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Abstract

Constructing Directed Acyclic Graph (DAG) on a graph is one of the fundamental problems
of graph theory. We propose a self-stabilizing protocol for DAG construction on mobile ad-hoc
network (MANET) and show that it can construct a DAG which has better property than known
one. Furthermore, we evaluate our protocol by applying it to geocast protocol on MANET. Our
computer simulation results show that our proposed geocast protocol is better than known geocast
protocol GeoTORA which also uses a DAG.
keywords: Self-stabilizing, DAG, Geocast, MANET

1 Introduction

A distributed protocol is a protocol designed to run on a network (distributed system) that consists of
processes communicating with each other through communication links. A self-stabilizing protocol is a
distributed protocol that achieves its intended behavior regardless of the initial configuration of a network.
Thus, a self-stabilizing protocol is resilient to any number and any type of transient faults: after the last
transient fault occurs, the protocol starts to converge to its intended behavior. Furthermore, if topology
of the network changes the protocol starts to converge to its intended behavior. Hence, a self-stabilizing
protocol also tolerates to topology change of the network.

A directed acyclic graph (DAG) is a directed graph with no directed cycle. A node without any
outgoing edges is called a sink. Therefore, there is at least one sink in any DAG. Maintaining a DAG
is required to solve various problems, e.g. leader election [1], coloring [2], routing [3, 4] and so on. For
example, a leader election protocol proposed in [1] constructs a DAG such that there exists just one sink
in the connected network, and the sink elects itself a leader. TORA [3] implements a unicast routing in a
mobile ad hoc network (MANET) by using a DAG which has one sink to deliver packets to a destination
node (a sink node in the DAG). GeoTORA [4], which is one of the protocols for geocasting in MANET,
also uses the DAG-based approach.

Geocasting has been proposed as a mechanism to deliver messages to interest nodes within a given
geographical region [5]. In geocasting, a node automatically joins a set of nodes that can receive geocast
messages (we call this set a geocast group) if the node is in the region specified for the geocasting (we call
this region a geocast region) while a node becomes a member of the multicast group by explicitly joining
the group in a multicast protocol. GeoTORA [4] implements the geocasting by the following steps. First,
GeoTORA floods control packets in the network. If some node in a geocast group receives the control
packet, it begins to construct a DAG whose sink is itself. After constructing the DAG in the network,
geocast messages are transmitted along the DAG edges from a source node to members of the geocast
group.

In the use of a DAG for geocasting in MANET, it is important to construct a DAG that has high
robustness or high accuracy of geocast message delivery. To maintain a DAG adapting to the network
topology change, we propose a self-stabilizing DAG constructing protocol. To construct paths from any
node to a node in the geocast region, we need to construct a DAG such that each node in a given set of
nodes becomes a sink. A self-stabilizing protocol for this DAG constructing problem has been proposed
in [6]. This protocol takes a simple approach which uses identifiers of nodes and its distance from the
nearest sink. So, we call this protocol DAGNO (Nearest sink Oriented). To enhance the accuracy of the
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geocast delivery, we propose a new self-stabilizing DAG constructing protocol, which uses distances from
all sinks and is called DAGAO (All sinks Oriented). Then, we show that our protocol DAGAO has better
property than DAGNO by computer simulations.

Furthermore, We perform some computer simulations to evaluate the performance of the geocast
protocols that use DAGNO and DAGAO for constructing a DAG, and GeoTORA. The simulation results
show that our geocast protocols can deliver a geocast message to members of the geocast group with high
accuracy although the communication overhead becomes slightly large.

The outline of this paper is as follows. The model and definitions are presented in Section 2. In Section
3 we describe protocol DAGNO proposed in [6]. In Section 4 we present DAGAO. We compare properties
of DAGs constructed by DAGNO and DAGAO in Section 5. In Section 6 we describe implementation
of our geocast protocols on practical networks and outline of GeoTORA. In Section 7 we discuss the
simulation results for performance evaluation of geocast protocols. Finally, we conclude in Section 8.

2 The System model and Assumption

2.1 Graph

An (undirected) graph G is denoted by G = (V,E), where V = {v0, v1, · · · , vn−1} is a set of nodes and
E is a set of edges. When there is an edge between vi and vj , we denote (vi, vj) ∈ E. The sequence of
nodes v0, v1, · · · , vk is called a v0-vk path if ∀i, 0 ≤ i ≤ k − 1, (vi, vi+1) ∈ E. The length of v0-vk path is
k. The distance of vi and vj is the minimum length over pi-pj paths, and denoted by dist(pi, pj). e(v) is
defined as e(v) = max{dist(v, u)|u ∈ V }.

A directed graph
−→
G is denoted by

−→
G = (V,

−→
E ), where V = {v0, v1, · · · , vn−1} is a set of nodes and

−→
E is a set of directed edges. When there is a directed edge from vi to vj , we denote

−−−−→
(vi, vj) ∈ −→

E . If
−−−−→
(vi, vj) ∈

−→
E , we say vi has an outgoing edge to vj and vj has an incoming edge from vi. If a directed

graph
−→
G has no cycle,

−→
G is called a directed acyclic graph (DAG). A node with only incoming edges is

called a sink.

Definition 1 (DAG constructing problem). For a given connected graph G = (V,E) and a given set
of nodes T ⊆ V , we give a direction to each edge in E′ = E − {(u, v)|u, v ∈ T} and construct a DAG
−→
G = (V,

−→
E ) = {−→e |−→e =

−−−→
(u, v) or

−−−→
(v, u) for each (u, v) ∈ E′}) such that each node in T is a sink.

We show an example of a DAG which satisfies this definition in Fig. 1.

v2

v4

v1

v5v3

T={v1,v2}

an edge between
the nodes in T
has no direction

Figure 1: An example of the DAG
defined in Definition 1

2.2 Distributed System

A distributed system consists of n communicating processes. We
model its communication network by an undirected graph N =
(P,L), where P and L respectively represent the sets of the pro-
cesses and the bidirectional communication links. Note that we
can consider a network as a graph, hence we may use “nodes” and
“edges”, and “processes” and “links” interchangeably. Each pro-
cess has a totally ordered identifier. Simply, the identifier of process
Pi is denoted by Pi. When a link connects processes Pi and Pj , this
link is denoted by (Pi, Pj). If (Pi, Pj) ∈ L, we say Pj is a neighbor
of Pi and vice versa, and the set of neighbors of Pi is denoted by
Ni. We assume each process knows its own and neighbors’ iden-
tifiers. Communication is carried out by means of shared variables. Each process holds a set of shared
variables and can access them to read and write. Each process can also access its neighbors’ variables to
read.

A state of a process is defined by values of its variables. A configuration of a network is specified by
an n-tuple c = (q0, q1, · · · , qn−1) where qi stands for the state of Pi. Let ci and ci+1 be configurations and
A be a distributed protocol. A computation of a protocol A is a maximal (possibly infinite) sequence of
configuration E = c1, c2. · · ·, when ci changes to ci+1 by executing protocol A of any set of processes.

We say that process Pi is enabled in a configuration c if Pi can change its state by executing its
protocol A in c. We assume a strongly fair distributed daemon as a scheduler [7]. The distributed
daemon is a scheduler such that if one or more processes are enabled during an execution of a protocol
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then the daemon chooses at least one (possibly more) of these enabled processes to execute the protocol.
A daemon is strongly fair if any process that is enabled infinitely often is eventually chosen for execution.

In order to compute the time complexity of a computation, we use a round. The first round in an
computation E is the shortest prefix E′ of E such that each process executes at least one step in E′. Let
E′′ be the suffix of E that follows E′, E = E′E′′. The second round of E is the first round of E′′, and
so on.

2.3 Self-stabilizing

Let LE be any set of configurations. Protocol A is said to be self-stabilizing for LE , iff the following two
conditions hold:

1. convergence: the protocol eventually reaches a configuration in LE .

2. closure: every process never changes its variables at a configuration in LE .

When protocol A is self-stabilizing for LE , LE is called a set of legitimate configurations.

3 Protocol DAGNO [6]

In this section, we describe a self-stabilizing DAG constructing protocol for a given graph G = (V,E) and
a given set of nodes T (⊆ V ), which is proposed in [6]. Each node Pi has constant ti such that if Pi ∈ T
then ti is set to true and otherwise ti is set to false, automatically.

DAGNO assumes that, on each node Pi, there exists an underlying topology maintenance scheme that
stores identifiers of the neighbors in Ni. Each node Pi refers Ni and accesses the neighbors’ variables,
then Pi changes its own variables, if possible, according to the protocol.

Every node Pi maintains the following two variables:

• di: di denotes min{dist(Pi, Pj)|Pj ∈ T}.

• Outi: Out i ⊆ Ni. A set of nodes connected by outgoing edges from Pi.

We can construct a DAG simply to use the totally ordered identifier, e.g. if Pj < Pi then the edge
between Pi and Pj is directed from Pi to Pj . However, this DAG may not satisfy Definition 1. Since
every node in T should be a sink, each node Pi maintains di that denotes min{dist(Pi, Pt)|Pt ∈ T}. Then,
the direction of each edge is determined by a lexicographic order of the distance and the identifier, i.e.
if dj < di or (dj = di) ∧ (Pj < Pi) then the edge is directed from Pi to Pj and Pj ∈ Out i. And all edges
between nodes in T have no direction. Notice that Out i is not essential for construction of a DAG, which
is used by another protocol that uses a DAG. To compute the minimum distance from T , each node Pi

takes the following strategies:

• When Pi ∈ T then di is set to 0.

• When Pi /∈ T then di is set to the minimum distance that the neighbors have plus 1.

We show protocol DAGNO in Fig. 2.
Then, Miura et al. showed the following theorem.

Theorem 1. DAGNO constructs a DAG
−→
G = (V,

−→
E ) for T ⊆ V , satisfying the following conditions:

• ∀Pi ∈ T, di = 0

• ∀Pi /∈ T, di = min{dist(Pi, Pt)|Pt ∈ T}

• −−−−−→
(Pi, Pj) ∈

−→
E iff (Pi /∈ T ) ∧ (dj < di ∨ (dj = di) ∧ (Pj < Pi)) ∧ ((Pi, Pj) ∈ E)
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1: if ti ∧ (di 6= 0) then
2: di := 0
3: else if ¬ti ∧ (di 6= min{dj |Pj ∈ Ni}+ 1) then
4: di := min{dj |Pj ∈ Ni}+ 1
5: end if
6: if ti then
7: Outi := φ
8: else
9: Outi := {Pj |∀Pj ∈ Ni,

(dj < di) ∨ ((dj = di) ∧ (Pj < Pi))}
10: end if

Figure 2: Protocol DAGNO on node Pi

4 Protocol DAGAO

In this section, we describe protocol DAGAO, which is a self-stabilizing DAG constructing protocol for a
given graph G = (V,E) and a given set of nodes T (⊆ V ). Then, we prove the correctness of the protocol.

In DAGNO, the direction of an edge between nodes that are equidistance apart from the nearest sink
is determined by identifier of them, regardless of the distance from other sinks. We consider that to
determine the direction of such edges by using distances from the other sinks, there is the potential for
an increase of the number of the reachable sinks from any node, which leads to an enhancement of the
accuracy of a geocast message delivery.

4.1 Description of the Protocol

Each node Pi has constant ti such that if Pi ∈ T then ti is set to true and otherwise ti is set to false,
automatically.

DAGAO assumes that, on each node Pi, there exists an underlying topology maintenance scheme that
stores identifiers of the neighbors in Ni. Each node Pi refers Ni and accesses the neighbors’ variables,
then Pi changes its own variables, if possible, according to the protocol.

Every node Pi maintains the following one constant and two variables:

• N: A constant which denotes an upper bound of the number of nodes.

• Li: Li = {(Pk, lk)|Pk ∈ P, lk = dist(Pi, Pk)}. We assume that we can access to lk by Li[Pk]. Notice
that if Pi does not receive any information about dist(Pi, Pk), (Pk, lk) is not included in Li. At this
time, for simplicity, let Li[Pk] be ∞.

• Out i: Out i ⊆ Ni. A set of nodes which are connected by outgoing edges from Pi.

In DAGNO, each node Pi maintains the distance from the nearest sink, i.e. min{dist(Pi, Pt)|Pt ∈ T}.
On the other hand, in DAGAO each node Pi maintains every distance from every sink. The distance from
each sink to Pi is stored in Li. If a node Pi is in T , Pi maintains (Pi, 0), which denotes the distance from
Pi to Pi, in Li. Each node Pi records the minimum distance that the neighbors have plus 1. To delete
distance information for the nodes that are not in T , we use an upper bound N of the number of nodes.

The direction of an edge connecting a pair of nodes Pi and Pj is defined as from Pi to Pj , i.e.
Pj ∈ Out i, iff (Lj <d Li) ∨ ((Lj =d Li) ∧ (Pj < Pi)). The binary relation Li <d Lj and Li =d Lj is
defined as follows:

Definition 2. Let Pi and Pj be any nodes. Let L′
i = {a0, a1, · · · , am} be an ordered set such that the

set {at|at ∈ Li} is sorted in ascending order with lexicographical manner. Let L′
j = {b0, b1, · · · , bn} be

defined by the same way. Let k = min(m,n).

• Li <d Lj iff (a0 < b0) ∨ (∃s, 0 < s ≤ k, ∀u, 0 ≤ u < s, (au = bu) ∧ (as < bs))

• Li =d Lj iff ∀s, 0 ≤ s ≤ k, as = bs

We show protocol DAGAO in Fig. 3.
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1: Ltmp := φ
2: for all Pj ∈ Ni do
3: for all (Pk, lk) ∈ Lj do
4: if (Pk 6= Pi) ∧ (lk < N− 1) then
5: if Ltmp[Pk] = ∞ then
6: Ltmp := Ltmp ∪ {(Pk, lk + 1)}
7: else if lk + 1 < Ltmp[Pk] then
8: Ltmp[Pk] := lk + 1
9: end if

10: end if
11: end for
12: end for
13: Li := Ltmp

14: if ti then
15: Li := Li ∪ {(Pi, 0)}
16: Outi := φ
17: else
18: Outi := {Pj |Pj ∈ Ni, (Lj <d Li) ∨ ((Lj =d Li) ∧ (Pj < Pi))}
19: end if

Figure 3: Protocol DAGAO on node Pi

4.2 Correctness Proof

First, we define the legitimate configuration.

Definition 3 (Legitimate Configuration). A configuration LEAO of protocol DAGAO is legitimate if
every node Pi satisfies the following two conditions.

1. Li = {(Pj , dist(Pj , Pi))|∀Pj ∈ T )}

2. (ti ∧Out i = φ) ∨ (¬ti ∧Out i = {Pk|Pk ∈ Ni, (Lk <d Li) ∧ ((Lk =d Li) ∨ (Pk < Pi))})

DAGAO updates Li in lines 1-13 of Fig. 3. Then, focus on the distance from a node Pk (Pk 6= Pi):
whether an information about a distance from Pk to Pi is in Li and the value of the distance from Pk to
Pi depends on the information about the distance from Pk to a neighbor of Pi, and the following property
is satisfied.

Property 1. Let Pi and Pk (6= Pi) be any nodes. If Pi executes DAGAO at least once, the following
condition holds.

Li[Pk] =

 ∞ (∀Pj ∈ Ni,
Lj [Pk] = N− 1 ∨ Lj [Pk] = ∞)

min{Lj [Pk]|Pj ∈ Ni}+ 1(otherwise)

Then, we show that protocol DAGAO is self-stabilizing for LEAO.

Lemma 1. Let Pt in T . After at most k-th round, the following two conditions hold.

• ∀Pi, dist(Pi, Pt) ≤ k → Li[Pt] = dist(Pi, Pt)

• ∀Pj , dist(Pj , Pt) > k → Lj [Pt] > k

Proof. We prove by induction on the number of rounds.
After 0th round, Lt[Pt] = 0 holds and remains the same afterward. Let Pi be any node such that

dist(Pi, Pt) > 0 (Pi 6= Pt). Since min{Lj [Pt]|Pj ∈ Ni} ≥ 0 holds, then Li[Pt] > 0 holds.
Next, we assume that the following conditions hold after m-th round.

• ∀Pi, dist(Pi, Pt) = m → Li[Pt] = dist(Pi, Pt)

• Li[Pt] remains unchanged afterward

• ∀Pj , dist(Pj , Pt) > m → Lj [Pt] > m
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After (m+1)-th round, let Pi be any node such that dist(Pi, Pt) = m+1. Pi has at least one neighbor
Pj such that dist(Pj , Pt) = m. From the assumption of the induction, any node Pk, with Lk[Pt] < m,
is not a neighbor of Pi. Then Li[Pt] = m + 1 holds. In addition, since Lj [Pt] remains unchanged,
Li[Pt] also remains unchanged afterward. Let Pl be any node such that dist(Pl, Pt) > m + 1. Since
min{dist(Pq, Pt)|Pq ∈ Nl} ≥ m+ 1 and the assumption of induction, Ll[Pt] > m+ 1 holds.

Lemma 2. Let Pi be any node not in T and c be any configuration. If min{Lj [Pi]|Pj ∈ V } = l(l 6= ∞)
holds in c, min{Lj [Pi]|Pj ∈ V } ≥ l + 1 or ∀Pj ∈ V, Lj [Pi] = ∞ holds after one round starting from c.

Proof. From Property 1, if l < N − 1 holds then min{Lj [Pi]|Pj ∈ V } = l + 1 holds after one round
starting from c. And if l ≥ N− 1 holds then ∀Pj ∈ V,Lj [Pi] = ∞ holds.

Lemma 3. Let Pi be any node not in T . After at least N-th round, ∀Pj ∈ V, Lj [Pi] = ∞ holds.

Proof. Follows from Property 1 and Lemma 2.

Lemma 4 (Self-Stabilizing). Protocol DAGAO is self-stabilizing for LEAO.

Proof. Let Pt be any node in T . Let e(T ) = max{e(Pt)|Pt ∈ T}. By Lemma 1, after at least e(T ) + 1
round, for each node Pi, Li[Pt] = dist(Pi, Pt) holds. By Lemma 3, after at least N-th round, for each
node Pi and each node Pj /∈ T , Li[Pj ] = ∞ holds. Then, after at least N-th round, each node satisfies
condition 1 in Definition 3.

It is clear that if each node Pi executes the protocol once Pi satisfies condition 2 in Definition 3.
Thus, the proposed protocolDAGAO satisfies the convergence condition, and it is obvious thatDAGAO

also satisfies the closure condition.

Second, we show that a DAG defined on Definition 1 is constructed in any legitimate configuration in
LEAO. The following two lemmas are obvious.

Lemma 5. Let Pi and Pj be any nodes. Let Pi < Pj be defined as (Li <d Lj)∨((Li =d Lj)∧(Pi < Pj)).
Pi < Pj is a totally ordered relation.

Lemma 6. Let G = (V,E) be any graph such that V is a totally ordered set. The directed graph
−→
G = (V,

−→
E ) given by setting direction to each edge in E by order of connected nodes, from the higher

node to the lower node, becomes a DAG.

Lemma 7. For any legitimate configuration in LEAO, a DAG defined in Definition 1 is constructed on
the graph.

Proof. By Lemmas 5 and 6, the directed graph constructed by DAGAO becomes a DAG.
In legitimate configuration LEAO, it is obvious from the protocol that each node in T becomes a sink.
Let Pi be any node not in T . And let Pj be any node in T such that dist(Pi, Pj) = min{dist(Pi, Pt)|Pt ∈

T}. Consider the shortest path from Pi to Pj . This path must contain a node Pk such that Pk is neighbor
of Pi and Li[Pt] > Lk[Pt] holds. Then, Pi must have an outgoing edge to Pj . So, any node which is not
belong to T does not become a sink.

We obtain the following theorem from Lemma 4 and Lemma 7.

Theorem 2. Protocol DAGAO is a self-stabilizing DAG constructing protocol.

5 Comparison of DAGNO and DAGAO

Protocols DAGNO and DAGAO are designed to maintain DAGs defined in Definition 1. If these two
protocols work on the same topology of the network, there may be an edge that is determined different
direction between two protocols. This difference may occur at an edge between two nodes that are
equidistance apart from the nearest sink respectively.

Fig. 4 shows examples of the DAGs constructed by DAGNO and DAGAO. Nodes P1 and node P2 are
sinks. In this example, the edge between node P5 and P6 is directed different direction. Whereas node
P5 has only a single path to a sink in DAGNO (Fig. 4(a)), node P5 has 3 paths to sinks in DAGAO (Fig.
4(b)).

In this paper, we utilize the DAG construction for the geocast routing. We evaluate the property of
paths from any node to any sink on a DAG. We use the following performance metrics: the number of
paths to sinks, the average length of paths to sinks and the ratio of reachable sinks.
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Figure 4: Example of DAGs constructed DAGNO and DAGAO
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Figure 5: Comparison of property of DAGs

5.1 Description of Experiment

In our experiments, we produce a graph at random and compare two DAGs constructed by two protocols
DAGNO and DAGAO in the same graph. We use a unit disk graph (UDG). A unit disk graph is an
intersection graph of equal sized circles in the plane: they provide a graph-theoretic model for MANET.

The nodes are randomly allocated within the field which size is 1000×1000, and the edges are defined
between two nodes whose distance is less than 250. We change the number of the nodes from 20 to 40.
Every node within the circle of radius 150 around the coordinate (250, 250) is included in T . When the
produced graph is not connected or a node belonging to T does not exist, we destroy the graph and
produce a graph again.

We use the following evaluation measures:

• The number of paths to sinks: This is defined as the total number of paths to all sinks from a node
that is not a sink. We report the average value over all the nodes that are not sinks.

• The average length of the paths to sinks: This is defined as the average length of the paths to all
sinks from a node that is not a sink. We report the average value over all the nodes that are not
sinks.

• The ratio of the reachable sinks: This is defined as the ratio of the number of reachable sinks, and
the number of sinks. We report the average value over all the nodes that are not sinks.

5.2 Experimental Result

Figs. 5(a) and 5(c) show that the number of paths to sinks and the ratio of the reachable sinks, respec-
tively. The both results show that DAGAO constructs a better DAG than DAGNO. A DAG can provide
multiple paths to sinks from any node. When a DAG is used as a path to sinks, it may be better property
that there are many paths and many reachable sinks.
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6 Protocol Implementations

In this paper, we perform some computer simulations to evaluate the performance of the geocast protocols
using self-stabilizing DAG constructing protocols DAGNO and DAGAO, and known geocast protocol
GeoTORA [4]. In this section, we make the necessary preparation for explaining our simulations. First,
we describe how to adapt self-stabilizing protocols DAGNO and DAGAO, in which nodes communicate
by using shared variables, for practical wireless networks. Second, we describe about implementations of
geocast protocols by using DAGNO and DAGAO. At last, we introduce outline of GeoTORA [4].

6.1 Adaptation to practical networks

To adapt DAGNO and DAGAO for practical networks, we have to consider the following problems: how
to implement communication by using shared variables, how to detect neighbors (Ni) and how to set ti.
To implement communication by using shared variables and detection of neighbors, we use hello packet.
Every node puts all of its own values of shared variables into the hello packet and periodically sends it to
all neighbors. If a node Pi receives a hello packet from some neighbor node Pj , Pi can know the existence
of Pj as Pi’s neighbor, hence Pi adds Pj to Ni, and stores values of variables in the hello packet as values
of Pj ’s shared variables. If Pi does not receive a hello packet from the neighbor node Pj during certain
time interval, Pi deletes Pj from Ni and resets stored values of Pj ’s shared variables. In other words,
each process can detect appearance and disappearance of their links. We assume that if process Pi is in
the geocast region, ti is automatically set to true. Otherwise, ti is automatically set to false.

In DAGNO, network partitioning is not considered. That is, if there is a partition of the network
which is disconnected from all nodes in the geocast region, every node in the partition infinitely increases
the variable d according to the protocol. So, we introduce the upper bound N of the distance. When a
process Pi executes protocol DAGNO, if di > N then di is set to N.

6.2 Implementations of Geocast Protocols with DAGNO and DAGAO

We call the geocast protocols that use DAGNO and DAGAO, Nearest sink Oriented Geocast Protocol
(NOGP) and All sinks Oriented Geocast Protocol (AOGP), respectively. NOGP and AOGP construct
and maintain a DAG by using DAGNO and DAGAO regardless of occurrence of a geocast transmission.

A sender selects an outgoing edge at random and sends messages. A node which is not in the geocast
region relays the messages via one of its outgoing edges. When a packet reaches to a process in the
geocast region, the packet is flooded in the geocast region.

6.3 GeoTORA

GeoTORA implements the geocasting by the following steps: in GeoTORA, a node which wants to send
a message to members of the geocast group floods control packets in the network. If some process in
the geocast region receives a control packet, it begins to construct a DAG whose sinks are node in the
geocast region. After constructing a DAG in the network, geocast messages are transmitted along the
DAG edges from source process to the nodes in the geocast region. When some process in the geocast
region receives a geocast packet, the packet is flooded in the geocast region.

The DAG construction of GeoTORA is comprised of three steps: creating routes, maintaining routes
and erasing routes. A control packet is used in every step. When the first transmission request occurs,
GeoTORA starts to construct a DAG via control packets. If a process outside of the geocast region
becomes a sink, maintaining routes is performed to rebuild the DAG. Erasing routes is performed in a
partition of the network from the geocast region. Notice that the DAG is reconstructed after the DAG
is not usable as a route to the geocast region.

7 Performance Evaluation

In this section, we perform some computer simulations to evaluate the performance of the geocast pro-
tocols NOGP, AOGP and GeoTORA [4]. We use a network simulator ns-3 [8] for computer simulation
environment.
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Table 1: Simulation parameters
Experiment 1 2 3

# of processes 50 50 30 - 100
Speed (m/s) 10 0 - 30 10
Pause time (s) 0 - 1000 200 200

Table 2: The size of each packet
Protocol NOGP AOGP GeoTORA

Geocast (bytes) 512 512 512
Control (bytes) - - 32
Hello (bytes) 20 variable 8
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Figure 6: The Accuracy in Experiment 1-3

7.1 Simulation Model

The wireless model follows IEEE802.11b and link bandwidth is 11Mbps. We assume the range loss model,
where the propagation loss depends only on the distance (range) between transmitter and receiver. The
transmission range is set to 250 meters.

Our simulation environment is characterized by a 1000 × 1000 meters rectangle, with random initial
processes’ location. The geocast region is a circle of radius 150 meters around the coordinate (250, 250).
The processes move according to the random way point model. In this model, processes repeatedly select
uniform random destinations, move to them, and pause there.

Simulation time is 1000 seconds. We simulate a variety of networks by varying the following param-
eters: the number of processes, the movement speed and the pause time. We perform three simulations
: the pause time is varied from 0 seconds to 1000 seconds (Experiment 1), the movement speed is varied
from 0 m/s to 30 m/s (Experiment 2) and the number of processes is varied from 30 to 100 (Experiment
3). Notice that a pause time of 0 seconds corresponds to continuous motion, whereas a pause time of
1000 seconds is equivalent to a static network. While one parameter is varied the other parameters are
fixed. Table 1 summarizes our simulation parameters.

Geocast packets are sent by a particular process. The packet size is 512 bytes and the packet is sent
every 10 seconds after 5.5 seconds from starting simulations. The hello packets are sent every 1 seconds.
In NOGP, since a hello packet includes the variable di, the number of bytes of a hello packet is 20 bytes.
On the other hand, in AOGP, since a hello packet includes the variable Li, the number of bytes of a
hello packet is variable. In GeoTORA, the number of bytes of a hello packet is 8 bytes because the
hello packets are used to detect neighbors. The number of bytes of a control packet, which is used in
GeoTORA, is 32 bytes. Table 2 summarizes the number of bytes of each packet.

We use the following evaluation measures:

• The Accuracy : If a source process sends a geocast packet and at least one of the processes in the
geocast region receives the geocast packet, we call the entire scenario one success. The accuracy is
defined as ratio of the number of one successes divided by the number of geocastings.

• The average number of packets and bytes: They are defined as the average number of packets and
bytes received by each process during the simulation, respectively. We classify packets in three as
follows: hello packets, packets for geocasting and all packets. In GeoTORA, the control packets are
contained in the packets for geocasting.

7.2 Simulation Result

Fig. 6 shows the accuracy in Experiment 1-3. The accuracy of NOGP and AOGP are higher than that
of GeoTORA through three experiments. This can be explained as follows: when the network topology
changes, GeoTORA replaces the local variables and delivers a control packet to share them with neighbors,
and at this time, information before the network topology change may be left, which leads to a failure

9
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Figure 8: The average number of bytes in Experiment 1)# of processes:50, Speed:10, The pause time
(s):0-1000

of the DAG and a decrease of the accuracy. In AOGP and NOGP, since the values of the local variables
are transmitted periodically via the hello packets the older information will never be left in the network.
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From Figs. 6(b) and 6(c), varying the number of processes and the
node speed seem not to have much effect on the accuracy. When there is
no process in the geocast region or when source detects that it is parti-
tioned from the geocast region, no packet reaches to the geocast region.
In this case, this geocasting (or request to send) is ignored for calculating
the accuracy hence the accuracy does not decrease. In low density of
processes, a request to send a geocast is unlikely to accomplish, while the
accuracy is high.

From Fig. 6, the accuracy of AOGP is a little higher than that of
NOGP. The results of experiments in Section 5 suggests that the accu-
racy of AOGP is higher than the accuracy of NOGP by using multiple
paths on the DAG. Since each process relays through one of the outgo-
ing edges, we perform an additional simulation, which we change protocols so that each process relays
through all of the outgoing edge. The result of this simulation is shown in Fig. 7. The simulation pa-
rameters are similar to Experiment 1. This result shows that the accuracy of NOGP and AOGP become
more higher. However, there is not so large difference between the accuracy of NOGP and AOGP.
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Fig. 8 shows the average number of bytes in Experiment 1. From Fig.
8(a), the average number of bytes ofhello packets in AOGP increases
with the decrease of the pause time. On the other hand, in NOGP and
GeoTORA, they are nearly-constant. The reason for this is that in AOGP
if a process goes out of geocast region it will take at most N rounds to
reduce the information about the distance from this process. Increase of
the number of the processes going the geocast region in and out leads to
an increase of amount of hello packets.

Fig. 9 shows the average number of packets for geocasting in Ex-
periment 1. From Fig. 9, the average number of packets of packets for
geocasting of GeoTORA is higher than those of the other protocols. One
possible reason for this is that a reconstruction of a DAG occurs more
often as the pause time decreases, which leads to an increase of the num-
ber of control packets. However, Fig. 8(b) shows that the increase of the
number of control packets has much effect on the average number of the
bytes of packets for geocasting because a control packet is much smaller
than a geocast packet.

Figs. 10 shows that the increase of the movement speed has much effect on the average number of
bytes.

In the nature of the MANET, the number of processes which receive a massage increases with the
increase of the density of processes. From Fig. 11(a), in AOGP, a ratio of an increase of the number
of bytes is higher than those of the other protocols. This can be explained as follows: the number of
processes in the geocast region increases with the increase the density of processes, and hence the amount
of the hello packet also increases.

From Figs. 8(b), 10(b) and 11(b), the number of bytes of packets for geocasting of AOGP is higher
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Figure 11: The total packet size in Experiment 3)# of processes:30-100, Speed:10, The pause time (s):200

that that of NOGP. This is due to the fact that the average length of paths to sinks of DAGAO is higher
than that of DAGNO from the results of experiments in Section 5, and hence the number of processes
that relays a geocast packet, which leads to an increase of the number of transmission of geocast packets
in the network.

From Figs. 8(c), 10(c) and 11(c), the amount of the hello packets is the largest among all packets in
our simulations.

8 Conclusions

In this paper, we propose the DAG constructing self-stabilizing protocol DAGAO. Then we perform
some computer simulations. First, we clarify the property of DAGs constructed DAGAO and DAGNO.
Simulation results show that DAGAO has better property for implementing some routing protocols, like
a geocast protocol, than DAGNO [6]. Second, we describe the implementation of our geocast protocols
that use DAGNO and DAGAO. Simulation results show that the accuracy of our protocol is higher than
GeoTORA in any network conditions. AOGP shows better performance for accuracy, but it needs more
overhead than others with current implementation. Our future work is to reduce the overhead of AOGP
and get more accuracy.
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