Investigations of SiO₂/n-GaN and Si₃N₄/n-GaN insulator–semiconductor interfaces with low interface state density

S. Arulkumaran, T. Egawa,^{a)} H. Ishikawa, T. Jimbo, and M. Umeno Research Centre for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

(Received 30 March 1998; accepted for publication 10 June 1998)

The electrical properties of electron beam (EB) evaporated silicon dioxide $(SiO_2)/n$ -GaN, plasma enhanced chemical vapor deposited (PECVD) SiO_2/n -GaN, and PECVD silicon nitride $(Si_3N_4)/n$ -GaN interfaces were investigated using high frequency capacitance–voltage measurements. Compositions of the deposited insulating layers (SiO₂ and Si₃N₄) were analyzed using x-ray photoelectron spectroscopy. Metal-insulator-semiconductor structures were fabricated on the metalorganic chemical vapor deposition grown *n*-type GaN layers using EB, PECVD grown SiO₂ and PECVD grown Si₃N₄ layers. Minimum interface state density (2.5×10^{11} eV⁻¹ cm⁻²) has been observed in the PECVD grown SiO₂/*n*-GaN interface when it was compared with EB evaporated SiO₂/*n*-GaN interface (5.3×10^{11} eV⁻¹ cm⁻²) and PECVD Si₃N₄/*n*-GaN interface (6.5×10^{11} eV⁻¹ cm⁻²). The interface state density (N_f) depends on the composition of deposited insulating layers. © 1998 American Institute of Physics. [S0003-6951(98)04032-7]

Gallium nitride (GaN) has attracted considerable interest in electronic devices for applications in high temperature environment¹ with high power conditions² and in optoelectronic devices³ for blue light emitting diodes (LED)⁴ and UV Schottky barrier diodes because of its direct wide band gap and chemical stability. For the fabrication of high temperature electronic devices, it is necessary to realize metalsemiconductor (MS) and metal-insulator-semiconductor (MIS) contacts in a fundamental point of view. For many applications an MIS technology is desirable since it could provide very high dc input impedance, large gate voltage swings, normally off operation with high source-drain blocking voltages and higher temperature operation as a result of reduced gate leakage. Recently, Pd/GaN Schottky barrier diode has been fabricated and realized by Ishikawa et al.⁵ using metal organic chemical vapor deposition (MOCVD) grown *n*-type GaN epilayers. Insulating layer SiO₂ were used for the fabrication of n-GaN MIS structure using plasma enhanced chemical vapor deposition (PECVD) system.^{6,7} Casey et al.⁶ have not observed measurable hysteresis in PECVD grown SiO_2/n -GaN MIS structure. The minimum interface state density (N_f) value $8.9 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2}$ has been observed by Casey *et al.*⁶ Sawada *et al.*⁷ have observed minimum N_f value 3×10^{11} eV⁻¹ cm⁻². There is no report available for PECVD Si₃N₄/n-GaN and EB SiO₂/n-GaN MIS structures. In this letter, we have investigated the fabrication of MIS structure on MOCVD grown n-GaN layer using PECVD grown SiO₂, Si₃N₄ and EB deposited SiO₂.

A GaN epilayer was grown on sapphire (0001) substrate using the horizontal atmospheric pressure MOCVD method. Trimethylgallium (TMG) and NH₃ were used as source materials, and SiH₄ diluted in H₂ (10 ppm) was used as the *n*-type dopant. The sapphire substrate was heated at 1100 °C for 10 min in a stream of hydrogen. A 30-nm-thick GaN layer was deposited as the buffer at 530 °C. Then, the substrate was heated up to 1050 °C and a 2.4- μ m-thick Sidoped GaN layer was grown on the GaN buffer layer with the free carrier concentration 1.1×10^{17} cm⁻³.

The SiO₂ layer was grown using both EB evaporation at 150 °C and PECVD at 350 °C on silicon doped *n*-GaN epilayers, respectively. Evaporation rate 0.2 nm/s was maintained for all electron beam evaporation. The Si₃N₄ layer was also grown on *n*-GaN using PECVD at 300 °C. The sample was cleaned with organic solvents before insulating layer deposition. For all insulating layers, thickness was 100 nm. For the analysis of oxide and nitride composition, x-ray photoelectron spectroscopy (XPS) measurements were carried out on SiO₂ and Si₃N₄/*n*-GaN structures. XPS measurements were carried out using Alk_α x-ray (1486.6 eV) source with 600 μ m spot-size.

MIS structures were fabricated on the SiO_2 , Si_3N_4/n -GaN structure with guard-ring configurations. Metallization was performed by vacuum evaporation equipment with a cryopump as the main pump. After cleaning by organic solvents with ultrasonic agitation and lithographic masking, the deposited insulating layers (SiO_2/Si_3N_4) were removed using hydrofluoric acid for ohmic contact formation. Then titanium (50 nm) and aluminum (100 nm) were evaporated on n-GaN layer using the conventional lift-off technique. The sample was annealed at 900 °C for 40 s in nitrogen ambient in order to obtain good ohmic characteristics. Then, titanium (50 nm) and gold (100 nm) was evaporated on the insulating layer using the conventional lift-off technique. This metal layer will be acting as a gate electrode of MIS structure. Prior to the evaporation process, the sample was dipped in $H_3PO_4 + H_2SO_4$ etchant for 1 min and there were no damages observed on the mask using this treatment. MIS structure gate area was 1.71×10^{-4} cm⁻². The schematic diagram of fabricated MIS structure is shown in Fig. 1. The fabricated MIS structures were characterized using high frequency (1 MHz) capacitance-voltage (C-V)measurements. All C-V measurements were carried using

809

Downloaded 23 Aug 2010 to 133.68.192.97. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

^{a)}Electronic mail: egawa@mothra.elcom.nitech.ac.jp

^{© 1998} American Institute of Physics

FIG. 1. Schematic diagram of fabricated n-GaN MIS structure.

HP4845A LCR bridge. C-V data was recorded at 100 mV/s bias sweep rate.

Composition of the insulating layers (SiO₂ and Si₃N₄) were analyzed using XPS measurements. XPS spectra of silicon 2p, oxygen 1s core level for both PECVD SiO₂ and Si_3N_4 and EB SiO₂ insulating layers are shown in Figs. 2(a) and 2(b). Reference values of the binding energy for Si 2pand O 1s core levels are 103.8 and 532.4 eV, respectively, for exact composition of SiO_2 .⁸ In our case, PECVD SiO_2 insulating layer Si 2p core level binding energy is slightly varied from reported binding energy. There were two peaks observed with the binding energy 102.33 and 100.33 eV. The observed binding energy composition of the insulating layer is Si₂O₃ and Si₂O, respectively.⁸ For the case of EB-SiO₂, Si 2p core level has only one peak with binding energy 100.14 eV (Si₂O). This means silicon-rich oxide layer has been formed from EB evaporation. From the Fig. 2(b), it is clear that the O 1s core level binding energy for PECVD SiO_2 has two peaks at 529.04 and 531.43 eV but EB SiO_2 layer has only one peak at 529.58 eV. It is clear that the EB SiO_2 layer composition is silicon-rich. XPS spectra of Si 2pand N 1s core level for PECVD deposited Si₃N₄ insulating layer is shown in Figs. 2(a) and 2(c). Reference values of the binding energy for Si 2p and N 1s is 101.5 and 397.4 eV, respectively, for Si_3N_4 .⁹ In our case, Si 2p core level has one peak with binding energy 98.56 eV. N 1s core level has two peaks with the binding energies 396.07 and 393.82 eV. From this spectrum, it is clear that the insulating layer is slightly silicon rich. XPS results shows that PECVD grown SiO₂ insulating layer composition is in agreement with reported SiO₂ composition when compared with EB evaporated SiO₂ composition.

Typical C/C_i versus V plot for EB and PECVD deposited SiO₂/n-GaN and Si₃N₄/n-GaN MIS structures are shown in Fig. 3. From Fig. 3, it is clear that the fabricated MIS structures are having good hysteresis behavior with the voltage range -20 to +20 V. All the devices typically shows a charge injection-type hysteresis.¹⁰ But Casey et al.⁶ have not been observed measurable hysteresis. The measured breakdown voltage, hysteresis window width, interface state density (N_f) , flat-band voltage shift (ΔV) and $C_{\rm FB}/C_i$ values are shown in Table I. ΔV was determined from the forward C/C_i versus V plot. Width of the hysteresis is small for PECVD grown SiO₂ compared with the other two insulating layer interfaces (Table I). This means, composition of the PECVD SiO₂ is good. Moreover the breakdown voltage of insulating layer is also high for PECVD grown SiO_2 (2.5 $\times 10^{6} \text{ V cm}^{-1}$) compared with EB deposited SiO₂ (1.8 $\times 10^{6} \text{ V cm}^{-1}$) which is in agreement with the reported values.11

FIG. 2. XPS spectrum for GaN MIS structures. (a) Silicon 2p core level for PECVD SiO₂, EB SiO₂ and PECVD Si₃N₄/*n*-GaN structures, (b) oxygen 1*s* core level for PECVD SiO₂ and EB SiO₂/*n*-GaN structures, and (c) nitrogen 1*s* core level for PECVD Si₃N₄/*n*-GaN structures.

Interface state density (N_f) was calculated using Terman method¹² for all MIS structures. The following expression was used for the calculation of flat-band capacitance ($C_{\rm FB}$)

values.¹¹ $C_{FB} = (\epsilon_{GaN}/L_D)A$, Downloaded 23 Aug 2010 to 133.68.192.97. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

FIG. 3. C/C_i vs V plot for PECVD SiO₂/*n*-GaN, EB SiO₂/*n*-GaN, and PECVD Si₃N₄/*n*-GaN MIS structures. Vertical lines are representing the measured ΔV (see Table I). Horizontal lines are representing the values of C_{FB}/C_i .

where L_D is the Debye length $\sqrt{\epsilon_{\text{GaN}}k_BT/q^2N_d^+}$, *A* is the MIS capacitor cross-sectional area, ϵ_{GaN} is the relative dielectric constant of GaN (9.1), k_B is the Boltzman's constant, *T* is the absolute temperature (300 K), *q* is the electronic charge, and N_d^+ is the GaN doping concentration (1.1 $\times 10^{17}$ cm⁻³). Insulator capacitance C_i is calculated from $C_i = \epsilon_o \epsilon_i / d$ where ϵ_o and ϵ_i is the dielectric constant of free space and dielectric constant of insulating layer, respectively, and *d* is the thickness of the deposited insulating layer.

The calculated $C_{\rm FB}/C_i$ values are shown in Table I. From the calculated $C_{\rm FB}/C_i$ value, one can determine the flat band voltage shift (ΔV) from the C/C_i versus V plot (Fig. 3). Once the value ΔV is known, the interface state density (N_f) will be calculated using

$$N_f = \left(\frac{\Delta V - \phi_{\rm MS}}{q}\right) C_i,$$

where

$$\phi_{\rm MS} = \phi_{\rm M} - \left(\chi + \frac{Eg}{2} + \phi_F\right).$$

 ϕ_M is the metal work-function (4.55 eV), Eg is the energy band gap (3.4 eV), ϕ_F is the fermi potential, and χ is the electron affinity of GaN (4.1 eV). The calculated interface state density (N_f) values from C/C_i versus V plot (Fig. 3) are shown in Table I. Minimum interface state density value $(2.5 \times 10^{11} \text{ eV}^{-1} \text{ cm}^{-2})$ has been observed for PECVD grown SiO₂/*n*-GaN MIS structure when compared with EB-SiO₂/*n*-GaN and PECVD-Si₃N₄/*n*-GaN MIS structures. The observed interface state density is less than the reported

TABLE I. N_f , C_{FB}/C_i , flat band voltage shift (ΔV), breakdown voltage and hysteresis window width values for SiO₂ and Si₃N₄.

Parameters	PECVD-SiO ₂	PECVD-Si ₃ N ₄	$EB-SiO_2$
$N_f (\times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1})$ C_{FB}/C_i $\Delta V(V)$	2.5 0.956 1.55	6.5 50.91 3.07	5.3 0.956 2.85
Breakdown voltage (V/cm)	2.5×10^{6}	1.5×10^{6}	1.8×10^{6}
Hysteresis window width (V)	0.14	0.89	3.69

values.^{6,7} This has been correlated with the composition of insulating layer which is confirmed by XPS measurements.

In summary, SiO₂/n-GaN and Si₃N₄/n-GaN MIS structures were fabricated using EB and PECVD method. Breakdown voltage is high for PECVD SiO₂ layers when compared with EB deposited SiO₂ layers. Moreover, the interface state density is also small for PECVD grown SiO_2/n -GaN interface. Low interface state density have observed and reported first time in the literature for PECVD SiO₂/n-GaN interfaces. The reduction of interface state density is due to the insulating layer (SiO₂) composition. Very good correlation has been observed between interface state density and the composition of the insulating layer using high frequency C-V and XPS measurements, respectively. MIS structures of EB SiO₂/n-GaN and PECVD Si₃N₄/n-GaN interfaces were investigated and reported first time in the literature. Considerable low interface state density has been observed on Si_3N_4/n -GaN interfaces.

The authors would like to acknowledge H. Takaki for XPS measurements. This work was partially supported by a Grant-in-Aid Scientific Research (c) (Grant No. 09650049) from The Ministry of Education, Science, Sports, and Culture.

- ¹S. C. Binari, H. B. Deitrich, W. Kruppa, G. Kelner, N. S. Saks, A. Edwads, J. M. Redwing, A. E. Wickender, and D. D. Koleske, Proceedings of the Second International Conference on Nitride Semiconductors, Tokushima, 1997, p. 480.
- ²Q. Chen, J. W. Yang, R. Gaska, M. Asif khan, and M. S. Schur, IEEE Electron Device Lett. **19**, 44 (1998).
- ³N. Mohammad, Arnel A. Salvador, and H. Morkoc, Proc. IEEE **83**, 1306 (1995).
- ⁴T. Egawa, T. Jimbo, and M. Umeno, J. Appl. Phys. 82, 5816 (1997).
- ⁵H. Ishikawa, K. Nakamura, T. Egawa, T. Jimbo, and M. Umeno, Jpn. J. Appl. Phys., Part 2 **37**, L7 (1998).
- ⁶H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, Appl. Phys. Lett. **68**, 1850 (1996).
- ⁷M. Sawada, T. Sawada, Y. Yamagata, K. Imai, H. Kumura, M. Yoshino, K. Iizuka, and H. Tomozawa, Proceedings of the Second International Conference on Nitride Semiconductors, Tokushima, 1997, p. 482.
- ⁸R. Alfonsetti, L. Lozzi, M. Possacantando, P. Pocozzi, and S. Santucci, Appl. Surf. Sci. **70/71**, 222 (1993).
- ⁹Y. Yokoyama, K. Horiuchi, T. Maeshima, and T. Ohta, Jpn. J. Appl. Phys., Part 1 33, 3488 (1994).
- ¹⁰R. G. Roberts, K. P. Pande, and W. A. Barlow, Solid-State Electron. 2, 169 (1978).
- ¹¹J. Woodward, D. C. Cameron, L. D. Irving, and G. R. Jones, Thin Solid Films **85**, 61 (1981).
- ¹²L. M. Terman, Solid-State Electron. 5, 285 (1962).