Experimental demonstration for scanning near-field optical microscopy
using a metal micro-slit probe at millimeter wavelengths
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Scanning near-field optical microscopy using a slit-type probe is discussed. The slit-type probe has
a width of much less than a wavelength, and a length on the order &f and thus has high
transmission efficiency. Two dimensional near-field images of objects have been constructed using
an image reconstruction algorithm based on computerized tomographic imaging. Experiments
performed at 60 GHzN=5 mm) show that this type of near-field microscopy can achieve a spatial
resolution of better than/45 for two dimensional imaging. A method for fabricating a submicron
width slit probe at the end of an optical fiber is presented for extending this microscopy to optical
waves. © 1997 American Institute of Physid$S0003-695(97)02250-X

Scanning near-field imaging technologies have attracted As a different type of a slit probe, Golosovsky and

much attention as a new optical technique to circumvent difDavidov'? proposed a narrow resonant slit fabricated at the
fraction limits of about a half wavelength in conventional end of a metal rectangular waveguide for use in resistivity
optics™? In conventional near-field optical microscopes, microscopy at millimeter wavelengths. Since the slit acts as a
tapered optical fiber probes with a submicroscopic apertureesonant slot antenna, the transmission efficiency can be
at the apex have been generally used because spatial resofiearly unity by choosing precisely the slit dimensions, even
tion is determined primarily by the aperture sizén aper-  though the slit width approaches zero. However, resonance

tured probes with hole diameters less thafi0 (\: light  in the slit results in narrow bandwidth. In addition, applying

wavelength, the transmission efficiencyor coefficien} is  the structure of the resonant slit to an optical probe would be

typically 1077 or less for incident light powet.This low difficult in practical fabrication.

transmission efficiency results in low probing sensitivity and Since the metal slit probe is a one dimensional near-field
becomes a serious problem, particularly in some applicationgrobe, two dimensional near-field images with subwave-
such as spectroscopy of semiconductors measured in thength resolution cannot be generated by using conventional
illumination-collection hybrid modeand high density data raster-scanning methods. This problem can be solved by us-
storage where high probing power is required to speedilying deconvolution techniques widely used in x-ray comput-

read and write datdFor these near-field optics applications, erized tomographyCT).13

a tapered metal micro-slit is proposed as a new near-field Experimental demonstrations for this method were car-

optical probe with high transmission efficiency. ried out at a millimeter wave frequency of 60 GHx (

Figure 1 shows the configuration of the metal micro-slit=5 mm). Figure 2 shows the experimental setup. The metal
probe. The metal micro-slit is fabricated at the end of a taslit was fabricated at the end of a tapered rectangular wave-

pered optical fiber. The slit width, is much less than, but  guide. The slit dimensions werd=82um (~\/62), |
the slit length,l, is larger than\/2. Since the tapered slit =4.8 mm (~\), and a taper angle of 30°. The waveguide

probe acts as a simple parallel plate transmission line, cutoffith the slit probe, and a receiving horn antenna were con-

effects] which largely decrease transmission power in apernected to a WILTRON 360B vector network analyzer. An

tured probes, do not occur. Therefore, the slit probe cagjuminum patch with dimensions of 0.9 m8.75 mm was
achieve a higher transmittance even thoagls much less

than A. From transmission line theory, it is found that the
transmission efficiency for the slit probe is roughly propor-
tional to d/\, compared to ¢/\) ~® for the ideal case of a

. . . . Incident
circular aperture with a hole diameter of'° In this letter, Transmitted wave
we demonstrate two dimensional imaging with subwave- wave
length resolution using the tapered slit probe at a millimeter -+ 'l
wavelength'! and discuss the feasibility of optical near-field Metal
microscopy with the slit probe. micro- Reflected

slit wave
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Sendai 980, Japan. FIG. 1. Metal micro-slit near-field probe.
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FIG. 2. Experimental setup for scanning near-field millimeter-wave micros-

copy using a metal slit probe. FIG. 4. Process sequence for the fabrication of a metal micro-slit at the end

of an optical fiber:(a) after patterning photoresist with dimensions of

30 umx10 um; (b) after etching the optical fiber in HF:NJA(=1:6.9); (c)

used as an observation object. The metal patch was supiter evaporating metal at a right angle to the desired slit surfagefter

ported by a quartz plate with a thickness of 1.87 mm. wet chemical etching of the metal coated ridge structure to open a slit
The metal patch was scanned linearly for different®®®™"®

objection-rotation anglesd, as shown in Fig. 2. For each

scan step, transmittance and reflectance were simultaneoud}e sampling interval and total sampling number wereu#8

measured by the network analyzer which executes phasé&nd 63 points, and for rotational motion they were 5.81° and

sensitive heterodyne detection. This scan method is quite di81 points, respectively. Probe-to-object separation was about

ferent from the raster scan method used in conventional neat0 #m. Figures &) and 3d) show the intensity variations

field microscopes. Two dimensional images of the metaflong the linesa-a’ andb-b” indicated in Fig. 80), respec-

patch were reconstructed from each set of measured datdvely- From these results, the spatial resolution has been

i.e., the vector signals in reflection or transmission, by usingStimated to be about 11m (~\/45). Similar results were

an image reconstruction algorithm based on Computerizegbtained in transmission mode. Those experimental results

tomographic imaging? show that two dimensional imaging with subwavelength
Figure 3 compares the optical imag® and the recon- resolution is possible in a near-field microscopy using the slit

structed imageb) of the metal patch measured in reflection Probe.

mode. Experimental parameters used in this experiment were N @ near-field microscopy using an image reconstruction

as follows. The field of view was 2.1 mm. For linear motion &lgorithm, it should be noted that heterodyne detection must
be chosen for signal measurement when the same coherent

waves are used for both illumination and detection. CT im-
aging requires projection data which are simple integrations
of scattered waves from an object at different positions on a
straight line path through the object. In conventional CT im-
aging, incoherent scattered waves are required for image re-
construction because they preserve the relationship between
the measured data and the corresponding positions along the
object’s cross sectioff.However, a coherent source, such as

a laser, is commonly used for near-field microscopy. In this
case, interference between scattered waves from an object at
(b) different positions along a straight line patim our case the

. length of the slit breaks up the relationship. In order to

i b-b’ remove the interference effect from the measured signals
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FIG. 3. Comparison of images of a metal patch at 60 Gtdz:optical
image,(b) reconstructed near-field image in reflection ma@gand(d) are
one dimensional intensity variations along the lmea’ and lineb-b’ in FIG. 5. A metal micro-slit fabricated at the center of the end of a single-
(b), respectively. The dotted lines i) and (d) indicate the actual width  mode optical fiber(a) ridge structure with a taper angle of 808) metal slit
(0.9 mm and length(0.75 mnj of the metal patch, respectively. with a width of 270 nm fabricated on the ridge structure.
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(i.e., the projection dajaheterodyne detection must be used.tical microscopy using a slit-type probe. Experiments per-
This is the reason why we have used a vector network andermed at a wavelength of 5 mm show that scanning slit
lyzer in the experiment. In a case where the signal waves aneear-field microscopy can perform two dimensional imaging
incoherent, such as in photoluminescence measurements wfth a spatial resolution of 11@m by utilizing a deconvo-
objects, direct detection could be used. lution technique. We have shown that a metal micro-slit
For extending this near-field microscopy to the opticalprobe with submicron width for use in optical microscopy
region, a metal micro-slit probe with submicron width can be fabricated by using a chemical etching technique.
(shown in Fig. 1 is required. In order to fabricate such slit These results indicate that near-field microscopy using a slit
probes, a chemical etching technique was successfullprobe has potential as a near-field imaging technique over a
adopted-® The fabrication process used here is shown in Figwide range of electromagnetic spectra, from millimeter
4. This fabrication method is almost the same as that fothrough optical wavelengths.
conventional probe¥ except for the photolithographic pro- The authors would like to acknowledge Professor M.
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