PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Scaling law for coherent vortices in decaying drift Rossby wave turbulence
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We numerically study the time evolution of coherent vortices in decaying turbulence described by the
Charney-Hasegawa-Mima equation with the weak dissipation. Self-organized coherent vortices develop
through the mutual advection and the vortex merging. The dimensional analysis provides the dynamical scaling
law of structure function of the potential vorticity fieB(k,t) = E\ V212G (k/ k(t)) [k (t)~E~ Y&\ 34~ 14
with a scaling functiorG(x), which turns out to be in good agreement with numerical experiments. In physical
space, quantities related to coherent vortices develop algebraically with time. The dimensional analysis predicts
that the total numbeN of vortices decreases &k~t~ X with exponenty=1/2. Moreover, it is found that the
remarkable feature of this system is the approximate conservation of the area of the coherent region in the
potential vorticity field.[S1063-651X98)01802-9

PACS numbeps): 47.27.Eq, 47.32.Cc, 52.35.Ra, 92.60.Ek

I. INTRODUCTION equilibrium in the planetary atmosphere and is called the
guasigeostrophic potential vorticity equati¢8]. Further-
Two-dimensional(2D) turbulence has been extensively more, the time evolution of the quasi-2D fluctuation of the
studied theoretically and numerically since the 1960s beelectrostatic field on the plane perpendicular to the strong
cause the large-scale motion of the atmosphere and the oceaagnetic field uniformly applied to plasma is also described
or the magnetofluid under the uniform, strong magnetic fieldby this equatiorf9]. The CHM equation in the strong turbu-
are described approximately by the two-dimensional fluident state neglecting the effect of wave is written as
dynamics. In addition, it is easier to carry out the numerical
experiments for 2D turbulence than for 3D turbulence. 9q 3 ~0 1
Through the direct numerical simulatioBNS) of 2D tur- ot +J(¢,a)=0, @
bulence, the existence of the ordered structure of the turbu-
lent field in physical space has attracted researchers’ interestherer =(x,y), V= (d/dx,dl dy), J(a,b) =a.b,—a,b,, and
According to numerical studies on the 2D turbulence in req(r,t)=(V2—\?)(r,t) denotes the potential vorticity.
cent yearg1-3], it has been found that the remarkable fea-Here ¢(r,t) denotes the geostrophic stream function in the
ture of this system is the existence of coherent vortices igeophysical case or the electrostatic potential in plasma. The
physical space, which dominates the dynamics of the turbuparameteh is the characteristic wave number expressing the
lent field. ratio of the system size to the Rossby radius in the atmo-
The role of coherent vortices in 2D turbulence has beersphere or the ion Larmor radius in plasma. Equatibnre-
studied in detail through the study of 2D decaying Navier-sembles the vorticity equation derived from the 2D Euler
Stokes(NS) turbulence. In the time evolution, the so-called equation, which is in fact identical to Eql) in the limit
second stage in which coherent vortices dominate the dyx—0. In the case ok #0, the CHM equation includes a
namics of the system, coherent vortices cause mutual advecharacteristic spatial scale ! and ¢ corresponding to the
tion, which is approximately described by Hamiltonian dy- stream function of the 2D NS equation can be represented as
namics of the 2D point vortex system. Furthermore, when L
vortices with the same sign of circulation are within a critical , , ,
distance, they merge into larger vortices. A phenomenologi- Pr.)=- EJ Ko(A[r=rDa(r’,t) dr’, (2)
cal scaling theory to the evolution of vortex statistics is pro-
posed in[4—6] and the validity of the scaling theory is con- whereKy(z) is the modified Bessel function of the second
firmed by both the DNS of the 2D NS equation and thekind. That is, the stream function at the positioaffected by
numerical simulation of the point vortex model. Moreover, athe potential vorticity at the position is limited within the
scaling exponeng characterizing the scaling theory is phe- range ofO(A~1). This fact shows that the CHM equation
nomenologically determined ifv]. indicates unique behavior differing from the 2D NS equa-
Recently, the 2D turbulence described by the Charneytion.
Hasegawa-MimdCHM) equation has been actively studied In this system, several works have been carried out for the
theoretically and numerically. This equation approximatelyfreely decaying and the forced turbulence. In the freely de-
describes the time evolution of the flow in the geostrophiccaying turbulence, the dependence of the statistical proper-
ties in the turbulent field on the parameteiis numerically
investigated in detail10]. In the forced turbulence, it is re-
*Electronic address: nabe3scp@mbox.nc.kyushu-u.ac.jp ported that the crystal-like structure of the vortices, which is
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called “vortical quasicrystalizationT11,12, is formed after

full time evolution. Then the dynamical properties of the
vortices in this formation process are studied in detajlli?]

and the dynamical scaling law is derived from the consider-
ation of the energy inverse cascade process. Furthermore, the
study of the dynamics of the coherent structure in the CHM
system is carried out for the forced and decaying turbulence
[13] and the relation between the suppression of the energy
inverse cascade and the coherent structure is discussed.

In this paper we study the dynamics of coherent vortices
in the region characterizing the drift Rossby wave turbu-
lence, i.e.,A>k, by using the DNS of the CHM equation
with weak dissipation from the statistical point of view.
Since the characteristics of coherent vortices appear remark-
ably in the decaying turbulence rather than the forced turbu-
lence, we especially investigate the decaying turbulence.

This paper is organized as follows. Briefly explaining the
DNS of the CHM equation and presenting its results in Sec.
I, we discuss the dynamical properties of the structure func-
tion of the potential vorticityg in the wave-number space in
Sec. lll. In Secs. IV and V we discuss the characteristics of
coherent vortices in the physical space and derive the dy-
namical scaling law for coherent vortices, respectively. In
Sec. VI we discuss and summarize our results.

II. DIRECT NUMERICAL SIMULATION

To investigate the emergence of coherent vortices and its
dynamics in the CHM turbulence, we numerically solve Eq.
(1) with the dissipation term< 1)P*1yV2P(V2¢), p=2, by
using the pseudospectral methdd]. The system sizk, the
parametei\, and a hyperviscosity coefficient are fixed as
L=2, A=40, andv=3.0x 108, respectively. The physi-
cal space resolution is set to 286@56 with the maximum FIG. 1. Snapshots of the potential vorticity fielg=V?¢
wave numberk,=85. The numerical integration is per- —\’¢ at(@ t=0, (b) t=1,(c) t=10, (d) t=20, (¢) t=50, and(f)
formed for 40000 time steps by using the fourth-ordert=100. The white(black region indicates;>0 (q<0).

RungeS—Kutta method with the time incremerit=2.5 A typical time evolution of the potential vorticity field
X 10" in double precision. _ _ q(r,t) is shown in Fig. 1. One observes that the potential
An initial condition is used by generating Gaussian ran-orticity field self-organizes into a set of coherent vortices
dom numbers with the mean value 0 and the variance 1 fof.om the random initial condition. These coherent vortices
phase of each Fourier component ¢f Moreover, we nor-  geyelop into larger spatial size and their total number de-
malize the initial value of the total energy per unit area  creases gradually with time. These observations originate
from the fact that the vortices with the same sign of circula-
o lril 2 2,2 (ke tion within a critical distance merge through the mutual ad-
E_Ffo J'o 2LV ATg Jdx dy= fo E(k) dk vection and become larger vortices in the turbulent field.
3) Figure 1 shows that coherent vortices hardly move and form
a quasi-steady-state as a set of the monopole structure of the

to be 0.5, whereE(k) is the energy spectrum. The initial potential vorticityq in a sufficient long time. This state ex-

form of E(k) in wave-number space is specified as tensively differs from the second stage of the 2D decaying
NS turbulence which is specified by both the active mutual

K30 advection and the vortex merging. The time development of
E(K)~ ———. (4)  the energy spectrum corresponding to this process is shown

(k+ko)®° in Fig. 2. We can confirm that the peak position of the en-

ergy spectrum that is initially set to=50 moves temporally

This form is the same initial condition as used 19], which  toward the small-wave-number side and its moving rate in
is the very narrow wave-number band spectrum at the centeéhe region ofk<\ slows down gradually. The asymptotic
ko. We chooseky,="50 to setky>\. In this case, it is found form of the energy spectrum is approximatedyk)~k 6,

that the initial energy of the system is almost concentrated owhose slope is a little steeper than the result derived in Sec.
the wave-number region dé>\. This initial condition is Il of [12], E(k)~k™°. This result is almost consistent with
appropriate for investigating how the structure of coherenthe energy spectrum given [10]. The difference between
vortices develops from small-scale vortices. the power law of the energy spectrum in the potential enstro-
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FIG. 2. Time evolution of the energy spectrugfk,t). \ is set (g - -
to be 40 in our simulation. T e
oY N
phy cascade region derived from the dimensional analysis <
and that obtained by the numerical simulation is reminiscent 011 , (b
of the difference between tHe(k)~k 3 andk ™ * as known 10° 1{" 10°

in 2D decaying NS turbulencg?], but the consideration of
the cause of the difference is beyond the scope of this paper. Fig. 3. Time evolution of(@) the characteristic wave number

k_(t) and (b) the peak heightS,,(t) of the structure function
I1l. STRUCTURE FUNCTION OF POTENTIAL S(k,t). The slopes—1/4 and 1/2 are theoretical values, respec-

VORTICITY FIELD AND DYNAMICAL SCALING LAW tively, and the reasonable value 0.44 may be due to the effect of
) ) ) finite Reynolds number.
In order to examine the dynamical properties of the po-

tential vorticity field g in wave-number space, we observe

the structure functios(k,t) of g at each time step, Numerical results of the time evolution of(t) and

Sha{t) are shown in Fig. 3. As is expectell{t) algebra-

2 ically decreases with time, whilg,,,,(t) increases with time.

>, (5  This phenomenon is expected to be closely connected with
the energy inverse cascade process. We find that the time

where( ) represents the average taken over the orientation o‘?\;:_)ll:]“?n of kl(t) azdfsmax(t). obey;?the po‘,”fzr Iav; oftime:

k. If the structure function has a sharp single peak, a char/Nich IS evaluated from Fig. 3 ak(t)~t ™" and Spa(t)
acteristic wave numbek(t) exists in the potential vorticity By using the results of the dynamical scaling law derived
field, which gives a mean distanég(t)=27/k(t) among in [12] for the developing process in CHM turbulence, the
centers of neighboring coherent vortices with the same S'ggcaling law ofk_(t) and S, .(t) is derived as follows. The
of circulation. According to the time evolution dé(t), we  assumption that the energy transfer rateE/t is constant
can thus discuss the dynamical property of the characteristigith time was introduced to derive the dynamical scaling law
spatial scale. The quantity(t) is defined by using the struc- in [12]. In decaying CHM turbulence with high Reynolds

S(k,t)=<“ q(r,tye 'k dr

ture functionS(k,t) as number, on the other hand, the total enefgjycan be ap-
proximately regarded as the conserved quantity after a full
— Sk_okS(k,t) time evolution. Therefore, the substitutioneof E/t into the
k(t)= SISk (6)  dynamical scaling law$Egs. (17) and (20) in [12]] by as-
=0 )

suming thatE is constant yields the modified dynamical

] . o . scaling law as
Since the wave-number region of main interesk#s\, the

upper limit of the wave number in E@6) is set at\. More-
over, we also pay attention to the time evolution of the peak
height S,,,(t) of the structure function. We can expect that
the mean distanck, among vortices with same sign of cir- Smax(t) ~E*A Y212 ®)
culation [characteristic wave numbek(t)] increaseqde- L

creasebwith time because the total numbir of coherent  The scaling lawk (t) ~t~ ¥ turns out to be in good agree-
vortices will decrease with time by merging vortices. ment with the result shown in Fig. 3, whil8,,(t)~t*?

k_(t) — E_l/8)\3/4t_1/4, 7
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wave-number space by investigating the time evolution of
the structure function aj(r,t) without referring to details of
the coherent structure appearing in the potential vorticity
field. This is closely connected with the energy inverse cas-
cade process which is a characteristic of the dynamics in the
. wave-number space of the CHM equation.

In physical space, on the other hand, coherent vortices
self-organize from the random initial state, merge through
the mutual advection, and develop into larger vortices. To
discuss the dynamics of coherent vortices in physical space,

—_
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<

1072

S(k,t)/Smax(t)

10 i we have to extract the region of coherent vortices from the
potential vorticity field.
107 1 In order to extract the coherent region from the potential
A vorticity field, we define a coherent region as that where the
10 s s . following two conditions are satisfied simultaneous(y}
107" 10° 10' The Gaussian curvatu@ of ¢, defined as

k/k(t)

FIG. 4. Scaling plots oS(k,t)/S(t) Vs k/k_(t) att=5, 10,
30, 50, and 100. )

axay
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seems to be overestimated. This discrepancy between the 2 ay
dimensional analysis and the numerical result will be dis-
cussed later.

Furthermore, in order to examine how to evol8gk,t)  is negative andii) the absolute value of the potential vortic-

with time, S(k,t)/S(t) vs k/K(t) is plotted for different 'Y |al is larger than([g), which is the average value |
times in Fig. 4. This figure clearly indicates that the structurd@ken over the total area of the system, i.€lal)

function of q satisfies the dynamical scaling law =1/L2[ 2|q| dr. The reason for the definition of the above
conditions is as follows. The coherent region should have the
S(k,t) k stable structure an@ is a standard measure of the stability
S0 =G o)’ (9 of the Lagrangian particlf2,6]. In addition, we expect that

the coherent region has a large absolute value of the potential
whereG(x) is a universal scaling function. The asymptotic Vorticity. We write the area of coherent region &gp.

form of the scaling functiorG(x) is found to be Figure 5 shows coherent regions defined by the above
conditions att=10, 100, respectively. Comparing Fig. 5
X7, x>1 with the potential vorticity field in Fig. 1, we can recognize

G(X)N[X{ x<1, 10 that the regions of the axisymmetrical vortices are extracted.

The time evolution of the area of the coherent region, nor-

where the scaling exponents aye-7 andé~3 from Fig. 4.  malized by the total area, is shown in Fig. 6. It seems that the

In [12] we numerically found that the dynamical scaling area is almost constant with time after forming coherent vor-
law is valid in the wave-number region smaller thaim the  tices and is about 25% for the initial condition used in this
developing process of forced CHM turbulence and deriveghaper. This result indicates that the region of coherent vorti-
the scaling exponents of bo(t) andS,,(t) theoretically.  ces is approximately conserved with time and that is an im-
In this paper we also find the dynamical scaling law in de-portant characteristic of coherent vortices in the CHM turbu-
caying turbulence similar to that in forced turbulence. How-|ence.
ever, the value of the scaling exponents and the asymptotic Next we consider the behavior of the energy and the po-
form of the scaling function are different from each other. tential enstrophy for coherent vortices defined above. It is

A scaling law the same as E7) has been derived iL0]  shown numerically{6] that the integral values of the two

under the assumption that the energy spectrum devebpéxpressions of the energy density )22 and — pV2¢/2

maintaining a ;imilar form tempqrally. W? ob_served that theover the coherent region are different from each other. By
structure function of the potential vorticity field obeys th? inferring from the Hamiltonian dynamics of the point vortex

dynamical scaling law, so we conclude that this result ISsystem, the latter is the Hamiltonian for coherent vortices

gg{fé?&ﬁ&%ﬁ;&ﬁ;ﬁ;&e energy spectrum developing in 4nd is the fundamental conserved que}nt_ity in 2D decaying
' NS turbulencd6]. In the CHM system, it is expected from
the analogy to the 2D NS system that the integral value of
— ¢q/2 over the coherent region is the Hamiltonian for the
coherent region. For coherent vortices obtained in our simu-
In the preceding section we discussed the statistical progation, Fig. 7 shows the time evolutions of the total endegy
erties of the characteristic quantities concerning with theE;, andE,, whereE, andE, are defined as

IV. CHARACTERISTICS OF COHERENT VORTICES
IN PHYSICAL SPACE
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FIG. 5. Coherent regions &) t=10 and(b) t=100.
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FIG. 7. Time evolution of, E,;, andE, defined in Sec. IV. A
slope of —0.05 indicates that the energy slightly decreases with
time due to the finite Reynolds number effect.

Note that if integrands in Eq€12) and (13) are integrated
over the total area, they coincide with The quantities;
and E, temporally evolve in a different way. However, the
difference betweeilt; andE, decreases with time and they
approach an almost constant value. This result originates
from the difference between the integral values of
— ¢pV?¢I2 and (V¢)?/2 in Egs.(12) and(13). However, for
N>k, these quantities are very small in comparison to the
integral value of\?¢?/2 over the coherent region. Therefore,
E, andE, remain almost the same after the full time evolu-
tion (E;/E=0.67 andE,/E=0.64 att=100. By taking
into consideration that the behaviors of the time evolution of
E andE; are almost the same airg occupies most o, E;
can be regarded as a characteristic energy for coherent vor-
tices. In other words, since the ener§y concerning the
coherent region is clearly a large portion Bfin the whole
time region in spite of the area of the coherent region being
small, S,on/L?=0.25-0.3, the system behavior is dominated
by the dynamics of the coherent vortices. As will be seen
later, the difference between ¢V2?¢/2 and (V¢)2/2 re-
markably appears in the time evolution of the potential en-
strophy rather than that of the energy.

Figure 8 shows the time evolution of the total potential
enstrophyU, U,, andU, defined as

u lf L V¢ d
=— = r
1 L2 Swhzq ¢

L[ Lvzgz gy
2 SCOhZ[(V ) —NpVep] dr, (14)
UZ:F SCOh%[(VZdB)ZH\Z(Vrﬁ)Z] dr. (15

Note that if the integrands in Eg$l4) and (15) are inte-
grated over the total area, they coincide with Figure 8
clearly shows thatU,; occupies the large amount df
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Uj~—— =NV dr~Nr . 18
) o 1= 3, pN OV ;. (19
. 107
— If E; and g, are regarded as conserved quantities of the
D system in the high Reynolds number limit, E47) yields
- 2
Equation(19) clearly indicates that the area of the coherent
10" region is constant with time and is consistent with the nu-
merical results shown in Fig. 6.
- If the total number of vortice® decreases algebraically
10

with time as

. : o N(t)~t™X, (20)
FIG. 8. Time evolution ofU, U, andU, defined in Sec. IV.

The slope—1/2 is the theoretical value derived in Sec. V and the\ye can derive the scaling laws of(t) andU,(t) from Egs.
value —0.55 may be due to the effect of finite Reynolds number. (18) and (19) as

(U,/U=0.81 att=100) and the time evolution o), indi- ra(t)~tx2, (21
cates almost the same power lawmdhswhich is estimated as
U;~t"%5 On the other hand/J, has a very small value in Uy(t)~tx (22

comparison withU or U; (U,/U=0.33 att=100 and de- ) ) )

creases with time faster thds or U, asU,~t %7, These Moreovgr, the_avera_ge _dlstan¢§ between vortices with

results originate from the difference between2¢4V2¢/2 ~ Same sign of circulation is evaluated as

and\?(V¢)?/2 in Egs.(14) and(15). Particularly in the case

of A>k the difference is remarkable. The difference is | (1)~ 1 X2 23)

equivalent to that of the first terms of the integrands in Egs. a N(t) '

(12) and(13). According to the numerical resultd,; can be

regarded as a characteristic potential enstrophy for cohereNamely, the exponents of dynamical scaling of the quantities

vortices becaus®; has the same order of magnitudeand  related to vortices are expressed only ay

the same temporal behavior as thatwf E; and U, are In Sec. Ill, we found that the time evolution of the char-

different fromE, andU, and are, as will be shown in the 5ceristic wave numbek (t) corresponding to the peak po-

next section, connected with the vortex dynamics. sition of the structure function off obeys the scalind (t)

~E~V8\34~Y4 [Eq. (7)]. Since the inverse ok(t) is re-
V. SCALING THEORY FOR PHYSICAL QUANTITIES garded as the average distance among vortices with the same

OF COHERENT VORTICES sign of circulation, which corresponds tg, Eq. (7) yields

In this section, in analogy to the scaling theory developec}he scaling law fol,
in the second stage of 2D decaying NS turbuleptle we
propose a scaling theory that describes the time evolution of ()~ _i~t1/4_ (24)
average quantities related to coherent vortices. Our stand- k(t)
point is that coherent vortices self-organized for a random
initial condition dominate the dynamics of the system andBy combining Eqs.(23) and (24), the scaling exponent is
that the energ¥; and the potential enstrophy; relating to  determined as
coherent vortices are therefore expressed in terms of charac-
teristic quantities of vortices. _
First, we assume that the potential enstroghyg approxi- X=
mately written as

(25

N| -

Consequently, the dynamical scaling of the other quantities
q=V2¢—A2p~—\2¢ (16) related to the vortices are evaluated as

Nt ~t 2 ry()~t¥ U (H)~t= Y2 (26
for k<\. By employing Eq.(16), E; and U; can be ex-
pressed in terms of the total numkérof coherent vortices, In the numerical simulation, the power law 0f;(t) can be
their average radius,, and the average potential vorticity easily compared with the above result. As shown in Fig. 8,
g, of vortex centers as the scalingU,(t)~t~*?is in agreement with the numerical
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result, although the theoretical exponent is somewhat smaller Sa(t) ~ N2 (275074, (30)
than the experimental value. This deviation will be discussed
in Sec. VI. Moreover, by substituting§~t*", which is the result from

Here we discuss the implication thet andl, have the E,~t ¢ andNr§~t°, into Eq.(18) yields
same scaling exponents. In physical space, coherent vortices
with the same sign of circulation develop into larger ones Uj(t)~t= (112072 (31
through the vortex merging, conserving the area of the co- ) .
herent region. The fact that the growing lawsrgft) and If we estimate 6~0.05 from Fig. 7, Eqs(29)—(31) are
I,(t) are the same in this coagulation process indicates th&valuated as
the potential vorticity fieldy temporally develops in a self- —
similar way. This is the reason for the existence of the dy- K()~t79%%  Spa()~t%% Uy()~t7%% (32
namical scaling lawEqg. (9)]. On the other hand, in the scal-
ing theory for coherent vortices in 2D decaying NS
turbulence[4—-7], the scaling laws ofr,(t) and I(t) are
represented as

As shown in Figs. 3 and 8, the correction of the scaling
exponents fofS,,,{t) andU,(t) are in good agreement with
the results of our simulation. The extent of correction of a

scaling exponent fok (t) is about 2.5% in comparison to the
ra(H)~t (1) ~t2, (27)  original one, i.e., the scaling exponent does not change
much. Consequently, it seems that the correction of the scal-
where § is the scaling exponent of the total number of theing exponents foN or r, is small.
vorticesN~t~¢. Equation(27) implies that coherent vortices
gradually become thin as time passes because the growth rate AppeNDIX: DETERMINATION OF THE SCALING

of I,(t) is larger than that of ,(t). EXPONENT x FROM THE HAMILTONIAN
DYNAMICAL ADVECTION SCALING

VI. SUMMARY AND DISCUSSION ) o ,
We discuss the derivation of the scaling exponeifitom

We investigated the statistical characteristic of the structhe consideration of the Hamiltonian dynamical advection of
ture function ofqg in wave-number space for>k and the vortices. According to Ref{7], the velocity of the vortex
dynamical properties of coherent vortices in physical spaceenter is evaluated as
in decaying CHM turbulence. We developed the scaling
theory for the time evolution of the quantities related to the H
vortices in analogy to that in 2D decaying NS turbulence.
Our analytical results are in good agreement with the results
obtained from DNS. wherel’, is the average circulation. In 2D decaying NS tur-

An important result obtained in this study is that the areabulence, the Hamiltoniakl ~Nr2w?2 and w, are conserved.
of the coherent region is conserved with tilr2~t°, even By usingu,~t~¢, & being defined adl~t~¢, derived from
in the time region where the vortices actively merge. It wasEgs.(27) and(Al), u,~dl,/dt, we obtain the scaling expo-
clarified in Sec. V that this result is one of the intrinsic char-nent £=2/3. However, in the case of the CHM equation, as
acteristics of the dynamics of coherent vortices with scalenentioned in the present paper, we have obtainedNin4t
larger than the characteristic scalerfA. This should be must be conserved comparedNIm;‘ for the HamiltonianH.
compared with the fact that in the second stage of 2D decayfherefore, if we assume thEt, is a HamiltoniarH in CHM
ing NS turbulenceNrs is conserved with time and that the turbulenceH is expressed al ~Nr2\ ~2g2 from Eq. (17).
area of the coherent region is not conserved. This differencgupstitutingl’ ,~t* andl,~tX"2 obtained from Eq(20) into
seems to be important when we discuss the dynamics qfq. (A1) leads to the scaling law
coherent vortices by using the point vortex dynamics for
CHM turbulence[15,16]. Ug~t3x2, (A2)

Finally, we discuss the effect of the finite Reynolds num-
ber on the scaling exponents evaluated from the scalindhis result indicates that the advection velocities of vortices
theory_ The Sca”ng theory of the energy spectrum in WaveS'OWS down with time. Moreover, if we assume that the ad-
number space and that of quantities related to coherent vo¥ection velocity is evaluated as the time variation of the
tices in physical space are valid in the limit of infinite Rey- distance among vorticeghe relative velocities of vortices
nolds number. The energy is not conserved completely and
slightly decreases with time on account of the effect of vis- — %N I_a
cosity. From Fig. 7 we suppose that the temporal decrease of dt  t’
E andE; behaves as

(A1)

Uga (A3)

then from Eqs(23), (A2), and(A3) the scaling exponent is
E,E;~t™° (28)  derived as

although the area of the coherent region is conserved. Sub- _
stituting Eq.(28) into Egs.(7) and(8), we obtain the correc- X=
tion of the scaling law as

(A4)

N| =

s This agrees with the valuéeq. (25)] obtained in the scaling
k(t)~\¥4—(2- 078 (290  theory of the energy inverse cascade in wave-number space.
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