
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Scaling law for coherent vortices in decaying drift Rossby wave turbulence
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We numerically study the time evolution of coherent vortices in decaying turbulence described by the
Charney-Hasegawa-Mima equation with the weak dissipation. Self-organized coherent vortices develop
through the mutual advection and the vortex merging. The dimensional analysis provides the dynamical scaling

law of structure function of the potential vorticity fieldS(k,t)5E5/4l1/2t1/2G„k/ k̄ (t)… @ k̄ (t);E21/8l3/4t21/4#
with a scaling functionG(x), which turns out to be in good agreement with numerical experiments. In physical
space, quantities related to coherent vortices develop algebraically with time. The dimensional analysis predicts
that the total numberN of vortices decreases asN;t2x with exponentx51/2. Moreover, it is found that the
remarkable feature of this system is the approximate conservation of the area of the coherent region in the
potential vorticity field.@S1063-651X~98!01802-9#

PACS number~s!: 47.27.Eq, 47.32.Cc, 52.35.Ra, 92.60.Ek
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I. INTRODUCTION

Two-dimensional~2D! turbulence has been extensive
studied theoretically and numerically since the 1960s
cause the large-scale motion of the atmosphere and the o
or the magnetofluid under the uniform, strong magnetic fi
are described approximately by the two-dimensional fl
dynamics. In addition, it is easier to carry out the numeri
experiments for 2D turbulence than for 3D turbulence.

Through the direct numerical simulation~DNS! of 2D tur-
bulence, the existence of the ordered structure of the tu
lent field in physical space has attracted researchers’ inte
According to numerical studies on the 2D turbulence in
cent years@1–3#, it has been found that the remarkable fe
ture of this system is the existence of coherent vortices
physical space, which dominates the dynamics of the tur
lent field.

The role of coherent vortices in 2D turbulence has be
studied in detail through the study of 2D decaying Navi
Stokes~NS! turbulence. In the time evolution, the so-calle
second stage in which coherent vortices dominate the
namics of the system, coherent vortices cause mutual ad
tion, which is approximately described by Hamiltonian d
namics of the 2D point vortex system. Furthermore, wh
vortices with the same sign of circulation are within a critic
distance, they merge into larger vortices. A phenomenolo
cal scaling theory to the evolution of vortex statistics is p
posed in@4–6# and the validity of the scaling theory is con
firmed by both the DNS of the 2D NS equation and t
numerical simulation of the point vortex model. Moreover
scaling exponentj characterizing the scaling theory is ph
nomenologically determined in@7#.

Recently, the 2D turbulence described by the Charn
Hasegawa-Mima~CHM! equation has been actively studie
theoretically and numerically. This equation approximat
describes the time evolution of the flow in the geostrop

*Electronic address: nabe3scp@mbox.nc.kyushu-u.ac.jp
571063-651X/98/57~2!/1636~8!/$15.00
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equilibrium in the planetary atmosphere and is called
quasigeostrophic potential vorticity equation@8#. Further-
more, the time evolution of the quasi-2D fluctuation of t
electrostatic field on the plane perpendicular to the stro
magnetic field uniformly applied to plasma is also describ
by this equation@9#. The CHM equation in the strong turbu
lent state neglecting the effect of wave is written as

]q

]t
1J~f,q!50, ~1!

wherer5(x,y), ¹5(]/]x,]/]y), J(a,b)5axby2aybx , and
q(r ,t)5(¹22l2)f(r ,t) denotes the potential vorticity
Here f(r ,t) denotes the geostrophic stream function in t
geophysical case or the electrostatic potential in plasma.
parameterl is the characteristic wave number expressing
ratio of the system size to the Rossby radius in the atm
sphere or the ion Larmor radius in plasma. Equation~1! re-
sembles the vorticity equation derived from the 2D Eu
equation, which is in fact identical to Eq.~1! in the limit
l→0. In the case oflÞ0, the CHM equation includes a
characteristic spatial scalel21 and f corresponding to the
stream function of the 2D NS equation can be represente

f~r ,t !52
1

2pE K0~lur2r 8u!q~r 8,t ! dr 8, ~2!

whereK0(z) is the modified Bessel function of the secon
kind. That is, the stream function at the positionr affected by
the potential vorticity at the positionr 8 is limited within the
range ofO(l21). This fact shows that the CHM equatio
indicates unique behavior differing from the 2D NS equ
tion.

In this system, several works have been carried out for
freely decaying and the forced turbulence. In the freely
caying turbulence, the dependence of the statistical pro
ties in the turbulent field on the parameterl is numerically
investigated in detail@10#. In the forced turbulence, it is re
ported that the crystal-like structure of the vortices, which
1636 © 1998 The American Physical Society
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57 1637SCALING LAW FOR COHERENT VORTICES IN . . .
called ‘‘vortical quasicrystalization’’@11,12#, is formed after
full time evolution. Then the dynamical properties of th
vortices in this formation process are studied in detail in@12#
and the dynamical scaling law is derived from the consid
ation of the energy inverse cascade process. Furthermore
study of the dynamics of the coherent structure in the CH
system is carried out for the forced and decaying turbule
@13# and the relation between the suppression of the ene
inverse cascade and the coherent structure is discussed

In this paper we study the dynamics of coherent vorti
in the region characterizing the drift Rossby wave turb
lence, i.e.,l@k, by using the DNS of the CHM equatio
with weak dissipation from the statistical point of view
Since the characteristics of coherent vortices appear rem
ably in the decaying turbulence rather than the forced tur
lence, we especially investigate the decaying turbulence

This paper is organized as follows. Briefly explaining t
DNS of the CHM equation and presenting its results in S
II, we discuss the dynamical properties of the structure fu
tion of the potential vorticityq in the wave-number space i
Sec. III. In Secs. IV and V we discuss the characteristics
coherent vortices in the physical space and derive the
namical scaling law for coherent vortices, respectively.
Sec. VI we discuss and summarize our results.

II. DIRECT NUMERICAL SIMULATION

To investigate the emergence of coherent vortices and
dynamics in the CHM turbulence, we numerically solve E
~1! with the dissipation term (21)p11n¹2p(¹2f), p52, by
using the pseudospectral method@14#. The system sizeL, the
parameterl, and a hyperviscosity coefficientn are fixed as
L52p, l540, andn53.031028, respectively. The physi
cal space resolution is set to 2563256 with the maximum
wave numberkc585. The numerical integration is pe
formed for 40 000 time steps by using the fourth-ord
Runge-Kutta method with the time incrementDt52.5
31023 in double precision.

An initial condition is used by generating Gaussian ra
dom numbers with the mean value 0 and the variance 1
phase of each Fourier component off. Moreover, we nor-
malize the initial value of the total energy per unit area

E5
1

L2E0

LE
0

L1

2
@~¹f!21l2f2#dx dy5E

0

kc
E~k! dk

~3!

to be 0.5, whereE(k) is the energy spectrum. The initia
form of E(k) in wave-number space is specified as

E~k!;
k30

~k1k0!60
. ~4!

This form is the same initial condition as used in@10#, which
is the very narrow wave-number band spectrum at the ce
k0. We choosek0550 to setk0.l. In this case, it is found
that the initial energy of the system is almost concentrated
the wave-number region ofk.l. This initial condition is
appropriate for investigating how the structure of coher
vortices develops from small-scale vortices.
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A typical time evolution of the potential vorticity field
q(r ,t) is shown in Fig. 1. One observes that the poten
vorticity field self-organizes into a set of coherent vortic
from the random initial condition. These coherent vortic
develop into larger spatial size and their total number
creases gradually with time. These observations origin
from the fact that the vortices with the same sign of circu
tion within a critical distance merge through the mutual a
vection and become larger vortices in the turbulent fie
Figure 1 shows that coherent vortices hardly move and fo
a quasi-steady-state as a set of the monopole structure o
potential vorticityq in a sufficient long time. This state ex
tensively differs from the second stage of the 2D decay
NS turbulence which is specified by both the active mut
advection and the vortex merging. The time developmen
the energy spectrum corresponding to this process is sh
in Fig. 2. We can confirm that the peak position of the e
ergy spectrum that is initially set tok550 moves temporally
toward the small-wave-number side and its moving rate
the region ofk,l slows down gradually. The asymptoti
form of the energy spectrum is approximatelyE(k);k26,
whose slope is a little steeper than the result derived in S
II of @12#, E(k);k25. This result is almost consistent wit
the energy spectrum given in@10#. The difference between
the power law of the energy spectrum in the potential ens

FIG. 1. Snapshots of the potential vorticity fieldq5¹2f
2l2f at ~a! t50, ~b! t51, ~c! t510, ~d! t520, ~e! t550, and~f!
t5100. The white~black! region indicatesq.0 (q,0).
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1638 57WATANABE, IWAYAMA, AND FUJISAKA
phy cascade region derived from the dimensional anal
and that obtained by the numerical simulation is reminisc
of the difference between theE(k);k23 andk24 as known
in 2D decaying NS turbulence@2#, but the consideration o
the cause of the difference is beyond the scope of this pa

III. STRUCTURE FUNCTION OF POTENTIAL
VORTICITY FIELD AND DYNAMICAL SCALING LAW

In order to examine the dynamical properties of the p
tential vorticity field q in wave-number space, we obser
the structure functionS(k,t) of q at each time step,

S~k,t !5 K U E q~r ,t !e2 ik•r drU2L , ~5!

where^ & represents the average taken over the orientatio
k. If the structure function has a sharp single peak, a ch
acteristic wave numberk̄ (t) exists in the potential vorticity
field, which gives a mean distancel a(t)52p/ k̄ (t) among
centers of neighboring coherent vortices with the same s
of circulation. According to the time evolution ofk̄ (t), we
can thus discuss the dynamical property of the character
spatial scale. The quantityk̄ (t) is defined by using the struc
ture functionS(k,t) as

k̄ ~ t !5
(k50

l kS~k,t !

(k50
l S~k,t !

. ~6!

Since the wave-number region of main interest isk!l, the
upper limit of the wave number in Eq.~6! is set atl. More-
over, we also pay attention to the time evolution of the pe
heightSmax(t) of the structure function. We can expect th
the mean distancel a among vortices with same sign of ci
culation @characteristic wave numberk̄ (t)# increases@de-
creases# with time because the total numberN of coherent
vortices will decrease with time by merging vortices.

FIG. 2. Time evolution of the energy spectrumE(k,t). l is set
to be 40 in our simulation.
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Numerical results of the time evolution ofk̄ (t) and
Smax(t) are shown in Fig. 3. As is expected,k̄ (t) algebra-
ically decreases with time, whileSmax(t) increases with time.
This phenomenon is expected to be closely connected
the energy inverse cascade process. We find that the
evolution of k̄ (t) andSmax(t) obeys the power law of timet,
which is evaluated from Fig. 3 ask̄ (t);t20.2 and Smax(t)
;t0.4.

By using the results of the dynamical scaling law deriv
in @12# for the developing process in CHM turbulence, t
scaling law of k̄ (t) and Smax(t) is derived as follows. The
assumption that the energy transfer ratee;E/t is constant
with time was introduced to derive the dynamical scaling l
in @12#. In decaying CHM turbulence with high Reynold
number, on the other hand, the total energyE can be ap-
proximately regarded as the conserved quantity after a
time evolution. Therefore, the substitution ofe;E/t into the
dynamical scaling laws@Eqs. ~17! and ~20! in @12## by as-
suming thatE is constant yields the modified dynamic
scaling law as

k̄ ~ t !;E21/8l3/4t21/4, ~7!

Smax~ t !;E5/4l1/2t1/2. ~8!

The scaling lawk̄ (t);t21/4 turns out to be in good agree
ment with the result shown in Fig. 3, whileSmax(t);t1/2

FIG. 3. Time evolution of~a! the characteristic wave numbe

k̄ (t) and ~b! the peak heightSmax(t) of the structure function
S(k,t). The slopes21/4 and 1/2 are theoretical values, respe
tively, and the reasonable value 0.44 may be due to the effec
finite Reynolds number.
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57 1639SCALING LAW FOR COHERENT VORTICES IN . . .
seems to be overestimated. This discrepancy between
dimensional analysis and the numerical result will be d
cussed later.

Furthermore, in order to examine how to evolveS(k,t)
with time, S(k,t)/Smax(t) vs k/ k̄ (t) is plotted for different
times in Fig. 4. This figure clearly indicates that the struct
function of q satisfies the dynamical scaling law

S~k,t !

Smax~ t !
5GS k

k̄ ~ t !
D , ~9!

whereG(x) is a universal scaling function. The asympto
form of the scaling functionG(x) is found to be

G~x!;H x2g, x.1

xd, x,1,
~10!

where the scaling exponents areg'7 andd'3 from Fig. 4.
In @12# we numerically found that the dynamical scalin

law is valid in the wave-number region smaller thanl in the
developing process of forced CHM turbulence and deriv
the scaling exponents of bothk̄ (t) andSmax(t) theoretically.
In this paper we also find the dynamical scaling law in d
caying turbulence similar to that in forced turbulence. Ho
ever, the value of the scaling exponents and the asymp
form of the scaling function are different from each other

A scaling law the same as Eq.~7! has been derived in@10#
under the assumption that the energy spectrum devel
maintaining a similar form temporally. We observed that t
structure function of the potential vorticity field obeys th
dynamical scaling law, so we conclude that this result
consistent with that of the energy spectrum developing i
self-similar way with time.

IV. CHARACTERISTICS OF COHERENT VORTICES
IN PHYSICAL SPACE

In the preceding section we discussed the statistical p
erties of the characteristic quantities concerning with

FIG. 4. Scaling plots ofS(k,t)/Smax(t) vs k/ k̄ (t) at t55, 10,
30, 50, and 100.
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wave-number space by investigating the time evolution
the structure function ofq(r ,t) without referring to details of
the coherent structure appearing in the potential vortic
field. This is closely connected with the energy inverse c
cade process which is a characteristic of the dynamics in
wave-number space of the CHM equation.

In physical space, on the other hand, coherent vorti
self-organize from the random initial state, merge throu
the mutual advection, and develop into larger vortices.
discuss the dynamics of coherent vortices in physical sp
we have to extract the region of coherent vortices from
potential vorticity field.

In order to extract the coherent region from the poten
vorticity field, we define a coherent region as that where
following two conditions are satisfied simultaneously:~i!
The Gaussian curvatureQ of f, defined as

Q5S ]2f

]x]yD 2

2S ]2f

]x2 D S ]2f

]y2 D , ~11!

is negative and~ii ! the absolute value of the potential vortic
ity uqu is larger than̂ uqu&, which is the average value ofuqu
taken over the total area of the system, i.e.,^uqu&
51/L2*L2uqu dr . The reason for the definition of the abov
conditions is as follows. The coherent region should have
stable structure andQ is a standard measure of the stabili
of the Lagrangian particle@2,6#. In addition, we expect tha
the coherent region has a large absolute value of the pote
vorticity. We write the area of coherent region asScoh.

Figure 5 shows coherent regions defined by the ab
conditions at t510, 100, respectively. Comparing Fig.
with the potential vorticity field in Fig. 1, we can recogniz
that the regions of the axisymmetrical vortices are extrac
The time evolution of the area of the coherent region, n
malized by the total area, is shown in Fig. 6. It seems that
area is almost constant with time after forming coherent v
tices and is about 25% for the initial condition used in th
paper. This result indicates that the region of coherent vo
ces is approximately conserved with time and that is an
portant characteristic of coherent vortices in the CHM turb
lence.

Next we consider the behavior of the energy and the
tential enstrophy for coherent vortices defined above. I
shown numerically@6# that the integral values of the tw
expressions of the energy density (¹f)2/2 and 2f¹2f/2
over the coherent region are different from each other.
inferring from the Hamiltonian dynamics of the point vorte
system, the latter is the Hamiltonian for coherent vortic
and is the fundamental conserved quantity in 2D decay
NS turbulence@6#. In the CHM system, it is expected from
the analogy to the 2D NS system that the integral value
2fq/2 over the coherent region is the Hamiltonian for t
coherent region. For coherent vortices obtained in our sim
lation, Fig. 7 shows the time evolutions of the total energyE,
E1, andE2, whereE1 andE2 are defined as
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E15
1

L2EScoh

S 2
1

2
fqD dr

5
1

L2EScoh

1

2
@2f¹2f1l2f2# dr , ~12!

E25
1

L2EScoh

1

2
@~¹f!21l2f2# dr . ~13!

FIG. 5. Coherent regions at~a! t510 and~b! t5100.

FIG. 6. Time evolution of the ratio of the areaScoh of the co-
herent region to the total areaL2.
Note that if integrands in Eqs.~12! and ~13! are integrated
over the total area, they coincide withE. The quantitiesE1
and E2 temporally evolve in a different way. However, th
difference betweenE1 andE2 decreases with time and the
approach an almost constant value. This result origina
from the difference between the integral values
2f¹2f/2 and (¹f)2/2 in Eqs.~12! and~13!. However, for
l@k, these quantities are very small in comparison to
integral value ofl2f2/2 over the coherent region. Therefor
E1 andE2 remain almost the same after the full time evol
tion „E1 /E50.67 andE2 /E50.64 at t5100…. By taking
into consideration that the behaviors of the time evolution
E andE1 are almost the same andE1 occupies most ofE, E1
can be regarded as a characteristic energy for coherent
tices. In other words, since the energyE1 concerning the
coherent region is clearly a large portion ofE in the whole
time region in spite of the area of the coherent region be
small,Scoh/L250.25–0.3, the system behavior is dominat
by the dynamics of the coherent vortices. As will be se
later, the difference between2f¹2f/2 and (¹f)2/2 re-
markably appears in the time evolution of the potential e
strophy rather than that of the energy.

Figure 8 shows the time evolution of the total potent
enstrophyU, U1, andU2 defined as

U15
1

L2EScoh

1

2
q¹2f dr

5
1

L2EScoh

1

2
@~¹2f!22l2f¹2f# dr , ~14!

U25
1

L2EScoh

1

2
@~¹2f!21l2~¹f!2# dr . ~15!

Note that if the integrands in Eqs.~14! and ~15! are inte-
grated over the total area, they coincide withU. Figure 8
clearly shows thatU1 occupies the large amount ofU

FIG. 7. Time evolution ofE, E1, andE2 defined in Sec. IV. A
slope of 20.05 indicates that the energy slightly decreases w
time due to the finite Reynolds number effect.
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57 1641SCALING LAW FOR COHERENT VORTICES IN . . .
„U1 /U50.81 att5100… and the time evolution ofU1 indi-
cates almost the same power law asU, which is estimated as
U1;t20.5. On the other hand,U2 has a very small value in
comparison withU or U1 ~U2 /U50.33 att5100! and de-
creases with time faster thanU or U1 as U2;t20.7. These
results originate from the difference between2l2f¹2f/2
andl2(¹f)2/2 in Eqs.~14! and~15!. Particularly in the case
of l@k the difference is remarkable. The difference
equivalent to that of the first terms of the integrands in E
~12! and~13!. According to the numerical results,U1 can be
regarded as a characteristic potential enstrophy for cohe
vortices becauseU1 has the same order of magnitudeU and
the same temporal behavior as that ofU. E1 and U1 are
different from E2 and U2 and are, as will be shown in th
next section, connected with the vortex dynamics.

V. SCALING THEORY FOR PHYSICAL QUANTITIES
OF COHERENT VORTICES

In this section, in analogy to the scaling theory develop
in the second stage of 2D decaying NS turbulence@4#, we
propose a scaling theory that describes the time evolutio
average quantities related to coherent vortices. Our sta
point is that coherent vortices self-organized for a rand
initial condition dominate the dynamics of the system a
that the energyE1 and the potential enstrophyU1 relating to
coherent vortices are therefore expressed in terms of cha
teristic quantities of vortices.

First, we assume that the potential enstrophyq is approxi-
mately written as

q5¹2f2l2f'2l2f ~16!

for k!l. By employing Eq.~16!, E1 and U1 can be ex-
pressed in terms of the total numberN of coherent vortices,
their average radiusr a , and the average potential vorticit
qa of vortex centers as

FIG. 8. Time evolution ofU, U1, andU2 defined in Sec. IV.
The slope21/2 is the theoretical value derived in Sec. V and t
value20.55 may be due to the effect of finite Reynolds numbe
.

nt

d
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E1'
1

L2EScoh

1

2
l2f2 dr;Nl22qa

2r a
2 , ~17!

U1'2
1

L2EScoh

1

2
l2f¹2f dr;Nl22qa

2 . ~18!

If E1 and qa are regarded as conserved quantities of
system in the high Reynolds number limit, Eq.~17! yields

Nra
2;t0. ~19!

Equation~19! clearly indicates that the area of the cohere
region is constant with time and is consistent with the n
merical results shown in Fig. 6.

If the total number of vorticesN decreases algebraicall
with time as

N~ t !;t2x, ~20!

we can derive the scaling laws ofr a(t) andU1(t) from Eqs.
~18! and ~19! as

r a~ t !;tx/2, ~21!

U1~ t !;t2x. ~22!

Moreover, the average distancel a between vortices with
same sign of circulation is evaluated as

l a~ t !;
1

AN~ t !
;tx/2. ~23!

Namely, the exponents of dynamical scaling of the quanti
related to vortices are expressed only byx.

In Sec. III, we found that the time evolution of the cha
acteristic wave numberk̄ (t) corresponding to the peak po
sition of the structure function ofq obeys the scalingk̄ (t)
;E21/8l3/4t21/4 @Eq. ~7!#. Since the inverse ofk̄ (t) is re-
garded as the average distance among vortices with the s
sign of circulation, which corresponds tol a , Eq. ~7! yields
the scaling law forl a ,

l a~ t !;
1

k̄ ~ t !
;t1/4. ~24!

By combining Eqs.~23! and ~24!, the scaling exponent is
determined as

x5
1

2
. ~25!

Consequently, the dynamical scaling of the other quanti
related to the vortices are evaluated as

N~ t !;t21/2, r a~ t !;t1/4, U1~ t !;t21/2. ~26!

In the numerical simulation, the power law ofU1(t) can be
easily compared with the above result. As shown in Fig.
the scalingU1(t);t21/2 is in agreement with the numerica
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1642 57WATANABE, IWAYAMA, AND FUJISAKA
result, although the theoretical exponent is somewhat sm
than the experimental value. This deviation will be discus
in Sec. VI.

Here we discuss the implication thatr a and l a have the
same scaling exponents. In physical space, coherent vor
with the same sign of circulation develop into larger on
through the vortex merging, conserving the area of the
herent region. The fact that the growing laws ofr a(t) and
l a(t) are the same in this coagulation process indicates
the potential vorticity fieldq temporally develops in a self
similar way. This is the reason for the existence of the
namical scaling law@Eq. ~9!#. On the other hand, in the sca
ing theory for coherent vortices in 2D decaying N
turbulence@4–7#, the scaling laws ofr a(t) and l a(t) are
represented as

r a~ t !;tj/4, l a~ t !;tj/2, ~27!

wherej is the scaling exponent of the total number of t
vorticesN;t2j. Equation~27! implies that coherent vortice
gradually become thin as time passes because the growth
of l a(t) is larger than that ofr a(t).

VI. SUMMARY AND DISCUSSION

We investigated the statistical characteristic of the str
ture function ofq in wave-number space forl@k and the
dynamical properties of coherent vortices in physical sp
in decaying CHM turbulence. We developed the scal
theory for the time evolution of the quantities related to t
vortices in analogy to that in 2D decaying NS turbulen
Our analytical results are in good agreement with the res
obtained from DNS.

An important result obtained in this study is that the a
of the coherent region is conserved with time,Nra

2;t0, even
in the time region where the vortices actively merge. It w
clarified in Sec. V that this result is one of the intrinsic cha
acteristics of the dynamics of coherent vortices with sc
larger than the characteristic scale 2p/l. This should be
compared with the fact that in the second stage of 2D dec
ing NS turbulence,Nra

4 is conserved with time and that th
area of the coherent region is not conserved. This differe
seems to be important when we discuss the dynamic
coherent vortices by using the point vortex dynamics
CHM turbulence@15,16#.

Finally, we discuss the effect of the finite Reynolds nu
ber on the scaling exponents evaluated from the sca
theory. The scaling theory of the energy spectrum in wa
number space and that of quantities related to coherent
tices in physical space are valid in the limit of infinite Re
nolds number. The energy is not conserved completely
slightly decreases with time on account of the effect of v
cosity. From Fig. 7 we suppose that the temporal decreas
E andE1 behaves as

E,E1;t2u, ~28!

although the area of the coherent region is conserved. S
stituting Eq.~28! into Eqs.~7! and~8!, we obtain the correc-
tion of the scaling law as

k̄ ~ t !;l3/4t2~22u!/8, ~29!
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Smax~ t !;l1/2t ~225u!/4. ~30!

Moreover, by substitutingqa
2;t2u, which is the result from

E1;t2u andNra
2;t0, into Eq. ~18! yields

U1~ t !;t2~112u!/2. ~31!

If we estimateu'0.05 from Fig. 7, Eqs.~29!–~31! are
evaluated as

k̄ ~ t !;t20.24, Smax~ t !;t0.44, U1~ t !;t20.55. ~32!

As shown in Figs. 3 and 8, the correction of the scali
exponents forSmax(t) andU1(t) are in good agreement with
the results of our simulation. The extent of correction o
scaling exponent fork̄ (t) is about 2.5% in comparison to th
original one, i.e., the scaling exponent does not cha
much. Consequently, it seems that the correction of the s
ing exponents forN or r a is small.

APPENDIX: DETERMINATION OF THE SCALING
EXPONENT x FROM THE HAMILTONIAN

DYNAMICAL ADVECTION SCALING

We discuss the derivation of the scaling exponentx from
the consideration of the Hamiltonian dynamical advection
vortices. According to Ref.@7#, the velocity of the vortex
center is evaluated as

ua;
H

Gal a
, ~A1!

whereGa is the average circulation. In 2D decaying NS tu
bulence, the HamiltonianH;Nra

4va
2 andva are conserved.

By usingua;t2j, j being defined asN;t2j, derived from
Eqs.~27! and~A1!, ua;dla /dt, we obtain the scaling expo
nentj52/3. However, in the case of the CHM equation,
mentioned in the present paper, we have obtained thatNra

2

must be conserved compared toNra
4 for the HamiltonianH.

Therefore, if we assume thatE1 is a HamiltonianH in CHM
turbulence,H is expressed asH;Nra

2l22qa
2 from Eq. ~17!.

SubstitutingGa;tx and l a;tx/2 obtained from Eq.~20! into
Eq. ~A1! leads to the scaling law

ua;t23x/2. ~A2!

This result indicates that the advection velocities of vortic
slows down with time. Moreover, if we assume that the a
vection velocity is evaluated as the time variation of t
distance among vortices~the relative velocities of vortices!,

ua;
dla
dt

;
l a

t
, ~A3!

then from Eqs.~23!, ~A2!, and~A3! the scaling exponent is
derived as

x5
1

2
. ~A4!

This agrees with the value@Eq. ~25!# obtained in the scaling
theory of the energy inverse cascade in wave-number sp
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