
Interactive Algorithm for Multi-objective
Constraint Optimization

Tenda Okimoto∗, Yongjoon Joe∗, Atsushi Iwasaki∗, Toshihiro Matsui†,
Katsutoshi Hirayama††, and Makoto Yokoo∗

∗Kyushu University, Fukuoka 8190395, Japan
†Nagoya Insutitute of Technology, Nagoya 4668555, Japan

††Kobe University, Kobe 6580022, Japan
∗{tenda@agent., yongjoon@agent.,iwasaki@, yokoo@}inf.kyushu-u.ac.jp

†matsui.t@nitech.ac.jp, ††hirayama@maritime.kobe-u.ac.jp

Abstract. Many real world problems involve multiple criteria that should
be considered separately and optimized simultaneously. A Multi-Objective
Constraint Optimization Problem (MO-COP) is the extension of a mono-
objective Constraint Optimization Problem (COP). In a MO-COP, it is
required to provide the most preferred solution for a user among many
optimal solutions. In this paper, we develop a novel Interactive Algo-
rithm for MO-COP (MO-IA). The characteristics of this algorithm are
as follows: (i) it can guarantee to find a Pareto solution, (ii) it narrows a
region, in which Pareto front may exist, gradually, (iii) it is based on a
pseudo-tree, which is a widely used graph structure in COP algorithms,
and (iv) the complexity of this algorithm is determined by the induced
width of problem instances. In the evaluations, we use an existing model
for representing a utility function, and show empirically the effectiveness
of our algorithm. Furthermore, we propose an extension of MO-IA, which
can provide the more detailed information for Pareto front.

1 Introduction

Many real world optimization problems involve multiple criteria that should be
considered separately and optimized simultaneously. A Multi-Objective Con-
straint Optimization Problem (MO-COP) [7, 8, 9, 16] is the extension of a
mono-objective Constraint Optimization Problem (COP) [4, 18]. A COP is a
problem to find an assignment of values to variables so that the sum of the re-
sulting rewards is maximized. A MO-COP is a COP involves multiple criteria.
In a MO-COP, generally, since trade-offs exist among objectives, there does not
exist an ideal assignment, which maximizes all objectives simultaneously. There-
fore, we characterize the optimal solution of a MO-COP using the concept of
Pareto optimality. Solving a MO-COP is to find the Pareto front. The Pareto
Front is a set of reward vectors obtained by Pareto solutions. An assignment is
a Pareto solution, if there does not exist another assignment that improves all
of the criteria. A COP and a MO-COP can be represented using a constraint
graph, in which a node represents a variable and an edge represents a constraint.

Various complete algorithms have been developed for solving a MO-COP,
e.g., Russian Doll Search algorithm (MO-RDS) [17], Multi-objective AND/OR
Branch-and-Bound search algorithm (MO-AOBB) [8], and MultiObjective Bucket
Elimination (MO-BE) [16]. In a MO-COP, even if a constraint graph has the
simplest tree structure, the size of the Pareto front, i.e., the number of Pareto so-
lutions, is often exponential in the number of reward vectors. In such MO-COP
problems, finding all Pareto solutions is not real. On the other hand, several
incomplete algorithms have been developed for solving a MO-COP, e.g., Multi-
Objective Mini-Bucket Elimination (MO-MBE) [16], Multi-objective Best-First
AND/OR search algorithm (MO-AOBF) [9], and Multiobjective A∗ search al-
gorithm (MOA∗) [15]. MO-MBE computes a set of lower bounds of MO-COPs.
MO-AOBF and MOA∗ compute a relaxed Pareto front using ϵ-dominance [14].

Various algorithms have been developed for solving a Multi-Objective Op-
timization Problem (MOOP) [1, 2, 3, 5, 11]. In a MOOP, a variable takes its
value from a continuous domain, while a variable takes its value from a discrete
domain in a MO-COP. In this paper, we focus on a MO-COP.

An Aggregate Objective Function (AOF) [12, 13] is the simplest and the
most widely used classical method to find the Pareto solutions of a MOOP. This
method scalarizes the set of objective functions into a weighted mono-objective
function, and find an optimal solution. It is well known that an optimal solution
obtained by AOF is a Pareto solution of the original MOOP problem [13]. If
Pareto front is convex, AOF guarantees to find all Pareto solutions. Otherwise,
it cannot find Pareto solutions in non-convex region. In our research, we use
AOF to find the Pareto solutions of a MO-COP.

In this paper, we develop a novel Interactive Algorithm for MO-COPs (MO-
IA). Our algorithm finds a set of Pareto solutions and narrows a region, in which
Pareto front may exist, gradually. Our algorithm utilizes a graph structure called
a pseudo-tree, which is widely used in COP algorithms. The complexity of our al-
gorithm is determined by the induced width of problem instances. Induced width
is a parameter that determines the complexity of many COP algorithms. We eval-
uate our algorithm using a Constraint Elasticity of Substitution (CES) utility
function [10], which is widely used in many economic textbooks representing util-
ity functions, and show empirically the effectiveness of our algorithm. Further-
more, we propose an extension of MO-IA, which finds several Pareto solutions so
that we can provide a narrower region, in which Pareto front may exist, i.e., we
can provide the more detailed information for Pareto front. As far as the authors
aware, there exists virtually no work on interactive algorithms for a MO-COP,
although various MO-COP algorithms have been developed [8, 9, 15, 16, 17].

Our proposed algorithm is similar to Physical Programming (PP) [11] and
Directed Search Domain algorithm (DSD) [5]. However, these are interactive
algorithms for MOOPs, while our algorithm is for MO-COPs. If we apply PP
and DSD to MO-COPs, there is no guarantee to find a Pareto solution. On
the other hand, our algorithm can always find a Pareto solution. Furthermore,
compared to evolutionary algorithms [1, 3] for solving a MOOP, the advantage
of our algorithm is that our algorithm guarantees to find a Pareto solution.

Xi Xj r(Xi,Xj)

a a 1

a b 2

b a 3

b b 0x2

x1

x3 x4

Fig. 1. A mono-objective COP with four
variables. The optimal solution of this prob-
lem is {(x1, a), (x2, b), (x3, a), (x4, a)} and
the optimal value is eight.

Xi Xj r(Xi,Xj)

a a (1,0)

a b (2,3)

b a (3,2)

b b (0,1)x2

x1

x3 x4

Fig. 2. A bi-objective COP with four vari-
ables. The Pareto solutions of this prob-
lem are {{(x1, b), (x2, a), (x3, b), (x4, b)},
{(x1, a), (x2, b), (x3, a), (x4, a)}}, and the
Pareto front is {(7, 8), (8, 7)}.

About application domains of MO-COP, we believe design/configuration
tasks would be promising. For a simple toy example, we can consider Build
to Order Custom Computers, where one can configure their own PC by choos-
ing various options, e.g., CPU clock, memory size, hard drive size, operating
system, and monitor size, considering multiple criteria, e.g., cost, performance,
and required space.

The remainder of this paper is organized as follows. Section 2 provides some
preliminaries on COPs, MO-COPs, AOF, and an existing model for represent-
ing a utility function. Section 3 introduces our interactive algorithm for MO-
COPs, and Section 4 evaluates our algorithm using an existing model described
in Section 2. Furthermore, we provides the extension of our algorithm. Section 5
concludes this paper and gives future works.

2 Preliminaries

In this section, we briefly describe the formalizations of Constraint Optimiza-
tion Problems (COPs) and Multi-objective Constraint Optimization Problems
(MO-COPs), which is the extension of a mono-objective COP. Also, we show an
Aggregate Objective Function (AOF), which is the most widely used classical
method to find a Pareto solution. Furthermore, we introduce a Constraint Elas-
ticity of Substitution (CES) utility function and an indifference curve that are
widely used in many economic textbooks representing utility functions．

2.1 Mono-objective Constraint Optimization Problem

A Constraint Optimization Problem (COP) [4, 18] is a problem to find an assign-
ment of values to variables so that the sum of the resulting rewards is maximized.

A COP is defined by a set of variables X, a set of binary constraint relations
C, and a set of binary reward functions F . A variable xi takes its value from a
finite, discrete domain Di. A binary constraint relation (i, j) means there exists
a constraint relation between xi and xj . For xi and xj , which have a constraint
relation, the reward for an assignment {(xi, di), (xj , dj)} is defined by a binary
reward function ri,j : Di ×Dj → R. For a value assignment to all variables A,
let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj). (1)

Then, an optimal assignment A∗ is given as argmaxA R(A), i.e., A∗ is an assign-
ment that maximizes the sum of the value of all reward functions, and an optimal
value is given by R(A∗). A COP can be represented using a constraint graph, in
which nodes correspond to variables and edges correspond to constraints.

A pseudo-tree is a special graph structure, which is widely used in COP
algorithms. In a pseudo-tree, there exists a unique root node, and each non-
root node has a parent node. The pseudo-tree contains all nodes and edges of
the original constraint graph, and the edges are categorized into tree edges and
back edges. There are no edges between different subtrees. For each node xi, we
denote the parent node, ancestors, and children of xi as follows:

– pi: the parent node, which is connected to xi through a tree edge.
– PPi: a set of the ancestors which are connected to xi through back edges.
– Ci: a set of children which are connected to xi through tree and back edges.

Example 1 (COP). Figure 1 shows a mono-objective COP with four variables
x1, x2, x3 and x4. r(xi, xj) is a binary reward function where i < j. Each variable
takes its value assignment from a discrete domain {a, b}. The optimal solution
of this problem is {(x1, a), (x2, b), (x3, a), (x4, a)}, and the optimal value is eight.

2.2 Multi-objective Constraint Optimization Problem

A Multi-Objective Constraint Optimization Problem (MO-COP) [7, 8, 9, 16] is
the extension of a mono-objective COP. A MO-COP is defined by variables X =
{x1, . . . , xn}, multi-objective constraints C = {C1, . . . , Cm}, i.e., a set of sets
of binary constraint relations, and multi-objective functions O = {O1, . . . , Om},
i.e., a set of sets of objective functions (binary reward functions). A variable xi

takes its value from a finite, discrete domain Di. A binary constraint relation
(i, j) means there exists a constraint relation between xi and xj . For an objective
l (1 ≤ l ≤ m), variables xi and xj , which have a constraint relation, the reward
for an assignment {(xi, di), (xj , dj)} is defined by a binary reward function rli,j :
Di ×Dj → R. For an objective l and a value assignment to all variables A, let
us denote

Rl(A) =
∑

(i,j)∈Cl,{(xi,di),(xj ,dj)}⊆A

rli,j(di, dj). (2)

Then, the sum of the values of all reward functions for m objectives is defined by
a reward vector, denoted R(A) = (R1(A), . . . , Rm(A)). To find an assignment

that maximizes all objective functions simultaneously is ideal. However, in gen-
eral, since trade-offs exist among objectives, there does not exist such an ideal
assignment. Therefore, we characterize the optimal solution of a MO-COP using
the concept of Pareto optimality.

Definition 1 (Dominance). For a MO-COP and two reward vectors R(A) and
R(A′), we call that R(A) dominates R(A′), denoted by R(A′) ≺ R(A), iff R(A′)
is partially less than R(A), i.e., (i) it holds Rl(A′) ≤ Rl(A) for all objectives l,
and (ii) there exists at least one objective l, such that Rl(A′) < Rl(A).

Definition 2 (Pareto solution). For a MO-COP and an assignment A, we
call that A is the Pareto solution, iff there does not exist another assignment A′,
such that R(A) ≺ R(A′).

Definition 3 (Pareto Front). For a MO-COP, we call a set of reward vectors
obtained by Pareto solutions as the Pareto front.

Solving a MO-COP is to find the Pareto front. A MO-COP can be also
represented using a constraint graph as a COP. In this paper, we assume that
all reward values are non-negative.

Example 2 (MO-COP). Figure 2 shows a bi-objective COP, which is an ex-
tension of a mono-objective COP in Fig. 1. Each variable takes its value from a
discrete domain {a, b}. The Pareto solutions of this problem are {{(x1, b), (x2, a),
(x3, b), (x4, b)}, {(x1, a), (x2, b), (x3, a), (x4, a)}}, and the Pareto front is {(7, 8),
(8, 7)}, which is a set of reward vectors obtained by these Pareto solutions.

2.3 Aggregate Objective Function

An Aggregate Objective Function (AOF) [12, 13] is the simplest and the most
widely used classical method to find the Pareto solutions of a MOOP. This
method scalarizes the set of objective functions into a weighted mono-objective
function and find an optimal solution. For objective functions o1, . . . , om of a
MOOP, we define a weight denoted by α = (α1, . . . , αm), where

∑
1≤i≤m αi =

1, αi > 0. Next, we make a weighted mono-objective function α1o
1+ . . .+αmom,

and find the optimal solution. Then, the following theorem holds:

Theorem 1 (AOF). For a MOOP, an optimal solution A∗ obtained by AOF
is a Pareto solution of the original problem.

It is well known that AOF can guarantee to find all Pareto solutions, if Pareto
front is convex. Otherwise, it cannot find all Pareto solutions. In this paper, we
use this method to find the Pareto solutions of a MO-COP. Theorem 1 holds
also for MO-COPs. We omit the proof due to space limitations.

Fig. 3. Indifference curves of
Cobb-Douglas function for a
bi-objective COP.

Fig. 4. Indifference curves of
Leontief function for a bi-
objective COP.

Fig. 5. Indifference curves I1
and I2 intersect at point A.

2.4 Constraint Elasticity of Substitution utility function

A Constraint Elasticity of Substitution (CES) utility function [10] is a function
which is widely used in many economic textbooks representing utility functions．
A CES utility function has the form

u(x1, . . . , xm) = (α1x
p
1 + . . .+ αmxp

m)1/p, (3)

where
∑

1≤i≤m αi = 1, αi > 0, p < 1. Linear, Cobb-Douglas and Leontief
functions are special cases of the CES utility function. For example, as p → 1,
the CES utility function becomes a linear function

u(x1, . . . , xm) = α1x1 + . . .+ αmxm. (4)

As p → 0, the CES utility function becomes Cobb-Douglas function

u(x1, . . . , xm) = xα1
1 × . . .× xαm

m . (5)

As p → −∞, the CES utility function becomes Leontief function

u(x1, . . . , xm) = min(x1, . . . , xm). (6)

2.5 Indifference curves

The indifference curve [10, 19] shows the various combinations of goods that
make a person equally satisfied. 1 For example, two different pairs, e.g., a pair
of 10 compact discs and 150 candy bars, and a pair of 12 compact discs and 130
candy bars, are on the same indifference curve means that a person has a same
utility, whichever pair he/she chooses.

1 For m ≥ 3 goods (objectives), we can consider an indifference surface.

Example 3 (Indifference curves). Figure 3 and 4 show indifference curves of
Cobb-Douglas and Leontief functions for a bi-objective COP, respectively. On
the graphs, o1 represents quantity of goods, e.g., compact discs, while o2 rep-
resents quantity of goods, e.g., candy bars. A person is equally satisfied at any
point along a given curve, i.e., each point brings the same utility.

The following are the typical properties of indifference curves:

– Indifference curves are convex to the origin.

– Indifference curves cannot intersect each other.

– Higher indifference curves represents higher utility.

The first property is derived from the principle called diminishing marginal rate
of substitution [19]. As a person substitutes good o1 for good o2, the marginal
rate of substitution diminishes as o1 for o2 along an indifference curve. The slope
of the curve is referred as the marginal rate of substitution. The marginal rate
of substitution is the rate at which a person must sacrifice units of one good to
obtain one more unit of another good.

We show the second property by contradiction. Assume that the indifference
curves I1 and I2 intersect at point A (see Fig. 5). That would mean that a person
is indifferent between A and all points on I1. In particular, he/she would be
indifferent between A and B, between A and C, and accordingly between B and
C. However, since B involves higher values of both objective functions than C,
B is clearly preferred to C. Thus, indifference curves cannot intersect each other.
Furthermore, for the third property, since the combination of goods which lies
on a higher indifference curve will be preferred by a person to the combination
which lies on a lower indifference curve, the higher indifference curve represents
a higher utility/satisfaction.

3 Interactive Algorithm for MO-COP

In this section, we develop a novel Interactive Algorithm for MO-COP (MO-IA).
This algorithm finds a set of Pareto solutions and narrows a region, in which
Pareto front may exist, gradually. First, we find optimal solutions of weighted
mono-objective functions using AOF. Then, we provide a user with an optimal
value and a region, in which Pareto front may exist. A user determines whether
he/she is satisfied by the Pareto solution. If he/she is satisfied, our algorithm
terminates. Otherwise, he/she chooses a preference point in the region, in which
Pareto front may exist. Next, we find a point (a reward vector obtained by a
Pareto solution) in the region that is closest to the user’s preference point by
using a distance defined in our algorithm, and update the region, in which Pareto
front may exist. Then, as a new information, we provide the user with a set of
Pareto solutions and a new narrower region, in which Pareto front may exist.
We continue this process until the user will be satisfied by at least one of the
provided Pareto solutions.

3.1 Interactive Algorithm

Our algorithm has three phases:

Phase 1： For each objective function, find an optimal solution.
Phase 2： For a weighted mono-objective function, find the optimal solution.
Phase 3： Find a point in a region that is closest to a user’s preference point.

Let us describe Phase 1. We use AOF to find an optimal solution for each objec-
tive function, respectively. Specifically, for m objective functions of a MO-COP,
we give the following m weights (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and
make the m weighted objective functions o1, . . . , om. Then, we find an optimal
solution for each weighted mono-objective function oi (1 ≤ i ≤ m), respectively,
i.e., it is equivalent to solve m COP problems independently. In this paper, we
denote the obtained m optimal values as R1

max, . . . , R
m
max.

In Phase 2, we use AOF and make a weighted mono-objective function where
each weight has a same value. Then, we find the optimal solution. Specifically,
for m objective functions of a MO-COP, we make the following weighted mono-
objective function, denoted π, giving the weights α1 = 1

m , . . . , αm = 1
m , and find

the optimal solution.

π :
1

m
o1 + . . .+

1

m
om (7)

Let A∗ be an optimal solution of a weighted mono-objective function π. By
Theorem 1, A∗ is a Pareto solution of the original problem. In this paper, we call
this Pareto solution as a candidate solution. For optimal values R1

max, . . . , R
m
max

obtained by Phase 1 and a candidate solution A∗ obtained by Phase 2, let A
be an another Pareto solution, and let R(A) be a reward vector obtained by A
which is different from R(A∗). Then, the following theorem holds.

Theorem 2. For reward vectors R(A∗) and R(A), it holds:
(1)

∑m
l=1 R

l(A) ≤
∑m

l=1 R
l(A∗).

(2) ∃l : Rl(A∗) < Rl(A) ≤ Rl
max.

Proof. Since A∗ is an optimal solution of a weighted mono-objective function π,
it holds

1

m
R1(A) + . . .+

1

m
Rm(A) ≤ 1

m
R1(A∗) + . . .+

1

m
Rm(A∗). (8)

Also, there exists no reward vector that dominates a reward vector on π.
Next, we show that it holds ∃l : Rl(A∗) < Rl(A) ≤ Rl

max. Since Rl
max is a

reward vector obtained by an optimal solution of the objective function ol, it
holds Rl(A) ≤ Rl

max. Furthermore, we show that it holds ∃l : Rl(A∗) < Rl(A) by
contradiction. Assume that ∀l : Rl(A∗) ≥ Rl(A) holds. Since A∗ is a candidate
solution, i.e., Pareto solution, and R(A) is a reward vector which is different from
R(A∗), there exists at least one objective l, such that Rl(A∗) > Rl(A). Then,
it holds R(A) ≺ R(A∗) by Definition 1, i.e., R(A∗) dominates R(A). However,
since A is a Pareto solution, i.e., there exist no reward vector that dominates
R(A), this is a contradiction. Thus, it holds ∃l : Rl(A∗) < Rl(A).

Fig. 6. A region, in which the Pareto front
of a bi-objective COP may exist.

Fig. 7. A new region which is narrower
compared to the region in Fig. 6.

Example 4. Figure 6 shows a region, in which the Pareto front of a bi-objective
COP may exist. The x-axis represents the rewards for objective 1 and the y-axis
represents those for objective 2. R1

max and R2
max are reward vectors obtained in

Phase 1. The line π represents a weighted mono-objective function, and R(A∗)
is a reward vector obtained by a candidate solution A∗ in Phase 2. Let R(A) be
a reward vector obtained by a Pareto solution, which is different from R(A∗).
By Theorem 2, R(A) exists in the region under a function π. Furthermore, it
holds R1(A∗) < R1(A) or R2(A∗) < R2(A). Also, since R1(A) ≤ R1

max and
R2(A) ≤ R2

max must be hold, R(A) exists in the region S1 or S2.

A user determines whether he/she is satisfied by a candidate solution ob-
tained in Phase 2. If he/she is satisfied, our algorithm terminates. Otherwise,
he/she chooses a point in a region, in which Pareto front may exist. We call the
point as a user’s preference point and denote it by Ru(= (R1

u, . . . , R
m
u)).

Let us describe Phase 3. We find a point in a region that is closest to a
user’s preference point. Specifically, for a reward vector R(A) obtained by an
assignment A and a user’s preference point Ru, we define the distance between
R(A) and Ru as follows:

dis(R(A), Ru) = f(R1(A), R1
u) + . . .+ f(Rm(A), Rm

u),

∀l : f(Rl(A), Rl
u) =

{
Rl

u −Rl(A) (Rl
u ≥ Rl(A))

−ϵl(R
l(A)−Rl

u) (Rl
u < Rl(A))

, (9)

where ϵl is small enough. In Phase 3, we find an assignment A so that the distance
between a reward vector R(A) and a user’s preference point is minimal. Strictly
speaking, the distance function is non-linear. However, the term −ϵl(R

l(A)−Rl
u)

is used only for a tie-breaker. We can easily encode this metric in standard MO-
COP algorithms.

Algorithm 1 MO-IA (Phase 3)

MO-IA(X,D,O)
1 Given : Ru // user’s preference point on π
2 JOIN1 = null,. . . ,JOINn = null
3 for each i = n, . . . , 1
4 if i is a leaf then
5 JOINi = Rpi

i ⊕ (
⊕

h∈PPi
Rh

i) // join all reward tables
6 Compute argmin

a
dis(R(a), Ru) for each a in combination of assignments of

pi and PPi

7 JOINi = JOINi⊥xi // use projection to eliminate xi

8 else
9 JOINi = Rpi

i ⊕ (
⊕

h∈PPi
Rh

i)⊕ (
⊕

j∈Ci
JOINj)

10 Compute argmin
a

dis(R(a), Ru) for each a in combination of assignments of

pi and PPi

11 JOINi = JOINi⊥xi // use projection to eliminate xi

12 end if
13 end for

We show the procedure of MO-IA (Phase 3) in Algorithm 1. In our algorithm,
we assume that a pseudo-tree based on total ordering x1, . . . , xn is given, where
x1 is a root node. The ⊕ operator is the operator to join two reward tables
and the

⊕
operator is the operator to join all reward tables. The ⊥x operator

is the projection to eliminate x. JOINi represents a reward table maintained
by a node xi. Also, Rpi

i and Rh
i represent the reward tables between a node xi

and its parent node pi, and its ancestor h ∈ PPi, respectively. Our algorithm
processes bottom-up, which starts from the leaves and propagates upwards only
through tree edges (line 3). If xi is a leaf node, xi joins all reward tables it has
with its ancestor using

⊕
operator, and the reward table it has with its parent

using ⊕ operator (line 5). Then, for each combination of assignments of pi and
PPi, we compute an assignment so that the distance from a user’s preference
point is minimal (line 6). We use the ⊥ operator to eliminate xi from the reward
table JOINi (line 7). If xi is not a leaf node, we access the reward tables of its
children, and join the following reward tables Rpi

i , Rh
i , and all JOINj∈Ci

(line
9). Then, we conduct the same process we did for a leaf node (line 10 and 11).
In this algorithm, each node chooses an assignment so that the distance from
a user’s preference point is minimal. Thus, for an assignment to all variables
A, the distance between the reward vector R(A) obtained by A and a user’s
preference point is minimal. This is because we deal with maximization MO-
COPs. We omit the proof due to space limitations. For an assignment obtained
by our algorithm, the following theorem holds.

Theorem 3. An assignment obtained by MO-IA is a Pareto solution.

Proof. Let A∗ be an assignment obtained by our algorithm and R(A∗) be a
reward vector obtained by A∗. We show that there exists no assignment A, such
that R(A∗) ≺ R(A). Assume that ∃A : R(A∗) ≺ R(A) holds. By Definition 1, it

holds (i) ∀l : Rl(A∗) ≤ Rl(A) and (ii) ∃l : Rl(A∗) < Rl(A). Let Ru be a user’s
preference point. By (i), when Rl

u ≥ Rl(A), the following holds for all objectives:

f(Rl(A), Rl
u) = Rl

u −Rl(A) ≤ Rl
u −Rl(A∗) = f(Rl(A∗), Rl

u). (10)

Otherwise, i.e., when Rl
u < Rl(A), it holds

f(Rl(A), Rl
u) = −ϵl(R

l(A)−Rl
u) ≤ −ϵl(R

l(A∗)−Rl
u) = f(Rl(A∗), Rl

u). (11)

By (ii), when Rl
u ≥ Rl(A), the following holds at least one objective:

f(Rl(A), Rl
u) < f(Rl(A∗), Rl

u). (12)

Otherwise, i.e., when Rl
u < Rl(A), it holds

f(Rl(A), Rl
u) < f(Rl(A∗), Rl

u). (13)

Thus, it holds dis(R(A), Ru) < dis(R(A∗), Ru). However, dis(R(A∗), Ru) is min-
imal. This is a contradiction. Thus, A∗ is a Pareto solution.

In Phase 3, we can obtain a Pareto solution that gives the closest point to
a user’s preference point. It means that there exists no Pareto front within the
distance from a user’s preference point to a point obtained by Phase 3. Thus,
the new region, in which the Pareto front may exist, is the remaining region
obtained from the original region removing the region within this distance.

Example 5. Figure 7 shows a new region, in which the Pareto front may exist.
R(A) represents a reward vector obtained by our algorithm (Phase 3). Since
there exists no Pareto solution within the distance dis(R(A), Ru), a new region
is the region obtained by removing the region enclosed by π and S′2 from the
original region. The new region is narrower compared to that in Fig. 6.

Let a Pareto solution obtained by Phase 3 be a new candidate solution. A
user determines whether he/she is satisfied by at least one of the two candi-
date solutions, i.e., the first candidate solution obtained by Phase 2 or a new
candidate solution. If he/she is satisfied, our algorithm terminates. Otherwise,
he/she chooses a new preference point in the new narrower region, in which
Pareto front may exist. We conduct the Phase 3 repeatedly, i.e., we compute
a set of candidate solutions and the narrowed regions, in which Pareto front
may exist, until the user is satisfied by at least one of the candidate solutions.
Since our algorithm repeatedly narrows the region where the Pareto front can
exist, we can expect that it converges after a finite number of iterations. How-
ever, there exists a pathological case where the algorithm repeats infinitely. This
happens when the user’s preference is Leontief, which is very different from our
distance function. To guarantee the terminating of this algorithm, we need to
set a threshold value, where the user terminates the iteration when a possible
maximal improvement becomes less than the threshold.

Complexity

Our algorithm MO-IA is time O(e×m× |D|w∗+1) and space O(n×m× |D|w∗
),

where n is the number of variables, m is the number of objectives, |D|(= |D1| =
, . . . ,= |Dn|) is the domain size, w∗ is the induced width, e is the number of
constraints. The complexity of MO-IA is determined by the induced width of a
problem instance. Induced width is a parameter that determines the complexity
of many COP algorithms. Specially, if a problem instance has the tree structure,
i.e., the induced width is one, the complexity of MO-IA is constant.

4 Evaluations

In this section, we evaluate our algorithm using CES utility functions. Specifi-
cally, we define the following four users that have different utility functions, and
examine the number of the required iterations for each user until our algorithm
terminates.

User 1： Linear utility function.
User 2： CES utility function where the parameter p is 0.5.
User 3： Cobb-Douglas utility function.
User 4： Leontief utility function.

Let us explain how we examine the number of the required iterations. First,
we compute a candidate solution and a region, in which Pareto front may exist.
Then, we determine a user’s preference point, which is the intersection of a utility
function and a weighted mono-objective function. If he/she is satisfied by the
candidate solution, our algorithm terminates. Then, the number of the required
iterations is one. Otherwise, we find a Pareto solution that gives the closest point
to a user’s preference point, and let this solution be a new candidate solution.
Next, using indifference curves of the user, we determine a new user’s preference
point in the region, in which Pareto front may exist, i.e., Pareto front without
the computed candidate solutions. If he/she is satisfied by at least one of the
candidate solutions, our algorithm terminates, and the number of the required
iterations is increased by one. We continue this process until he/she will be
satisfied, and examine how many iterations are required for each user.

Let us describe termination conditions of our algorithm. For a MO-COP, a
user’s preference point Ru(= (R1

u, . . . , R
m
u)), and a reward vector R(A) obtained

by one of the candidate solutions, a user is satisfied, if the following holds:

∃A : u(R1
u, . . . , R

m
u) ≤ u(R1(A), . . . , Rm(A)), (14)

i.e., termination conditions for user 1, 2, 3 and 4 are as follows:

Termination conditions for user 1

∃A :
m∑
l=1

αlR
l
u ≤

m∑
l=1

αlR
l(A) (15)

Table 1. Number of required iterations in
bi-objective COPs

Nodes User 1 User 2 User 3 User 4

10 2.5 1.6 2.1 25.3

20 2.5 2.0 1.9 17.4

30 2.6 2.2 1.8 12.8

40 2.8 2.3 1.6 13.4

50 2.8 2.5 1.7 12.9

60 2.9 2.3 1.5 11.1

70 2.9 2.3 1.5 11.9

80 2.9 2.5 1.4 11.5

90 2.8 2.5 1.2 12.5

100 2.8 2.6 1.3 10.4

Table 2. Number of required iterations in
tri-objective COPs

Nodes User 1 User 2 User 3 User 4

10 2.4 2.3 2.3 44.4

20 2.2 2.1 2.4 33.0

30 2.2 2.2 2.3 46.8

40 2.2 2.7 2.2 36.7

50 2.4 2.3 2.0 43.6

60 2.2 2.6 2.1 38.8

70 2.3 2.6 2.0 40.7

80 2.4 2.5 2.0 30.5

90 2.3 2.3 2.0 41.8

100 2.3 2.4 2.0 42.9

Termination conditions for user 2

∃A :

m∑
l=1

αl

√
Rl

u ≤
m∑
l=1

αl

√
Rl(A) (16)

Termination conditions for user 3

∃A :
m∏
l=1

(Rl
u)

αl ≤
m∏
l=1

(Rl(A))αl (17)

Termination conditions for user 4

∃A ∀l : Rl
u ≤ Rl(A) (18)

In our evaluations, the domain size of each variable is two, and we chose the
reward value uniformly at random from the range [0,. . . ,10] for all objectives. We
generate bi/tri-objective COP problem instances randomly, and determine the
parameter α of CES utility functions random for each problem instance. For each
objective, we generate the same constraint graph. The number of constraints is
given by |X| ∗ |O|, where |X| and |O| are the number of variables and objectives.
The results represent an average of 50 problem instances. For the parameter of
the distance in Phase 3, we set that ϵl is 0.001 for all l.

The experimental results for bi-objective COPs are summarized in Table 1.
For 10 nodes, the number of required iterations for user 1, 2 and 3 are 2.5, 1.6
and 2.1, respectively. These results are almost unchanged, when the number of
nodes increases. For 100 nodes, the number of required iterations for user 1, 2
and 3 are 2.8, 2.6 and 1.3, respectively. We can see that our algorithm satisfies
the preferences of user 1, 2 and 3 with few iterations. We consider that this

is because the “closest” solution defined by our algorithm are almost same as
the “closest” solution that user 1, 2 and 3 think. For user 4, the number of
required iterations are significantly increased compared to those for other users.
In Table 1, the number of required iterations are 25.3 for 10 nodes and 10.4 for
100 nodes. We consider that this is because there exists a divergence between the
“closest” solution defined by our algorithm and that user 4 thinks. Furthermore,
for user 4, the number of the required iterations decreases, when the number of
nodes increases. The number of the required iterations 10.4 for 100 nodes are
less than half of that for 10 nodes. We consider that this is because the solution
space of bi-objective COPs becomes dense, when the number of nodes increases.

We confirmed the similar results for tri-objective COPs. The experimental
results are summarized in Table 2. For 10 nodes, the number of required iter-
ations for user 1, 2 and 3 are 2.4, 2.3 and 2.3, respectively. These results are
almost unchanged, when the number of nodes increases. For user 4, the num-
ber of required iterations are significantly increased compared to those for other
users. The number of required iterations for user 4 increases compared to those
for bi-objective COPs. We consider that this is because the Pareto solutions
are sparse in tri-objective COPs compared to that in bi-objective COPs. Fur-
thermore, we do not see any direct relationship between the number of nodes
and the required iterations in Table 2. We consider that this is because Pareto
solutions in three dimensional tri-objective COPs are still sparse for 100 nodes,
while Pareto solutions in two dimensional bi-objective COPs becomes dense.

In summary, these experimental results reveal that our algorithm is effective
for user 1, 2 and 3, i.e., CES utility functions where the parameter p is between
0 and 1. However, for user 4, the number of the required iterations are signif-
icantly increased compared to those for other users. Our future works include
performing more detailed analysis, e.g., examining the relationships between the
size of Pareto front and the number of nodes/objectives. Furthermore, we hope
to examine the performance of our algorithm based on the utilities of real people
by experiments with human subjects.

Let us propose a method to reduce the number of the required iterations for
a user who has Leontief utility function. In the evaluations, our algorithm re-
quired a large number of iterations for user 4. We propose the following method
to improve the results for user 4. First, we estimate a coefficient α of an utility
function from a user’s preference point. Next, if our algorithm does not termi-
nate in a constant number of the required iterations, we assume that a user has
Leontief utility function using the estimated α. Then, we compute Pareto front
repeatedly without asking a user until the required iterations converge. We ex-
amined the number of the required iterations for user 4 using this method. We
used the same problem instances in section 4, i.e., 50 bi-objective COP problem
instances and 50 tri-objective COP problem instances. We set a constant number
of the required iterations to three. Our algorithm terminated, when the number
of the required iterations was four.

Extended MO-IA

We propose an extension of our algorithm, which finds several Pareto solutions
so that we can provide a narrower region, in which Pareto front may exist, i.e.,
more detailed information for Pareto front. When we consider an interaction
in the real world, it is natural to provide several candidate solutions. Also, a
narrower region is desirable. We extend the Phase 3 of our algorithm as follows.

Phase 3’ : Determine additional virtual (preference) points which are different
from a user’s preference point, and find a Pareto solution that is closest to
each point, respectively.

In our original algorithm, we find a candidate solution and provide a region,
in which Pareto front may exist, gradually. On the other hand, the extended
algorithm finds several candidate solutions and provides a narrower region. The
narrower region is obtained from the original region removing a region within
each distance between a preference point and the corresponding candidate solu-
tion. For the virtual preference points, for example, we choose the intersections
(P1 and P2) of function π and the border of the removed region in Fig. 7.

5 Conclusions

We developed a novel interactive algorithm for a MO-COP. This algorithm finds
a set of Pareto solutions and narrows a region, in which Pareto front exist, gradu-
ally. Furthermore, we showed that the complexity of our algorithm is determined
by the induced width of problem instances. In the evaluations, we defined four
users using a CES utility function, and examined the number of required itera-
tions for each user. We showed empirically that our algorithm is effective for the
users, who have linear and Cobb-Douglas utility functions. Finally, we proposed
a method that can reduce the number of the required iterations for a user, who
has Leontief utility function. Also, we proposed an extension of MO-IA, which
finds several Pareto solutions so that we can provide a narrower region, in which
Pareto front may exist. As future works, we intend to apply our algorithm on
challenging real world problems. Furthermore, we will develop an interactive
algorithm for a multi-objective DCOP, which is formalized in [6].

References

[1] K. Bringmann, T. Friedrich, F. Neumann, and M. Wagner. Approximation-guided
evolutionary multi-objective optimization. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pages 1198–1203, 2011.

[2] I. Das and J. E. Dennis. Normal-boundary intersection: A new method for gener-
ating the pareto surface in nonlinear multicriteria optimization problems. SIAM
Journal on Optimization, 8(3):631–657, 1998.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6(2):182–
197, 2002.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[5] T. Erfani and V. Utyuzhnikov, Sergei. Directed search domain: a method for

even generation of the Pareto frontier in multiobjective optimization. Engineering
Optimization, 43(5):467–484, 2010.

[6] F. M. D. Fave, R. Stranders, A. Rogers, and N. R. Jennings. Bounded decen-
tralised coordination over multiple objectives. In Proceedings of the 10th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 371–378,
2011.

[7] U. Junker. Preference-based inconsistency proving: When the failure of the best
is sufficient. In Proceedings of the 17th European Conference on Artificial Intelli-
gence, pages 118–122, 2006.

[8] R. Marinescu. Exploiting problem decomposition in multi-objective constraint
optimization. In Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming, pages 592–607, 2009.

[9] R. Marinescu. Best-first vs. depth-first and/or search for multi-objective con-
straint optimization. In Proceedings of the 22nd IEEE International Conference
on Tools with Artificial Intelligence, pages 439–446, 2010.

[10] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1995.

[11] A. Messac and C. Mattson. Generating well-distributed sets of pareto points for
engineering design using physical programming. Optimization and Engineering,
3(4):431–450, 2002.

[12] A. Messac, C. Puemi-sukam, and E. Melachrinoudis. Aggregate objective func-
tions and pareto frontiers: Required relationships and practical implications. Op-
timization and Engineering, 1(2):171–188, 2000.

[13] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston, 1999.

[14] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science, pages 86–92, 2000.

[15] P. Perny and O. Spanjaard. Near admissible algorithms for multiobjective search.
In Proceedings of the 18th European Conference on Artificial Intelligence, pages
490–494, 2008.

[16] E. Rollon and J. Larrosa. Bucket elimination for multiobjective optimization
problems. Journal of Heuristics, 12(4-5):307–328, 2006.

[17] E. Rollon and J. Larrosa. Multi-objective russian doll search. In Proceedings of
the 22nd AAAI Conference on Artificial Intelligence, pages 249–254, 2007.

[18] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, pages 631–639, 1995.

[19] J. E. Stiglitz. Economics. W.W.Norton & Company, 1993.

