
Considering Equality on Distributed Constraint Optimization Problem for Resource
Supply Network

Toshihiro Matsui and Hiroshi Matsuo
Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 Japan
Email: {matsui.t, matsuo}@nitech.ac.jp

Abstract—Distributed resource allocation is an important
application of multiagent systems. In this work, we focus
on a resource allocation problem that is motivated from a
power supply network that contains distributed sources. In
the supply network, resources that are initially distributed
among source nodes have to be shared among all nodes. The
problem is formalized as a resource constrained distributed
constraint optimization problem that is an extended class of
distributed constraint optimization problems (DCOPs). In the
formalization, cost functions represent preferences of agents on
resource use. We specifically consider allocating the cost values
to agents as evenly as possible. We present several methods
to select optimal assignment in consideration of the equality.
The characteristics of the proposed methods are experimentally
evaluated. Employing histograms and distinguishing types
are effective for reducing the variance while requiring high
computational costs. The number of histograms is able to be
limited without significant lack of the effects. The minimum-
maximum cost value as the main objective reduces the number
of iterations and histograms.

Keywords-resource allocation; distributed constraint opti-
mization; multi-agent; equality

I. INTRODUCTION

Distributed resource allocation is an important application
of multiagent systems. While there are a number of types of
resource allocation, including sensor networks and power
supply networks, resource allocation essentially contains
optimization problems. Therefore, distributed optimization
methods are necessary to solve the allocation.

As a basic framework of cooperative problem solving
in multiagent systems, Distributed Constraint Optimization
Problems (DCOPs) have been studied [1], [2], [3], [4].
With DCOPs, the states of agents and the relationships
between agents are formalized into a constraint optimization
problem that is solved by distributed search algorithms.
These studies focus on the optimization problems and dis-
tributed search algorithms that are essentially contained in
cooperative protocols of the multiagent systems. Several co-
operative problems including distributed resource scheduling
and sensor networks are represented as DCOPs [4], [5].
For more special cases, the representation of DCOPs can
be extended to meet a particular problem. A solver is then
also modified for the problem. Resource Constrained DCOPs
(RCDCOPs) [6] make up a dedicated class of problems that

explicitly represents shared resources as global constraints
that can be decomposed into agents.

We focus on a resource allocation problem motivated
from the power supply networks of smart grid systems.
In supply networks, resources that are initially distributed
among source nodes have to be shared among all nodes. In
a related work [7], a dedicated class of DCOPs and a solver
for the problem of power supply restoration [8] have been
proposed. The goal in the study is to generate feeder trees
under resource constraints.

In this study, we address sharing of resources in a feeder
tree. Optimization for the supply and consumption of re-
sources in a supply network that contains distributed sources
is considered an important domain. We define an example
problem motivated from resource sharing as a variation
of RCDCOPs in which the unary cost functions represent
agents’ preferences on resource use. The optimal solution
of the problem represents the appropriate assignment of
amounts of the resource that is supplied and consumed in
each node of the network.

We particularly focus on allocating cost values to agents
as evenly as possible. That is, the preferences of agents
should be evenly satisfied. While the equality of agents
is important in practical problems, it has not been well
addressed in studies of (RC)DCOPs. We present several
methods to select optimal assignment in consideration of
the equality. Characteristics of the proposed methods are
experimentally evaluated.

The rest of our paper is organized as follows: In Section II,
we address a resource allocation problem that is motivated
from a power supply network. The problem is then formal-
ized as an RCDCOP and a basic solver is shown. In III,
several methods to reduce inequality in optimal assignments
among agents are proposed. The proposed model and solvers
are experimentally evaluated in Section IV. Related works
are addressed in Section V and we set forth our conclusions
in Section VI.

II. PRELIMINARY

A. Motivated problem

We define a resource allocation problem on a network
that is motivated from power supply networks containing

distributed resources. In the network, amounts of the re-
source in the sources are allocated to sinks. For the sake of
simplicity, we limit the structure of the networks to trees.
Such feeder-trees are common in actual power networks.
We also assume that the feeder-trees are constructed in pre-
processing.

The network consists of the following elements:
• nodes: each node supplies or consumes an amount

of resource. Nodes that supply resources are called
sources. Nodes that consume other nodes’ resources
are called sinks. There are limitations on the amount
of supply and consumption. The node also has a
preference on the amount of the resource.

• links: each link connects two nodes. The links and
nodes form paths to transfer an amount of resource.
There are limitations on the amount of resource that is
transferred in a link. We do not consider the loss of the
resource when it is transferred.

In addition to the limitations on the amount of resource,
there is the constraint that the total amount of the resource
that is supplied and consumed must be zero. Basically, the
goal of the problem is to globally optimize an aggregation
of preference under the constraints.

Formally, the problem is defined by ⟨N,L,R, F,L⟩,
where N , L, R, F , and L are a set of nodes, a set of links,
a family set of amounts of resources on nodes, a set of cost
functions, and a family set of amounts of resources on links,
respectively.

For node i ∈ N , the preference of the supply and the
consumption on the amounts of the resource is represented
as follows:

• Ri: Ri ∈ R is a finite set of amounts of resource that
are supplied or consumed by node i. Where amount
r ∈ Ri is a negative value, r represents an amount of
the supplied resource. Where amount r is a positive
value, it represents an amount of consumed resources.
Node i chooses a value of the amount from Ri.

• fi(r): fi(r) ∈ F is a cost function from amount r ∈
Ri of the resource to a non-negative value. We use
cost functions to represent the preferences of the nodes
because solution methods are defined for minimizing
problems.

Each link is defined for a pair (i, j) of nodes. For link
(i, j) ∈ L, the transfer of the resource is represented as
follows:

• Li,j : Li,j ∈ L is a finite set of amounts of resource that
is transferred through link (i, j). Amount l ∈ Li,j is a
finite value such that −lci,j ≤ l ≤ lci,j , where lci,j is the
capacity of link (i, j). The positive and negative values
in Li,j are symmetrical. The sign of value l represents
the direction of the transfer. l takes a positive value
when the corresponding link transfers an amount of
resource on a downward path of a feeder-tree rooted at

a node.
In each node i ∈ N , the summation of ri and li,j for all

links (i, j) that connect node i must always be zero. The
constraint is defined using set Li of links that connect node
i.

ri +
∑

(i,j)∈Li

li,j = 0 (1)

For allocation R of amounts of the resource for all nodes,
the global cost f(R) is defined as follows:

f(R) =
∑
i∈N

fi(ri) (2)

Here ri takes a corresponding value in R. The goal of the
problem is to find the optimal allocation R∗ that minimizes
f(R) under the constraints.

B. Formalization as resource constrained DCOP

DCOP is a framework of multiagent cooperation. With
the representation of DCOPs, an optimization problem in
a multiagent system is defined as a constraint optimiza-
tion problem whose variables, constraints, and evaluation
functions are distributed among agents. The problem is
solved using distributed cooperative search algorithms that
are based on message communication.

RCDCOP is an extended class of DCOPs that contains
dedicated representations of resources and constraints related
to the resources. We define an RCDCOP that represents the
resource allocation problem in subsection II-A. The resource
allocation problem is directly translated into an RCDCOP
using variables, constraints, and functions.

The RCDCOP for the resource allocation on the network
is defined by ⟨A,Xr, X l, Dr, Dl, F, C⟩. Here, A represents
a set of agents. Xr is a set of variables that represent
amounts of supplied or consumed resources in the nodes.
X l is a set of variables that represent amounts of transferred
resources in the links. Dr and Dl are family sets of finite
domains of variables in Xr and X l, respectively. F is a set
of cost functions and C is a set of resource constraints.

Each agent i ∈ A in the RCDCOP corresponds to a node
in the resource allocation problem. For the sake of simplicity,
we use the notation of an agent and its corresponding node
interchangeably. Additionally, a partial order on a set of
agents is defined based on the feeder-tree rooted at a node.
Based on the feeder-tree and the corresponding partial order,
notations of parent agent pi and set Chi of child agents are
defined for each agent i.

Agent i has a variable xr
i ∈ Xr that represents the

amount of supplied or consumed resources. i also has a
set X l

i ⊂ X l of variables that represent the amount of
transferred resources via i. xl

i,j ∈ X l
i represents the amount

of resources transferred from agent i to its child agent j.
Similarly, xl

pi,i
∈ X l

i represents the amount of resources
transferred from i’s parent agent pi to i. Agent i decides

the values of the variables except xl
pi,i

whose value is
determined by pi.
Dr

i ∈ Dr defines the domain of variable xr
i for agent i.

Dr
i contains possible values of ri. Dl

i,j ∈ Dl defines the
domain of variable xl

i,j for link (i, j). Dl
i,j contains values

in Li,j .
fi(x

r
i) ∈ F is a cost function that corresponds to fi(ri)

for node i in the resource allocation problem. Similarly, ci ∈
C is a resource constraint for node i. The resource constraint
ci and global cost function f(X) for assignment X for all
variables in Xr ∪X l are defined as follows:

ci : xr
i +

∑
j∈Xl

i

xl
i,j = 0 (3)

f(X) =
∑
i∈N

fi(x
r
i) (4)

Here xr
i takes a corresponding value in X . The optimal

allocation X ∗ minimizes f(X) under the constraints.
As shown in Section V, the problem shown above is a

variation of the RCDCOP in [6].

C. Computation of globally optimal solution

A solution method is applied to the RCDCOP defined in
Subsection II-B. Basically, the method is a simple version
of the solution method shown in [6]. We extracted substan-
tial computation from the previous method to clarify the
essentials of the algorithm. Also, the algorithm is slightly
modified to meet our problem. A comparison of both studies
is discussed in Section V.

The computation of the cost value is recursively de-
fined. The optimal cost g∗i ({(xl

pi,i
, dpi,i)}) for assignment

(xl
pi,i

, dpi,i) of a resource from i’s parent pi and the subtree
rooted at agent i is represented as follows:

g∗i ({(xl
pi,i, dpi,i)}) = min

Xi

gi({(xl
pi,i, dpi,i)} ∪ Xi) (5)

gi({(xl
pi,i, dpi,i)} ∪ Xi) = δi({(xl

pi,i, dpi,i)} ∪ Xi)⊕⊕
j∈Chi,(xl

i,j ,di,j)∈Xi

g∗j ({(xl
i,j , di,j)}) (6)

δi({(xl
pi,i, dpi,i)} ∪ Xi) ={

fi(di) resource constraint ci is satisfied.
∞ otherwise (7)

Here, Xi denotes an assignment such that {(xr
i , di)} ∪∪

j∈Ci
{(xl

i,j , di,j)}, di ∈ Dr
i , di,j ∈ Dl

i,j . ⊕ denotes an
aggregation operator. While it is basically defined as a
summation, we will address another operator in a later
section.

In Equations (5), (6), and (7), for the sake of simplicity,
it assumed that each agent is able to refer to cost values and
assignments of other agents. However, in actual computa-
tion, the values are unknown until they are received from
other agents via messages. To represent the unknown cost

1 Main(){
2 Initialize().
3 until forever do { // message loop
4 until receive loop is broken do { receive messages. }
5 if ¬fTri ∧ (pi = ϵ ∨ dpi,i ̸= ϵ) then { Maintenance(). }
6 } }
7 Initialize(){
8 dpi,i ← ϵ. Xi ← ϕ. fTri ← F. fPTri ← F.
9 for all j ∈ Chi and d ∈ Dl

i,j do { g∗j,d ← ϕ. }
10 if pi = ϵ then { send (VALUEϵ→i, ϵ, T) to i. } } // initiate
11 Receive(VALUEpi→i, d, fTr){ // receive parent’s assignment
12 dpi,i ← s. fPTri ← fTr. }
13 Receive(COSTi←j , d, g∗){ // receive subtree’s cost value
14 if lb(g∗) > lb(g∗j,d) then { lb(g∗j,d)← lb(g∗). }
15 if ub(g∗) < ub(g∗j,d) then { ub(g∗j,d)← ub(g∗). } }
16 Maintenance(){
17 update gi({(xl

pi,i, dpi,i)} ∪ X) and g∗i ({(xl
pi,i, dpi,i)}).

18 if fPTri ∧ lb(g∗i ({(xl
pi,i, dpi,i)}) = ub(g∗i ({(xl

pi,i, dpi,i)})
19 then { choose an assignment X ∗i // termination
20 that gives ub(g∗i ({(xl

pi,i, dpi,i)}).
21 Xi ← X ∗i . fTri ← T. }
22 else{ update Xi based on a search strategy. } // search
23 for all j ∈ Chi do { send (VALUEi→j , di,j , fTri) to j
24 where (xl

i,j , di,j) ∈ Xi. } // send own assignment
25 if pi ̸= ϵ then { send (COSTpi←i, dpi,i, g

∗
i ({(xl

pi,i, dpi,i)})
26 to pi. } } // send subtree’s cost value

Figure 1. basic solver

values, a lower limit value 0 and an upper limit value ∞ are
employed. As a result, a cost value is separated into a lower
bound and an upper bound of the true value. We use notation
lb(·) and ub(·) to denote the lower and upper bounds.

The algorithm is based on tree-search and dynamic pro-
gramming. In the processing, the partial ordering of agents
is employed. The processing consists of two phases: the
computation of the cost values and the decision of the
optimal assignments of the variables.

In the computation of the cost values, the globally optimal
cost value is computed in a bottom-up manner. The tree-
search repeats the computation for each solution using
the boundaries of the cost values. In the root agent, the
boundaries eventually converge to the optimal value. Then,
the optimal assignments of the root agent’s variables are
determined. Similarly, another optimal assignment is recur-
sively determined in a top-down manner.

The pseudo code of the solver is shown in Figure 1. The
processing employs the following two messages:

• VALUE: VALUE messages are sent from an agent to
its child agents. The messages propagate assignments
of partial solutions. In the final steps, they also carry
flags that represent the termination of the agents.

• COST: COST messages are sent from an agent to its
parent agent. The message is employed to send cost
values for the current partial assignment of a parent
agent’s variable.

fTri and fPTri represent termination of agent i and i’s
parent, respectively. Basically, its processing consists of

the operations shown above. It is assumed that a tree is
generated using preprocessing. The root agent initiates the
search sending a VALUE message (line 10). Agents then
repeatedly exchange VALUE and COST messages. When
i receives a VALUE from its parent (line 11), assignment
from i’s parent is updated. When i receives a COST from its
child (line 13), g∗j,d is updated. The conditions in lines 14 and
15 ensure monotonicity in convergence of boundaries when
assignments of variables are asynchronously changed. After
receiving messages, a condition for termination is checked
(line 18). If the condition is not satisfied, the agent checks
the boundaries of the current assignment of its own variable.
Then, the agent changes the assignments of its own variables
based on an appropriate search strategy (line 22). Here, we
employ a best first search. When the root agent finds the
convergence of the globally optimal cost value, the search
terminates in a top-down manner.

III. METHODS REDUCING UNEQUALNESS

A. Basic idea

In the problem and the solution method shown in Sec-
tion II, only the globally optimal solution that minimizes
the total cost value is considered. However, the shares
of the cost values for all agents should be as equal as
possible in several practical resource allocation problems.
We therefore consider the equality of the agents in addition
to the total cost value. A problem that considers two criteria
is a multiple objective problem. While Pareto solutions are
usually computed for general multiple objective problems,
their computational cost is relatively high because of the
large solution spaces. Thus, we instead treat the equality as
an additional objective. Moreover, the shares of the total cost
values are determined within the results of the computation
of the globally optimal cost value. The solution space of the
original optimization problem therefore does not increase.
On the other hand, new problems are defined under the
original optimal cost value.

For the equality, we consider the following criteria: Both
values are minimized.

• variance of cost values
• maximum cost value

While the variance directly represents inequality, it requires
the distribution of cost values. On the other hand, minimiz-
ing the maximum cost value means improving the worst
cost of the agents. While computation of the minimum-
maximum cost value is relatively easy, it does not assure
equality. However, it does reduce the range of cost values
in several cases.

In the following section, we present additional methods
to employ these criteria.

B. Computation of variance

As addressed in Subsection III-A, to evaluate the variance,
the distribution of cost values is necessary. Histograms of

the cost values are therefore computed in the optimal cost
computation phase. Let h denote a histogram. Histogram h
is a table that represents a map from a cost value to the
number of agents of the cost value.

Note that multiple histograms may exist for an assign-
ment. The computation of set H∗

i ({(xl
pi,i

, dpi,i)}) of his-
tograms that corresponds to g∗({(xl

pi,i
, dpi,i)}) in Equa-

tion (5) is represented as follows:

H∗
i ({(xl

pi,i, dpi,i)}) =
∪
X∗

i

Hi({(xl
pi,i, dpi,i)} ∪ X ∗

i) (8)

Hi({(xl
pi,i, dpi,i)} ∪ Xi) =

{{⟨δi({(xl
pi,i, dpi,i)} ∪ Xi), 1⟩}} ⊗⊗

j∈Chi,(xl
i,j ,di,j)∈Xi

H∗
j ({(xl

i,j , di,j)}) (9)

In Equation (8), X ∗
i denotes i’s assignment that corresponds

to g∗({(xl
pi,i

, dpi,i)}). Note that there may be multiple
corresponding assignments. In Equation (9), ⟨a, b⟩ denotes
a part of a histogram representing that the count of a is b.
⊗ denotes an aggregation of sets of histograms.

In the aggregation, a new set of histograms that contains
the total histograms for all combinations of histograms of
i and i’s child agents is computed. Additionally, the same
histograms are integrated.

Because the histogram is not used in the distributed
tree-search, we only use true values of the histogram. For
an upper bound of cost value except ∞, corresponding
histograms have been computed. Therefore, an agent is able
to compute variances for its assignments when it determines
the assignments.

In the phase of the decision of the optimal assignments,
the variance of allocated cost values is considered and the
assignments of the minimal variance are chosen. Root agent
i chooses histogram h∗∗

i of minimal variance v∗∗i .

v∗∗i = min
X∗

i

vi(X ∗
i) (10)

vi(Xi) = min
h∈Hi(Xi)

variance of h (11)

The optimal assignment X ∗∗
i that corresponds with h∗∗

i is
also chosen. Moreover, histogram h∗∗

j , which is contained
in the aggregation of h∗∗

i , is identified for each child agent
j. Agent i then sends its assignment (xl

i,j , d
∗∗
i,j) ∈ X ∗∗

i and
h∗∗
j to each child node j.
Non-root agent i receives (xl

pi,i
, d∗∗pi,i

) and h∗∗
i from its

parent agent pi. Note that non-root agent i does not compute
h∗∗
i because it is received from i’s parent agent. Agent i

then chooses its X ∗∗
i and corresponding histograms for each

child. Similar computation is performed until it propagates
to leaf agents.

C. Types of agents

When there are agents whose preferences differ, equality
between different types of agents is not simply defined

using the single variance of their cost values. In that case,
the equality should be separately evaluated for each type
of agent. Here, we assume that the types of agents are
globally identified. Partitioning of the agents is therefore not
addressed in this study.

Let T denote a set of types of agents. To evaluate the
inequality for each type of agent, the distribution of the
cost values is computed for the type. The computation of
histograms is naturally extended into tuples of histograms.
Each agent i computes a set of tuples of histograms. A
tuple hT of histograms is represented as (ht, · · · , ht′) s.t.
t, · · · , t′ ∈ T . A set of tuples of histograms that is computed
in i for all related types is denoted as HT

i . When the root
agent i chooses its optimal assignments, there are multiple
objectives among types of agents. As a Pareto optimal value,
we use the minimum summation of variance values for all
types. The root agent i chooses tuple hT∗∗

i of histograms
ht∗∗
i for each type t based on the following evaluation value

vT∗∗
i :

vT∗∗
i = min

X∗
i

vTi (X ∗
i) (12)

vTi (Xi) = min
hT∈HT

i (Xi)

∑
ht∈hT

variance of ht (13)

The optimal assignment X ∗∗
i is also chosen. Additionally,

for each child agent j, a tuple hT∗∗
j of histogram ht∗∗

j that
is contained in the aggregation of hT∗∗

i is identified. Agent
i then sends its assignment (xl

i,j , d
∗∗
i,j) ∈ X ∗∗

i and hT∗∗
j to

each child node j. The decision of the optimal assignments
in non-root agents is similarly generalized for multiple types.

While the histogram is useful to compute detailed sta-
tistical criteria, its number of combinations exponentially
increases with the number of cost values and the number
of types in the worst case. To avoid the combinational
explosion, as a heuristic, we can leave k tuples whose
summation of variance values is smaller than others.

D. Using center values

As information that needs low computational cost, the
minimum summation of the cost values is available. Because
each agent knows its own cost values and several cost values
for each subtree, the agent is able to compute the allocation
of cost values among the agent and its child agents for
each known optimal assignment. Choosing relatively even
allocation of the cost values, the optimal assignments are
optimistically determined.

The minimum summation is already computed for the
main objective. On the other hand, it is necessary to separate
the minimum summation from the main objective in the case
of multiple types of agents shown in Subsection III-C. Here,
the case of multiple types is shown.

In the computation of cost values, agent i calculates the
tuple gT∗ of the optimal cost values gt∗i ({(xl

pi,i
, dpi,i)})

s.t. t ∈ T for assignment (xl
pi,i

, dpi,i) of resource from i’s

parent pi and the subtree rooted at agent i. The computation
is the same as that of Equations (5), (6), and (7) except
that δi({(xl

pi,i
, dpi,i)} ∪ Xi) is evaluated for only i’s type.

In addition, the minimization in Equation (5) should be
replaced by a union to compute a set of tuples similar to
Equation (8). However, we arbitrarily choose one of tuples
to reduce complexity.

In the decision of the optimal assignments, agent i enu-
merates optimal assignments that meet the main objective.
For each assignment X ∗

i , a vector gX∗
i

of cost values is
defined as follows:

gX∗
i
=



δi({(xl
pi,i

, d∗pi,i
)} ∪ X ∗

i)
gtj({(xl

i,j , d
∗
i,j)})

...
gtj′({(xl

i,j′ , d
∗
i,j′)})

...
gt

′

j ({(xl
i,j , d

∗
i,j)})

...
gt

′

j′({(xl
i,j′ , d

∗
i,j′)})


(14)

Here, j · · · j′ denotes elements of i’s child agents in Chi.
t · · · t′ denotes elements of set T of types. (xl

pi,i
, d∗pi,i

) is
the optimal assignment of i’s parent agent. (xl

i,j , d
∗
i,j) is a

part of the assignment in X ∗
i .

For all enumerated vectors, vectors g⊥ and g⊤ are com-
puted. While elements of g⊥ are minimum values for all
vectors, elements of g⊤ are maximum values. Then, the
vector gc whose elements are mean values of elements in g⊥

and g⊤ is computed. Finally, assignment X̃ ∗∗
i is chosen so

that ||gX∗
i
−gc|| is minimized. The aim of the central values

is to eliminate the influence of the majority of assignments
that have the same cost values.

E. Computation of maximum cost value
As additional sub-objective of the problem, minimization

of the maximum cost value for all agents is able to be
applied. In actual resource allocation, there may be cases in
which improvement of the worst cost is preferred. While the
sub-objective improves the worst cost value of the agents, it
may not improve the variance of cost values. On the other
hand, it works with other criteria. Here, we employ the
minimum-maximum cost value as a sub-objective next to
the main objective.

In the computation of cost values, agent i calculates
minimum-maximum value mi({(xl

pi,i
, dpi,i)} ∪ Xi) for as-

signment (xl
pi,i

, dpi,i) of resource from i’s parent pi, its own
assignment Xi, and the sub-tree rooted at agent i. Basically,
the computation resembles Equations (6) and (7). To com-
pute the maximum cost value, operator ⊕ in Equation (7) is
defined as a maximum function.

Moreover, the aggregation in Equation (5) is modified to
combine the main objective and the sub-objective. Here, a
binary relation < on a set of tuples (a, b) is defined. For

(a, b) and (a′, b′), (a, b) < (a′, b′) if and only if a < a′ ∨
(a = a′ ∧ b < b′). Applying the relation < to the minimum
function, Equation (5) is modified as follows:

(g∗i ({(xl
pi,i, dpi,i)}),m∗

i ({(xl
pi,i, dpi,i)})) = (15)

min
Xi

(gi({(xl
pi,i, dpi,i)} ∪ Xi),mi({(xl

pi,i, dpi,i)} ∪ Xi))

Other parts of the computation are generalized using the
tuples of gi and mi.

F. Minimum-maximum cost value as main objective

In Subsection III-E, we introduced a combination of a
main objective and a sub-objective. It is easy to modify the
combination so that the objectives are exchanged. In that
case, Equation (15) is modified as follows:

(m∗
i ({(xl

pi,i, dpi,i)}), g∗i ({(xl
pi,i, dpi,i)})) = (16)

min
Xi

(mi({(xl
pi,i, dpi,i)} ∪ Xi), gi({(xl

pi,i, dpi,i)} ∪ Xi))

The main objective is now different. On the other hand,
there is a possibility that the modification may reduce the
search because the number of maximum cost values is
usually less than the number of summation values.

There is an issue of non-monotonicity on the combination
of objectives. Consider tuple ⟨lb(m), ub(m), lb(g), ub(g)⟩ of
cost values. ⟨1, 3, 20, 20⟩ and ⟨2, 2, 10, 10⟩ satisfy lb(m) ≤
ub(m) and lb(g) ≤ ub(g). When we define lb(m, g) =
(lb(m), lb(g)) and ub(m, g) = (ub(m), ub(g)), we choose
lb(m, g) = (1, 20) and ub(m, g) = (2, 10) as minimum
values using relation <. Those values do not satisfy lb(g) ≤
ub(g). That often results lb(m) = ub(m) ∧ lb(g) > ub(g)
in later aggregations. We consider that as a closed boundary
and use the upper bound as the true value.

G. Embedding to the basic method

There are a few issues about embedding the proposed
methods to the basic solver shown in Figure 1.

The proposed methods are add-on processing. Therefore,
their computation extends the original processing or per-
forms beside the original processing. All of the additional
information that is passed between agents is carried with the
information of the original messages. The modifications of
the messages are only extensions of their payloads.

In actual computation, a cost value for the main objective
is separated into lower and upper bounds. The values in
the proposed methods shown in Subsections III-B, III-C and
III-D are computed with the upper bound of the cost values
for the main objective. The computation of the proposed
methods does not affect the computation of the original
bounds. Additionally, the proposed methods only need upper
bounds of their values because the (true) upper bound values
are always computed when the lower and upper bound cost
values for the main objective converge. Methods shown in
Subsections III-E and III-F extend the main objective.

H. Correctness and complexity

The basic solver is a simple version of the conven-
tional algorithm shown in [6]. Therefore, its correctness and
complexity basically resemble the conventional algorithm.
Time complexity exponentially grows with the number of
variables in the worst case. Space complexity in each agent
exponentially grows with the number of its variables. There-
fore, it is important to limit the number of branches (i.e. the
number of variables for child nodes) and the domains of
variables.

As addressed in Subsection III-A, the proposed method
is performed under the results of the computation of the
cost values for the main objectives. Therefore, the proposed
methods provide the best effort to choose one of the known
candidates of the optimal solution of the original problems.
On the other hand, the proposed method does not increase
the search of the basic solver.

The number of sets of histograms for each assignment
exponentially grows with the number of cost values in
the worst case. Similarly, the number of types of agents
exponentially increases the number of combinations of cri-
teria. The complexity of computing the center values and
minimum-maximum values are in basically the same order
as the original computation of cost values.

IV. EVALUATION

The proposed methods are experimentally evaluated using
example problems. The aim of the experiments is to illustrate
several behaviors of the proposed methods. The problems
contain several types of nodes including source and sink
nodes. We designed nodes with parameters ⟨rl, ru, rt, nt⟩. rl
and ru are the minimum and maximum amount of required
resource, respectively. rt is the most preferred amount of the
resource. nt is the number of nodes for each type. The cost
function is defined as fi(r) = |rt−r|. The same capacity lc
is set for all links. The structure of the networks is a linear
or binary tree. All problem instances are feasible.

Several methods from the following combinations of
methods are compared. The objectives of the problems are
the minimum summation (sum) or the minimum-maximum
value (max) of cost values. These are used as the main
objective or the sub-objective. The methods to choose the
optimal solution are as follows:

• grd: in the decision of the optimal cost, each agent
chooses its own assignments so that its own cost value
is minimal.

• hst: the optimal assignments are chosen using his-
tograms shown in Subsection III-B. hstk stores at most
k histograms.

• cnt: the optimal assignments are chosen using center
values shown in Subsection III-D.

In addition, types of agents are distinguished (t) or not.
To evaluate the number of iterations, the simulation of the

Table I
LINEAR NETWORKS OF 15 NODES (2× 14 + 1 (LEAF) = 29 VARIABLES) — TYPES = 0: ⟨−6, 0,−6, 3⟩, 1: ⟨0, 2, 2, 6⟩, 2: ⟨0, 3, 3, 6⟩

The number of iterations (cycles), the number of histograms, and cost values of nodes are shown for each algorithm. Average/variance cost values
are also categorized for each type of nodes.

lc 3 12
alg. #iter. #hist. max. ave. var. ave. cost (type) var. cost (type) #iter. #hist. max. ave. var. ave. cost (type) var. cost (type)

cost cost cost 0 1 2 0 1 2 cost cost cost 0 1 2 0 1 2
sum-grd 167 0 4.40 1.54 2.06 1.85 1.21 1.72 3.92 0.73 1.75 364 0 3.12 0.83 1.42 0.08 0.79 1.25 0.32 0.80 1.86
sum-hst 167 9966 3.08 1.54 0.84 1.85 1.40 1.53 1.53 0.41 0.50 364 21297 1.08 0.83 0.17 0.08 1.03 1.01 0 0.01 0.02
sum-t-hst 167 89756 3.12 1.54 1.14 1.85 1.13 1.79 1.53 0.25 0.42 364 683324 1.80 0.83 0.77 0.08 0.76 1.28 0 0.003 0.003
sum-t-hst10 167 31939 3.12 1.54 1.14 1.85 1.13 1.79 1.53 0.25 0.42 364 84487 1.80 0.83 0.77 0.08 0.76 1.28 0 0.003 0.003
sum-t-cnt 167 0 3.34 1.54 1.07 1.85 1.14 1.79 1.73 0.32 0.83 364 0 2.04 0.83 0.55 0.08 0.74 1.30 0.03 0.17 0.59
sum-max-t-hst 169 58446 3.08 1.54 1.03 1.85 1.22 1.71 1.53 0.29 0.41 361 845799 1.08 0.83 0.19 0.08 1.04 1.00 0 0.003 0.003
sum-max-t-hst10 169 21640 3.08 1.54 1.03 1.85 1.22 1.71 1.53 0.29 0.41 361 57401 1.08 0.83 0.19 0.08 1.04 1.00 0 0.003 0.003
sum-max-t-cnt 169 0 3.08 1.54 0.94 1.85 1.27 1.65 1.53 0.39 0.66 361 0 1.08 0.83 0.17 0.08 1.01 1.03 0 0.01 0.02
max-sum-t-hst 124 32851 3.08 1.54 1.03 1.85 1.22 1.71 1.53 0.29 0.41 230 262341 1.08 0.83 0.19 0.08 1.04 1.00 0 0.003 0.003
max-sum-t-hst10 124 15852 3.08 1.54 1.03 1.85 1.22 1.71 1.53 0.29 0.41 230 34443 1.08 0.83 0.19 0.08 1.04 1.00 0 0.003 0.003
max-sum-t-cnt 124 0 3.08 1.54 0.94 1.85 1.27 1.65 1.53 0.39 0.66 230 0 1.08 0.83 0.17 0.08 1.01 1.03 0 0.01 0.02

Table II
BINARY TREE OF 50 NODES (3× 25 + 25 (LEAF) = 100 VARIABLES) — TYPES = 0: ⟨−14, 0,−14, 10⟩, 1: ⟨0, 4, 4, 20⟩, 2: ⟨0, 6, 6, 20⟩

The number of iterations (cycles), the number of histograms, and cost values of nodes are shown for each algorithm. Average/variance cost values
are also categorized for each type of nodes.

lc 7 28
alg. #iter. #hist. max. ave. var. ave. cost (type) var. cost (type) #iter. #hist. max. ave. var. ave. cost (type) var. cost (type)

cost cost cost 0 1 2 0 1 2 cost cost cost 0 1 2 0 1 2
sum-grd 202 0 12.54 3.17 9.72 4.91 2.15 3.31 20.17 3.36 7.55 661 0 7.20 1.33 5.39 0.34 1.25 1.92 3.44 3.16 7.29
sum-t-hst10 202 70249 8.48 3.17 5.09 4.91 2.05 3.41 10.44 1.16 2.00 661 235190 3.12 1.33 1.66 0.34 1.39 1.78 0.76 0.21 0.31
sum-t-cnt 202 0 10.02 3.17 5.83 4.91 2.11 3.34 12.69 1.53 3.47 661 0 4.58 1.33 1.79 0.34 1.29 1.88 0.86 0.90 2.14
sum-max-t-hst10 203 52677 8.48 3.17 4.60 4.91 2.34 3.12 10.44 1.40 1.75 660 174293 2.54 1.33 0.83 0.34 1.50 1.67 0.76 0.25 0.30
sum-max-t-cnt 203 0 8.48 3.17 5.15 4.91 2.32 3.14 10.71 1.86 2.84 660 0 2.54 1.33 0.96 0.34 1.55 1.62 0.76 0.57 0.62
max-sum-t-hst10 181 47203 8.48 3.17 4.61 4.91 2.34 3.12 10.44 1.40 1.75 577 151821 2.54 1.33 0.83 0.34 1.50 1.67 0.76 0.25 0.30
max-sum-t-cnt 180 0 8.48 3.17 5.17 4.91 2.31 3.14 10.71 1.89 2.87 577 0 2.54 1.33 0.96 0.34 1.55 1.62 0.76 0.58 0.62

solution method is synchronized for each cycle. In a cycle,
each agent processes messages in its receiving queue. The
agent also assigns messages to its sending queue. At the end
of the cycle, the messages are transferred. For each setting,
the results of 50 instances are averaged.

Table I shows the results for the linear networks. The
number of iterations (cycles), the number of histograms,
and cost values of nodes are shown for each algorithm.
Average/variance cost values are also categorized for each
type of nodes.

The variance of the cost values is relatively large in the
results of sum-grd, because agents greedily choose their
own assignments. While sum-hst decreases global variance
values, the variance of each type of agents is relatively large.
In the results of sum-t-hst, the variance is relatively small
for several types (e.g. lc=3, type=1). On the other hand, the
difference between types is relatively large.

max-sum-* needs fewer numbers of iterations because it
handles fewer combinations of cost values. In comparison
with sum-t-hst*, max-sum-t-hst* and sum-max-t-hst* reduce
the total number of histograms because they reduce the
number of (locally) optimal solutions.

In results of *-t-cnt, the variance of costs for each type is
relatively larger than that of *-t-hst because cnt only use the
summation of cost values. While *-t-hst10 stores the best 10
histograms per agent, the quality of results resembles that
of *-t-hst.

Table II shows the results for the networks of binary trees.
Basically, the results resemble the case of the linear networks

while the number of variables and the size of variables’
domains are relatively large.

In total, we can see that employing histograms and distin-
guishing types are effective for reducing the variance while
requiring high computational costs. Moreover, the number of
histograms is able to be limited without significant lack of
the effects. The minimum-maximum cost value as the main
objective reduces iterations. Also, the minimum-maximum
cost value as objectives reduces the number of histograms.

In the case where the capacity of the link is relatively
tight, the pre-defined types of agents mismatch with differ-
ences of actual limitations among the agents. To overcome
that, more studies to identify actual types will be necessary.

V. RELATED WORKS

The problem shown above is a variation of the RCDCOP
in [6]. In the previous work, multiple types of resources are
allocated to agents. While a resource constraint is originally
defined as a global constraint for each type of resource,
the global constraint is decomposed into constraints using
variables that represent shares of the resource. The rep-
resentation of the decomposed constraints is basically the
same for our representation. There are minor differences
from the previous work: 1) Only one type of resource is
defined. 2) We limit the resource constraints from inequality
constraints to equality constraints. 3) The initial location of
the resource is defined. Also, it can divide the resource into
multiple source nodes. 4) As a result of the distributed source
nodes in the feeder-trees, the variables take negative values

if necessary. 5) Capacities of the links are defined. 6) Instead
of binary cost functions, unary cost functions are defined to
represent preferences of nodes.

The proposed method simultaneously computes different
criteria. It appears that the approach also relates multiple
objective DCOPs [9], while we avoided exact multiple
objective problems that generate high computational costs
to compute the Pareto front. How to employ the proposed
criteria in the framework of multiple objective DCOPs will
be investigated in a future work.

In our study, agents are partitioned based on their type.
How to partition the agents automatically is possibly related
to other studies, including the Coalition Structure Genera-
tion [10].

We employed a basic solver to clarify the essentials of the
computation. There are several efficient methods for these
types of solvers [2], [11], [12]. Also, there are other solvers
based on the pseudo-trees [3], [13]. The proposed methods
can be applied with these methods.

VI. CONCLUSION

In this work, we focused on a resource sharing problem
that is motivated from a power supply network containing
distributed sources. The resource allocation problem was
formalized as a resource constrained distributed constraint
optimization problem in which the cost functions represent
preferences of agents on resource use. We then proposed
several methods to reduce inequality of cost values that
are allocated to agents. The experimental result shows the
effects of the proposed methods. Employing histograms and
distinguishing types are effective for reducing the variance
while requiring high computational costs. The number of
histograms is able to be limited without significant lack of
the effects. The minimum-maximum cost value as the main
objective reduces the number of iterations and histograms.

Our future work will include investigations of the pro-
posed criteria in the framework of multiple objective
DCOPs, partitioning of agents to identify their types au-
tomatically, and studies on more practical problems.

ACKNOWLEDGMENT

This work was supported in part by Grant-in-Aid for
Young Scientists (B), 22700144 and the Artificial Intelli-
gence Research Promotion Foundation.

REFERENCES

[1] R. Mailler and V. Lesser, “Solving distributed constraint
optimization problems using cooperative mediation,” in 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems, 2004, pp. 438–445.

[2] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt:
Asynchronous distributed constraint optimization with quality
guarantees,” Artificial Intelligence, vol. 161, no. 1-2, pp. 149–
180, 2005.

[3] A. Petcu and B. Faltings, “A scalable method for multiagent
constraint optimization,” in 19th International Joint Confer-
ence on Artificial Intelligence, 2005, pp. 266–271.

[4] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg, “Distributed
stochastic search and distributed breakout: properties, com-
parison and applications to constraint optimization problems
in sensor networks,” Artificial Intelligence, vol. 161, no. 1-2,
pp. 55–87, 2005.

[5] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham, “Taking DCOP to the Real World: Efficient
Complete Solutions for Distributed Multi-Event Scheduling,”
in 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems, 2004, pp. 310–317.

[6] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Mat-
suo, “Resource constrained distributed constraint optimization
with virtual variables,” in 23rd AAAI Conference on Artificial
Intelligence, 2008, pp. 120–125.

[7] A. Kumar, B. Faltings, and A. Petcu, “Distributed constraint
optimization with structured resource constraints,” in AAMAS
’09: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems, 2009, pp. 923–
930.

[8] S. Thiebaux and M. odile Cordier, “Supply restoration in
power distribution systems - a benchmark for planning under
uncertainty,” in In Pre-Proceedings of the 6th European
Conference on Planning (ECP-01, 2001, pp. 525–532.

[9] F. M. Delle Fave, R. Stranders, A. Rogers, and N. R.
Jennings, “Bounded decentralised coordination over multiple
objectives,” in 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, 2011, pp. 371–
378.

[10] S. Ueda, A. Iwasaki, M. Yokoo, M.-C. Silaghi, K. Hirayama,
and T. Matsui, “Coalition structure generation based on
distributed constraint optimization,” in AAAI, 2010.

[11] M. C. Silaghi and M. Yokoo, “ADOPT-ing: unifying asyn-
chronous distributed optimization with asynchronous back-
tracking,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 19, no. 2, pp. 89–123, 10 2009.

[12] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Mat-
suo, “Directed soft arc consistency in pseudo trees,” in
AAMAS ’09: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems, 2009, pp.
1065–1072.

[13] A. Petcu and B. Faltings, “O-DPOP: An algorithm for
Open/Distributed Constraint Optimization,” in National Con-
ference on Artificial Intelligence, 2006, pp. 703–708.

