, we get
Re;104 from Figs. 3 and 5.

IV. DISCUSSION

Until now, we have studied the time evolution of the cha
acteristic spatial scale in the turbulent field from the scal
viewpoint. The scaling law is based on the Kolmogorov-ty
dimensional analysis with the assumption that the ene
transfer ratee is temporally and spatially constant in th
energy inverse cascade region. Numerical experiment sh
that this is a quite good assumption. Figure 5 shows the t
evolution of the energyE per a unit area. If the energy i
transfered to the small wave-number side in a constant r
the energyE is proportional to time (E}t) because the dis
sipation is negligible in this region. However Fig. 5 show
the asymptotic formE}t12u with a nonvanishingu in a
sufficient time. The excess exponentu is due to the fluctua-

FIG. 4. Scaling plots ofS(k,t)/Smax(t) vs k/ k̄(t) at t540, 80,
120, 160, 200.
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tion of the energy transfer rate. The energy injected atkf is
not only transported to the small wave-number side, but a
a portion of the energy is transported to the large wa
number region where it is dissipated. Therefore, if the te
poral change of the amount of the energy transported to
small wave-number region is random, the fluctuation of
energy transfer rate is observed. It is widely believed that
fluctuation of the energy transfer rate in the 3D turbulence
related to the intermittency of small scale dynamics, co
sisted of high-vorticity regions and rather low-vorticit
~regular! regions in the space@17,18#. In this sense the origin
of the fluctuation of the energy transfer rate in the 2D turb
lence is different from that in the 3D turbulence.

Without going into the statistical law of the fluctuation o
e, we take into consideration the effect of the intermitten
phenomenologically by puttinge;t2u. The substitution of
this into Eqs.~17! and ~20! immediately leads to the modi
fication

k̄~ t !;l3/4t2~32u!/8, Smax~ t !;l1/2t ~725u!/4. ~24!

Although the excess exponentu must be in principle calcu-
lated from the CHM equation, if we estimateu'0.1 from
Fig. 5, one getsk̄(t);t20.36 and Smax(t);t1.6. Numerical
results seem to be compatible with this analysis~Fig. 3!.

In the present paper we have investigated the statis
characteristics in the developing process of the turbu
field described by the CHM equation with the random fo
ing at the narrow band wave-number region. Consequen
we found out the dynamical scaling law asS(k,t)
5l1/2e5/4t7/4F„k/ k̄(t)…, @ k̄(t);l3/4e21/8t23/8#, using the
Kolmogorov-type dimensional analysis, which turned out
be in good agreement with the numerical simulation p
vided that the energy transfer rate is constant in time. Mo
over, we have discussed the revision of the scaling expon
by taking account of the effect of an intermittency as cons
ering the time dependency of the energy transfer r

FIG. 5. The time evolution of the energyE per a unit area at
t50–200.
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5580 55WATANABE, FUJISAKA, AND IWAYAMA
e;t2u. In this connection, we attempt to consider in the ca
of freely decaying turbulence of the CHM equation. In th
case, the energy is almost constant in a long time region.
if we put u51, Eq. ~24! yields k̄(t);t21/4, Smax(t);t1/2.
Here k̄(t);t21/4 has been already derived, e.g., in@9# by
using the similarity of the energy spectrum and our ot
simulation of this case seems to support above results.
the difference between the statistics of the forced turbule
tt
e

o,

r
ut
e

and the decaying one is quite large, and we must deal w
this scaling law more carefully.
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