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Abstract—A management of large-scale data becomes more
important, along with the spread of cloud service and the speed-
up of networks.

Since data management on a single machine can cause
performance and scalability problems, data management across
multiple machines has been proposed. Distributed Key Value
Store(KVS) is a datastore which manages data across multiple
machines. Since distributed KVSs manage data which consists
of simple key-value pair, they can achieve scalability easily.
Distributed KVSs are widely used in many services managing
large-scale data, such as Facebook and Twitter. Distributed KVSs
provide interfaces to access key-value pair by simply specifying
the key. In this paper, we refer to a query which only obtains
a value from a key as a single query. Some distributed KVSs
support a range query which obtains multiple values from a key
range. However, under mixed query workloads that consist of
single and range queries, single queries(which can be executed
faster) are forced to wait until preceding range queries are
finished. And this results in the increase of average response time.
We propose an approach to reduce the average response time by
query scheduling. We implemented our method on Cassandra,
and evaluation results showed a reduction of the average response
time.

I. INTRODUCTION

A management of large-scale data becomes more impor-
tant, along with the spread of cloud service and the speed-
up of networks. Many services require scalability in order
to dynamically adapt to the growing workloads. However,
traditional RDBMSs are hard to achieve scalability because of
a requirement of strong consistency and availability for data
items.

Distributed Key Value Store(KVS) systems are widely
used in cloud services because of their characteristics. They
can achieve scalability easily by reducing consistency support
and by adopting simple key-value pair. On the other hand,
distributed KV Ss only support simple operations to obtain data.
For example, almost all distributed KVSs provide interfaces to
get the key-value pair by simply specifying the key. Normally,
only a single value can be obtained by a corresponding key in
a query (single query). Some implementations , e.g. Cassandra
and HBase, support more useful operations which obtain
multiple values by the corresponding key range (range query).
As usage example of range queries, range queries are used to
obtain lately posts, when using distributed KVSs to manage
the user submitted posts.

[1] evaluates performance of range queries. It shows that

the average response time of range queries is increased ac-
cording to increase the amount of the results data size. In
real services, one user require a single post while the other
require multiple posts. In general, range queries require more
resources, e.g. disk IO, than single queries. Thus, under mixed
query workloads that consist of single and range queries, single
queries(which can be executed faster) are forced to wait by
resource contention. And this results in the increase of average
response time.

In this paper, we propose a method to reduce the average
response time under the mixed query workloads. Our method
schedules queries such that single queries are prioritized over
range queries. By avoiding single queries being waited by
range queries, our approach can reduce the average response
time.

Apache Cassandra[2] is one of the most widely used
distributed KVS. Cassandra supports not only single queries
but also range queries. We implemented our method into
Cassandra, and its evaluation result showed a reduction of the
average response time.

The rest of this paper is organized as follows. An overview
of Cassandra is given in section II. The proposed method is
presented in section III and its implementations is illustrated
in section IV. Section V shows the evaluation results. Finally,
we conclude this paper in section VI.

II. APACHE CASSANDRA
A. Overview

In this paper, we focus on Apache Cassandra. Cassandra is
one of the most widely used distributed KVS implementations,
and it was initially developed by Facebook and is currently
maintained as an Apache Software Foundation product. Cas-
sandra is mainly designed and implemented based on a data
model of Google Bigtable[3] and architecture of Amazon
Dynamo[4]. Since Cassandra does not have single point of fail-
ure. high durability and availability can be achieved. Cassandra
uses eventual consistency model, and its consistency level can
be determined by the client. Unlike other distributed KVSs,
Cassandra also supports range queries which obtain multiple
values corresponding to the key range.

B. Data Model

The data model of Cassandra is shown in Figure 1.
Generally, KVS has a simple key-value pair data structure.
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Fig. 1. Data model of Cassandra

While, Cassandra provides more complex data structures such
as KeySpace, ColumnFamily, RowKey and Column. The
KeySpace is the outermost container for data that is similar
to a database in RDBMS. The ColumnFamily is a collection
of Rows and the Row is a collection of Columns. The Column
is the most fundamental data unit in Cassandra and it consists
of name, value, and timestamp. These data structures enable
us to manage data more sophisticatedly than other distributed
KVS:s.

C. Data Placement

In distributed KVSs, whole data is managed across mul-
tiple machines (nodes) and each data is assigned to a node.
Generally, distributed KVSs assign data to a node based on
ConsistentHashing[5] method. ConsistentHashing method uses
hashed key to determine the node to place the value. This
method works fine even if further nodes are added or removed
to/from the cluster. However, the key order is not preserved
due to the hashed keys. This results in broadcast request to all
of the cluster nodes when executing some range queries under
ConsistentHashing. This search method is inefficient and does
not achieve scalability. Even worse, range queries return data
in an essentially random order and the returned values need
to be sorted later. For these reasons, data placement based on
ConsistentHashing method is not suitable for range queries.

In order to execute range queries efficiently, Cassandra
supports order preserved data placement which treats the key
as in byte order (no hashing). In this data placement, range
queries can be executed efficiently because values correspond-
ing to the specified key range are placed on a restricted nodes.
In addition, range queries return order preserved data, and
therefore, the sorting is not needed. Hence, this data placement
is suitable if clients require range queries. However, this data
placement has some disadvantages in that heavily-lopsided
data placement, because real-world data is not written evenly.
In this paper, we assume that different types of queries like
single and range queries are mixed in workloads and use the
order preserved data placement rather than ConsistentHashing
method.
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Fig. 3. A flow of the range query

D. Flow of reading Data

Clients can connect to any node in the cluster to read data.
If the node does not have the required data, it seeks the data
from other nodes as a coordinator. After that, the node returns
the data to the client. Next, the details of both single and range
queries are described.

1) Single Query: A flow of the single queries is shown in
Figure 2. A ring in the figure represents a Cassandra cluster,
and the cluster consists of multiple nodes. The letters A-F, G-
L, M-R, and N-Z represent the key ranges which are managed
by each node. The left most node represents a client node.

When a client performs single queries, it connects to a
node of the cluster. In this example, the client connects to a
node which manages key range N-Z with key A’ and the node
requests the data to another node which has key range A-F.
Then, the node returns the requested data to the first node, and
finally the client acquires the data.

If a client connects to a node which manages required key,
the node searches data and send it to the client.

2) Range Query: A flow of the range queries is shown
in Figure 3. When a client executes range queries, the client
connects to a node of the cluster as in the case of single
queries. The difference is that clients have to specify two keys
in range queries. In this example, the client connects to a node
which manages key range N-Z, and it connects to a node which



manages key range A-F, and acquires the data corresponding
to the key range A-F. Next, the node to which the client is
connected connects to a node which manages key range G-L,
and requests the remaining data to the node and it returns the
requested data to the original node. As a result, the client can
get entire values corresponding to the key range A-H.

E. Increasing Response Time of Queries

Single queries which obtain a single value from a single
key are usually finished faster than range queries which obtain
multiple values from a key range. Since Cassandra executes
requested queries in order of arrival, single queries are forced
to wait until preceding range queries are finished. And this
results in the increase of average response time.

In addition, the sequential nature of the range search in
Cassandra also leads to increasing response time of the system.
That is, the increase of the cluster nodes can cause further
execution time of the system.

In this paper, we propose a method which prevents the
increase of average response time of the system.

III. IMPROVING RESPONSE TIME OF SEARCH QUERIES

In this section, we describe the details of the proposed
method. In practice, three improvement methods are proposed
to reduce average response time of search queries.

First, average response time of single queries is reduced
by scheduling the order of single and range queries. In this
scheduling, single queries are prioritized over range queries
because they are expected to finish faster than the later queries,
and the average response time of single queries can be reduced
by preventing the queries from being waited by range queries.

Next, average response time of range queries is also
reduced by parallel execution of them. In Cassandra, the
coordinator node sequentially sends the requests to all nodes
within the range. In our method, the coordinator sends the
requests to all the nodes at one time, and each request is
handled by them in parallel.

As a results, average response time of range queries can
be reduced.

Finally, the scheduling of range queries can also be im-
proved to reduce the average response time. In this scheduling,
the priority of range queries is varied depending on the
range size. In particular, range queries with narrower key
range are prioritized over the other range queries. By this
priority settings, range queries which involves fewer nodes
are preferentially executed. The range size is determined by
how many requests are sent. In addition, their priorities are
dynamically changed as the progress of query execution on
other nodes. For example, when two range queries have same
range size, the average response time can be improved by
prioritizing a query that requires fewer search results. That
is, the priority of the range query is dynamically changed as
the progress of its execution.

In this scheduling, range queries which involve large
number of nodes have low priority. Thus, those queries are
increased their response time. However applying these three
methods appropriately, the average response time of search
queries can be decreased in Cassandra.
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IV. IMPLEMENTATION
A. Scheduling Single Queries and Range Queries

Cassandra supports a Staged Event Driven Architecture
(SEDA)[6]. In SEDA, it divides an application into stages.
As shown in Figure 4, the stage consists of an event queue,
an event handler, and an associated thread pool. The stage
is a basic unit of work, and a single operation internally
causes state-transition from one stage to another. For instance,
a search operation command is enqueued in the event queue.
Thread pool dequeues the operation command from the event
queue and executes it with the associated event handler. In
this way, SEDA separates event executions from receipt of
requests, and the throughput degradation caused by the growth
of the thread can be avoided.

Cassandra’s executions are divided into 11 stages, such as
READ Stage for search operation and MUTATION Stage for
data insertion.

In our method, the event queue in READ Stage is re-
placed with the priority queue and the proposed schedul-
ing functions are implemented in this queue. In our im-
plementation, event queue in READ Stage is replaced
with java.util.concurrent.PriorityBlockingQueue . This priority
queue is based on priority heap, thus the cost of enqueue
and dequeue is O(1) and O(log(n)). It is considered that the
scheduling overhead is small. Priority is determined in the
following order: single query request commands from the same
node, single query request commands from other nodes, and
range query request commands.

B. Parallel Execution of Range Queries

For range queries in Cassandra, clients specify start key,
end key, and count value that indicates how many data items
are required by the client. The range search operation can be
terminated in mid-flow of the range. Thus, in Cassandra, the
coordinator node sends the requests to all nodes within the
range sequentially until the number of the results reaches to
the count value. In this method, the more nodes increase within
the range, the more response time of range queries increases.

While, in our method, the coordinator sends the requests
to all nodes within the range at one time, and the requests of
each node are handled in parallel. In Cassandra, the amount
of data items in a node is collected as statistical information.
By sharing this information among the nodes, the coordinator
can predict the number of nodes to send the requests. In our



approach, the coordinator sends the requests to the limited
nodes to meet the count. Note that the coordinator does not
count the amount of data items in the node that corresponds
to the start key. The amount is calculated as how many data
items are stored in the node. Since the start key of the query
and the beginning of the range can be different, the amount of
the data items in this node is assumed as zero in our method.

C. Scheduling Range Queries

In the proposed method, priority of range queries is deter-
mined depending on the range size. The range size is based on
how many requests are sent at one time. If the requests are sent
to only a few nodes, the range query request commands have
higher priority. While the requests are sent to a lot of nodes,
the commands have lower priority. If two queries have same
range size, their priorities are determined based on count. If
the count is low, the range query request command has higher
priority, and likewise, lower priority is given when the value
is large. We implemented this scheduling function to the event
queue at READ Stage.

Our scheduling function also supports dynamic changes
of the priority by observing the progress of other nodes.
When a node returns the result of the range query request,
the coordinator notifies the nodes which are not finished their
commands yet and they know the number of remaining nodes.
The notified nodes dequeue the range query request command
corresponding to the range query and increase its priority such
that the priority is higher than that of other range queries that
require more nodes. That is, the range query request command
that involves less nodes is executed preferentially.

V. PERFORMANCE EVALUATION

We implemented our method in Cassandra 1.1.2 and evalu-
ated its performance. The performance was evaluated by send-
ing queries which consist of both single and range queries. In
this evaluation, YCSB(Yahoo! Cloud Serving Benchmark)[7]
was used as a client program.

A. Evaluation Environment

In this evaluation, we constructed a Cassandra cluster
consisting of 12 nodes and also installed YCSB 0.1.4 on a
client node to send queries. The cluster nodes and the client
node were connected via the same hub. The specification
of Cassandra cluster nodes are shown in Table I, and the
specification of the client node is shown in Table II.

TABLE 1. THE SPECIFICATION OF CASSANDRA CLUSTER NODES
(0N Linux 2.6.38-8-amd64
Ubuntu 11.04 Server
CPU Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
Memory 8GB
Network 1000BASE-T
TABLE II. THE SPECIFICATION OF A CLIENT NODE
(0N Linux 3.5.0-23-amd64
Ubuntu 12.04 Server
CPU Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
Memory 32GB
Network 1000BASE-T

B. Evaluation Description

First, 10,000,000 data items were inserted into the Cas-
sandra cluster and each data size was 1KB. Each data item
was stored separately to the 1,000 ColumnFamilies and data
items were searched from each ColumnFamily. By separating
the data items into ColumnFamilies, the number of data items
acquired by range queries is to be small. That is, at most
10MB of data items are acquired by a range query and this
prevents insufficient memory and increasing data transfer time.
Otherwise, all of the data items can reside in memory. Gener-
ally, Cassandra handles large-scaled data which cannot reside
in memory, and therefore, we separated the data items into
ColumnFamilies in this performance evaluation. In addition, in
order to clear the data items from memory, we freed pagecache
on each node before executing the benchmark.

In this evaluation, clients sent 2000 queries in total and
single and range queries were sent at a ratio of 5:5 and 9:1.
In range queries, the start key was selected in random order
from keys within the Cassandra cluster. Count has the uniform
distribution between 1 and 10,000. The number of clients
which send queries was 125, 250, 500 or 1000. We measured
average response time of single and range queries.

We evaluated following six implementations.

(O)  Original
(ReS) Prioritized Single Queries
(P)  Parallel Execution of Range Queries
(ReS+P) Prioritized Single Queries, and Parallel Execution
of Range Queries
(P+RaS) Parallel Execution of Range Queries, and
Scheduling Range Queries
(A)  Prioritized Single Queries, Parallel Execution of
Range Queries, and Scheduling Range Queries

We evaluated each implementation for 10 times and
adopted the best result for comparison. In this evaluation, we
did not have any replication.

C. Evaluation Result

Figure 5 shows the average response time of single queries
when the ratio of single and range queries was 9:1, and Figure
6 shows the average response time of range queries. Likewise,
Figure 7 represents the result of single queries at a ratio of
5:5, and the result of range queries at the same ratio is given
in 8.

As shown in Figure 5, the the prioritized single queries
did not effect in 125, 250 and 500 clients workload. On the
other hand, in 1000 clients, the average response time of
single queries was reduced in (ReS), (ReS+P) and (A). In
(O), the number of the range queries was increased because
of the increase of clients. If the number of range queries
increases, single queries can be forced to wait until preceding
range queries are finished. Hence, the average response time of
single queries will increase. In (ReS), (ReS+P) and (A), single
queries were executed preferentially than range queries, thus,
the influence of the increased range queries was suppressed.
In (P), (P+RaS), the average response time of single queries
was significantly increased as the number of clients increased.
Especially in 1000 clients, the average response time of single
queries increased to 2.4 times compared with that of (O).
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Because of parallel execution of range queries, requests from
each node were sent at one time. As a result, the number of
the request commands was increased in a certain time, and
delayed single queries were also increased.

Figure 6 shows that the average response time of range
queries in (P) and (P+RaS) was reduced compare with (O). Es-
pecially in 1000 clients, it was reduced by 10% compared with
(O). The waiting time for collecting the results was reduced
because of parallel execution of range queries. In 1000 clients,
the average response time of (P+RaS) was reduced compare
with (P). This is because that scheduling range queries worked
effectively. In (ReS+P), the average response time was not
reduced. Although range queries were executed in parallel,
single queries were eventually executed preferentially. Thus,
parallel execution of range queries did not work effectively.
However, scheduling range queries (A) worked effectively.

Figure 7 shows that the average response time of (O) was
significantly worse than that of the case where the ratio was
9:1. Due to increase in the ratio of range queries, a lot of
single queries were forced to wait until preceding range queries
were finished. On the other hand, the average response time
of (ReS), (ReS+P) and (A) was reduced. Especially in 1000
clients, the average response time was reduced by 80%. As
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well as sending single and range queries at a ratio of 5:5, the
average response time of (P) and (P+RaS) was increased to
2.4 times compared with that of (O). This was caused by the
increase of range queries due to the parallel execution of range
queries.

As shown in Figure 8, the average response time of (P),
(P+RaS) and (A) was reduced. Especially in 1000 clients, the
average response time of (A) was reduced by 17% compared
with (O). In this evaluation, parallel execution of the range
queries and scheduling range queries were worked effectively,
because the ratio of range queries was large.

From the above results, the following conclusions can be
drawn.

e  Executing single queries preferentially is effective to
reduce the response time of the single queries, but
does not influence the response time of range queries.

e Parallel execution of range queries influences neg-
atively the response time of single queries, but is
effective to reduce the response time of range queries

e  Scheduling range queries does not influence the re-
sponse time of single queries, but is effective to reduce
the response time of range queries



In our proposed method, these three methods were worked
effectively for reducing response time.

VI. CONCLUSION

In this paper, we proposed scheduling search queries and
parallel execution of range queries to improve average response
time of search queries. We realized the scheduling methods by
setting appropriate priority to each query under the situation
that both single and range queries are mixed.

We implemented the proposed method into Cassandra and
evaluated it. As a result, the average response time of single
queries was reduced in the proposed method compared with
original Cassandra. In addition, the average response time of
range queries was also reduced by the effect of scheduling and
parallel execution of range queries.
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