
Non-Tunneling Edge-Overlay Model using
OpenFlow for Cloud Datacenter Networks

Ryota Kawashima
Dept. of Computer Science and Engineering

Nagoya Institute of Technology
Aichi, Japan

e-mail: kawa1983@nitech.ac.jp

Hiroshi Matsuo
Dept. of Computer Science

Nagoya Institute of Technology
Aichi, Japan

e-mail: matsuo@nitech.ac.jp

Abstract—In current SDN paradigm, an edge-overlay (dis-
tributed tunneling) model using L2-in-L3 tunneling protocols,
such as VXLAN, has attracted attentions for multi-tenant dat-
acenter networks. The edge-overlay model can establish rapid-
deployment of virtual networks onto existing traditional network
facilities, ensure flexible IP/MAC address allocation to VMs,
and extend the number of virtual networks regardless of the
VLAN ID limitation. However, such model has performance and
incompatibility problems on the traditional network environment.

For L2 datacenter networks, this paper proposes a pure soft-
ware approach that uses OpenFlow virtual switches to realize yet
another edge-overlay without IP tunneling. Our model leverages
a header rewriting method as well as a host-based VLAN ID
usage to ensure address space isolation and scalability of the
number of virtual networks. In our model, any special hardware
equipments like OpenFlow hardware switch are not required and
only software-based virtual switches and the controller are used.

In this paper, we evaluate the performance of the proposed
model comparing with the tunneling model using GRE or
VXLAN protocol. Our model showed better performance and
less CPU usage. In addition, qualitative evaluations of the model
are also conducted from a broader perspective.

Index Terms—SDN, OpenFlow, edge-overlay, tunneling, data-
center, VXLAN, VLAN, virtual switch

I. INTRODUCTION

Virtual networks are required to realize logically indepen-
dent VM-to-VM networks for each user (tenant). Current
datacenter networks have to support a lot of virtual networks
(tenant networks) sharing same physical equipments. Network
virtualization can achieve this by separating network traffics
of each tenant network using a network ID like VLAN ID
(VID). However, various problems came out from tradition-
al VLAN-based virtualization. For example, the number of
tenant networks is limited to 4094 because of VID-range, and
physical switches have to learn many MAC addresses of VMs.

An edge-overlay (distributed tunneling) model based on L2-
in-L3 (IP) tunneling protocol has been adopted by commer-
cial datacenter networks to address above drawbacks with-
out special hardware equipments, and especially VXLAN[1],
NVGRE[2], and STT[3] have been used as the tunneling pro-
tocol. These protocols encapsulate a whole Ethernet frame of
the VM into an IP packet with a tunneling header. This enables
each tenant network to have its own IP/MAC address space
(address space isolation) and the number of MAC addresses
that physical switches learn can be drastically reduced. In
addition, each tunneling header has at least 24 bit ID space,

and therefore the scalability of the number of tenant networks
is ensured.

Such overlay model can induce performance degradation
caused by IP fragmentation for tunnel encapsulation. Since
tunnels are transparent to VMs, VMs transmit MTU-sized
packets without considering encapsulating (outer) headers and
traditional Path MTU Discovery is not effective. That is, the
number of physical frames can be double by IP fragmenta-
tion at encapsulation. It is possible to directly adjust MTU
size of VM or use jumbo frames, however, this causes less
manageability and compatibility problems on existing network
environment. NVGRE and STT try to address this problem,
however, several issues still remain (See section V).

This paper proposes OpenFlow[4] based yet another edge-
overlay model for L2 datacenter networks that does not
rely on IP encapsulation. Our model leverages frame header
rewriting at OpenFlow-enabled virtual switches to prevent the
fragmentation and MAC learning problems, and also provides
a host-based VID usage to scale the number of tenant networks
on the datacenter. In practice, the src/dest MAC addresses
of the transmitting frames of the VM are replaced with
the physical servers’ ones by the virtual switch, and the
modified destination address is restored to the original one
at the receiver side. Besides, VID is used to distinguish the
destination VM rather than the tenant network itself, which
implies that VID is unique only within a host. Such host-
based VID usage enables unlimited scalability of the number
of tenant networks on the datacenter network. Note that our
model does not rely on any special hardware equipments such
as OpenFlow hardware switch, therefore, our model can be
deployed on traditional network environment.

In this paper, the details of the proposed model and per-
formance evaluation comparing with GRE[5] and VXLAN
tunnels are described. As a result, the proposed model showed
better performance and less CPU usage. In addition, qualitative
analysis of the model is presented from a broader perspective.

The rest of the paper is organized as follows. Section
II gives the basic of the existing edge-overlay model and
section III explains the mechanism of the proposed model.
The performance evaluation result is presented in section IV
and we discuss the broader aspects of our approach in section
V. Section VII concludes this study and gives future work.

II. EDGE-OVERLAY (DISTRIBUTED TUNNELING) MODEL

!"#

!"#

!"#
!"#

$%&'()*+#',-.,-! $%&'()*+#',-.,-!

/$#0122,+'!!(-01*+#

'3(0)%!

!(-01*+#

'3(0)%!

!(-01*+#

'3(0)%!

$%&'()*+#',-.,-!

4,2*20#5!4,2*20#6!

4-*7(0(82*+#

9*0*),20,-#2,038-:!

4,2*20#6!

4,2*20#5!

Fig. 1. A representative edge-overlay model with tunnels

Figure 1 illustrates a representative edge-overlay architec-
ture for traditional datacenter networks. Each physical server
hosts a software-implemented virtual switch, such as Open
vSwitch[6], in order to bridge the virtual NIC (vNIC) to the
physical NIC (pNIC). Some virtual switches can have tunnel
ports that encapsulates/decapsulates the forwarding frames
using tunneling protocols like VXLAN, and generally, each
tunnel has a determined source/destination IP address pair.
By placing tunnels among the virtual switches, virtual overlay
networks can be constructed over the physical network without
depending on the physical topology.

As described above, tunnel encapsulation can cause the
additional IP fragmentation because VMs do not know that
their frames are to be encapsulated. Figure 2 depicts an
example of this fragmentation. An application running on the
VM sends a large packet that exceeds (VM’s) MTU size, then
IP layer within the VM divides it (this is not a problem)
into two frames. The divided frames are passed down to the
underlying virtual switch and it encapsulates each frame with
the corresponding tunnel protocol. Then, the former frame is
further divided into two frames because the original frame
and additional headers certainly exceed (server’s) MTU size.
That is, the number of physical frames increases because of
the encapsulation. One other problem of tunneling is that a
significant number of tunnels have to be managed as increasing
the physical servers on the datacenter network.1

III. PROPOSED MODEL

Our proposed model is designed to resolve aforementioned
issues and its details are described in this section.

There is also a virtual switch on a physical server in this
model, but all the virtual switches must support OpenFlow pro-
tocol for dynamic frame header rewriting and VID handling.
Besides, an OpenFlow controller also needs to be deployed
to manage the virtual switches and their flow entries. The
characteristics of the proposed model are as follows:

1The number of tunnels (unidirectional) is calculated by N ∗(N−1) where
N is the number of physical servers.

Payload!

Payload!
(Inner)

Header!

Payload! Payload!

Payload!
(Outer)

Header!
Payload!

(Outer)

Header!

(Inner)

Header!
Payload!

Payload!
(Outer)

Header!

Fragmented!

Fragmented! Encapsulate!

VM!

Physical

server!

Fig. 2. An example of packet fragmentation caused by tunnel encapsulation

• A frame rewriting method is applied to VMs’ frames
to ensure end-to-end reachability with hiding their MAC
addresses from physical switches

• A host-based VLAN ID usage ensures provisioning of a
lot of tenant networks onto the datacenter network

• These features are realized by software-implemented
switch and controller that support standard OpenFlow 1.0
protocol without any special hardware equipment

A. Frame Header Rewriting

In order to deliver frames from VMs to other physical hosts,
our model uses the frame header rewriting method instead of
using tunneling protocols. Figure 3 shows the transition of the
frame structure during VM-to-VM frame transmission.

52:54:00:22:00:01

(DST)

0x0800

(TYPE)
IP PACKET

VM1

(Tx)!

52:54:00:11:00:01

(SRC)

68:05:CA:17:53:48

(DST)

0x0800

(TYPE)
IP PACKET

D4:3D:7E:55:3F:1A

(SRC)

0x8100

(TYPE)!

10

(802.1Q)!

52:54:00:22:00:01

(DST)

0x0800

(TYPE)
IP PACKET

D4:3D:7E:55:3F:1A

(SRC)

VM2

(Rx)!

vSwitch1!

Rewrite! Rewrite!

Rewrite!

68:05:CA:17:53:48

(DST)

0x0800

(TYPE)
IP PACKET

D4:3D:7E:55:3F:1A

(SRC)

0x8100

(TYPE)!

10

(802.1Q)!
vSwitch2!

Network transmission!

Fig. 3. The transition of the frame structures between end-to-end VMs
VM2 can know the valid MAC address of VM1 by the ARP (reply) message.

Suppose that VM1 (52:54:00:11:00:01) linked to vSwitch1
on Server1 (D4:3D:7E:55:3F:1A) sends an Ethernet frame
to VM2 (52:54:00:22:00:01) linked to vSwitch2 on Serv-
er2 (68:05:CA:17:53:48). Naturally, the destination MAC
address is 52:54:00:22:00:01 and the source address is
52:54:00:11:00:01. But these addresses are replaced with the
addresses of Server1 and Server2 by vSwitch1 for two main
reasons. The first is delivering the frame to Server2 just like
traditional physical host-to-host L2 frame transmission. The
other reason is that physical switches on the path do not need

to learn MAC addresses of the VMs for FDB (Forwarding
Database) and this results in drastic decrease of the number of
MAC addresses in the FDB. In addition, a VLAN tag (802.1Q)
is inserted into the frame by vSwitch1 and the VID value
denotes the destination VM on Server2. At receiving, vSwitch2
inspects the VLAN tag first and rewrites the destination
MAC address again to VM2’s one. Then, the VLAN-stripped
frame is finally delivered to VM2. Note that VM2 does not
seem to know the valid VM1’s MAC address at first sight,
however, VM2 can hold the VM1’s address in its ARP table by
receiving ARP reply messages from VM1. To hold valid peer
MAC addresses is important in considering the VM migration
because the MAC and IP addresses of the VM should not be
changed after the migration (migration transparency).

With the proposed model, aforementioned IP fragmentation
does not occur even though the VM transmits maximum sized
frame since there is no additional outer headers to the frame.

B. Host-based VLAN ID Usage

Generally, VLAN is used to logically separate virtual net-
works on the physical network and each virtual network is
identified by the VID value. That is, each VM belonging to
the same virtual network has a same VID. This traditional
VLAN usage works well in small networks that hold the
limited number of tenants, however, further approaches need
to be considered for large-scale networks that have to support a
lot of tenants because of VID space limitation (4094). Current
tunneling protocols addresses this problem by providing larger
ID space at least 24 bit instead of using the VID value.

In the proposed model, VID is just only used to determine
the destination MAC address at the virtual switch on the
receiver host. Each virtual switch has flow entires to map VID
value to the destination VM, for example, if the received frame
has VID 10 then it is forwarded to VM2 with MAC address
52:54:00:22:00:01. Such VID-VM mappings are managed by
an OpenFlow controller, and flow entires are preliminary set to
the virtual switch when a VM instance starts up. While, sender
side virtual switches also have flow entires to determine in-
serting VID value based on the destination VM. These entries
are set when a first ARP request message is passed to the
virtual switch. Then, the request is escalated to the controller
as an OFPT_PACKET_IN OpenFlow message. In our model,
the controller is supposed to know all the information about
VM, such as virtual network (tenant), IP/MAC addresses,
and physical server (+VID), by working together with an
IaaS controller like OpenStack[7]. Therefore, the OpenFlow
controller can determine the VID value and set proper flow
entries based on the information, and ensure one VM can
communicate with VMs of the same tenant only.

This approach extends the scalability of the number of
virtual networks because each physical server has its own VID
space, and this VID space is enough considering current server
machine can run over 100 VMs at most. Theoretically, the
number of virtual networks can be increased unlimitedly by
adding physical servers to the physical network.

Fig. 4. An example of VID usage under the proposed model

Figure 4 shows the VID usage example in the proposed
model. It should be noted that the center server runs three VMs
and each VM corresponds to different VID value even though
the two VMs on the left belong to the same tenant (Tenant 1)
network. VMs on different physical servers can communicate
with each other using different VID spaces as long as they
belong to the same tenant. For example, the VM on the left
server sends a frame to the center server with VID=10, and
the leftmost VM on the center server will receive it. Likewise,
the leftmost VM also sends a frame to the source VM with
VID=30 and the VM on the left server will receive it.

C. Flow Entries

� �
in port=1,dl vlan=10 actions=mod dl dst:52:54:00:11:
22:33,strip vlan,output:2
in port=1,dl vlan=20 actions=mod dl dst:52:54:00:44:
55:66,strip vlan,output:3 ...� �

Fig. 5. An example flow entries for incoming frames (p1:trunk, p2,3:VM)� �
in port=2,dl dst=52:54:00:12:34:56 actions=mod vlan
vid:50,mod dl dst:68:05:CA:17:53:48,mod dl src:D4:3D:
7E:55:3F:1A,output:1
in port=2,dl dst=52:54:00:AA:BB:CC actions=mod vl
an vid:30,mod dl dst:7C:C3:A1:86:9A:4B,mod dl src:
D4:3D:7E:55:3F:1A,output:1 ...� �

Fig. 6. An example flow entries for outgoing frames (p1:trunk, p2:VM)

Here, example flow entries of a virtual switch (Open
vSwitch) are presented. Figure 5 expresses flow entries for
incoming frames. Every frames come from a trunk port
(e.g. eth0) and a corresponding flow entry is determined

based on the VID value (dl_vlan). Each flow entry has
actions directive that includes destination address rewriting,
VLAN tag stripping, and forwarding. For example, a received
frame via switch port 1 having VID=20 is passed to port
3 with 52:54:00:44:55:66 destination address without VLAN
tag. Figure 6 shows flow entries for outgoing frames. The
corresponding flow entry is determined by the source VM and
the destination MAC address. The actions directive has a
VLAN tag insertion and MAC addresses rewriting instructions.

IV. PERFORMANCE EVALUATION

This section gives the performance evaluation results of the
proposed model. The performance was measured using Iperf,
and GRE and VXLAN were also used for comparison.

!"#$%&'(

)*"$+,!

-,.)"+&'()/#0/#(1!

!21(34/56/#7!

89/#:(

+'"/5$(

!2;(3</+/"0/#7!

-,.)"+&'(()/#0/#(;!

=>?()*"$+,"5@(,%>!

!"#$%&'(

)*"$+,!

A9/5B'C*(

DC5$#C''/#(

1E;F1GHF1F1(

I;JIKJLLJ11JLLJL1!

1LFLFLF1(

MKJNMJO?JIIJNBJ1P!

89/#:(

)/#0/#(

1E;F1GHF;F1(

I;JIKJLLJ;;JLLJL1!

1LFLFLF;(

GHJLIJDPJ1OJINJKH!

=<?(Q(!RSPT($%55/'!

Fig. 7. Experiment environment

TABLE I
MACHINE SPECIFICATIONS

VM 1 (Sender)
OS LinuxBean (3.2.0)
CPU 1 core
Memory 1 GByte
vNIC virtio-net

Physical server 1
OS CentOS6.4 (2.6.32)
VMM KVM
vSwitch Open vSwitch 1.10
CPU Core i7 (3.60 GHz)
Memory 64 GBytes
Network 1000BASE-T

VM 2 (Receiver)
OS LinuxBean (3.2.0)
CPU 1 core
Memory 1 GByte
vNIC virtio-net

Physical server 2
OS CentOS6.4 (2.6.32)
VMM KVM
vSwitch Open vSwitch 1.10
CPU Core i7 (3.40 GHz)
Memory 32 GBytes
Network 1000BASE-T

TABLE II
FRAME PROCESSING PATTERNS

Overhead VLAN IP tunnel Rewriting
Optimal 0 [bytes] - - -
Proposed 4 [bytes] ✓ - ✓
GRE 38 [bytes] - ✓ -
VXLAN 50 [bytes] - ✓ -

Figure 7 and table I show the experimental environment. In
the experiment, the Iperf client continuously sent UDP/TCP
packets for a minute to the Iperf server. The virtual switch on
Physical server 1 inserts a VLAN tag and rewrites both MAC
addresses of the header in the case of the proposed model.

For GRE and VXLAN tunneling, the virtual switches provide
tunneling ports between 10.0.0.1 and 10.0.0.2, and encapsu-
lates/decapsulates the frames. In addition, the performance
with ”optimal” condition (see table II) was also measured to
provide upper bound performance under the environment. Note
that flow entries of the virtual switches were preliminarily set
by the controller before the measurements.

A. UDP Performance Results

The performance results for UDP are presented in figure 8–
11. In figure 8 and 9, the x-axis is data chunk size of the Iperf
client (excluding IP header) and the y-axis is a bandwidth
measured by the Iperf server. The results show that there
was no performance differences (and the bandwidth was low)
with small data chunk size (less than about 1500 bytes). This
was because the packet processing (including interruption and
system-call invocation) was relatively heavy. Next, the results
of GRE and VXLAN were below the optimal and proposed
models in larger packet size. In figure 9, there were some
performance drop points on the graph. The performance of
VXLAN drastically decreased when data chunk size exceeded
2902 bytes, likewise 2914 bytes for GRE, and 2952 bytes
for every models. Apparently, these performance degradations
were triggered by the IP fragmentation. As proof of this,
2902 bytes data chunk was divided into two VM’s frames
(15142 and 14643 bytes respectively) and 1464 + VXLAN(8)
+ UDP(8) + IP(20) just equals to the MTU size (1500). And
this calculation can apply equally to GRE. Since optimal and
proposed model do not encapsulate frames, the number of
fragmented packets was less than tunneling models. Conse-
quently, the performance of the proposed model was fairly
good compared to the tunneling model with larger packet size.

Figure 10 and 11 express packet loss rate and CPU usage
of VM2. For smaller data chunk size, the results of every
models were high because there were many physical frames
on the network and pNIC has limited frame buffer. For larger
data chunk size, tunneling models drastically worse than the
others. This can be thought that the differences of the total
number of fragmented packets caused the differences of the
packet processing load of the kernel.

B. TCP Performance Results

Figure 12 and 13 present throughput and CPU usage results
using TCP. Similar with the UDP throughput result, the perfor-
mance of GRE and VXLAN models were below the optimal
and the proposed models when data chunk size becomes large.
However, the CPU usage result vastly differs from the result
of UDP because of the stream-oriented TCP characteristic. For
example, when the Iperf client continuously sends 1024 bytes
data chunks, TCP protocol tries to segment the continuous data
chunks into 1460 bytes segments in order to maximize each
segment size upto MSS (Maximum Segment Size). That is,
many VM’s frames have MTU-sized payload and this causes
further IP fragmentation by tunneling protocols.

21472 + 8(UDP) + 20(IP) + 14(Ethernet) = 1514
31430 + 20(IP) + 14(Ethernet) = 1464

 0

 200

 400

 600

 800

 1000

 0 512 1024 1536 2048 2560 3072

B
a
n
d
w
i
d
t
h

[
M
b
p
s
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 8. UDP : Bandwidth

 760

 780

 800

 820

 840

 860

 880

 900

 920

 940

 960

 2912 2944 2976 3008 3040 3072

B
a
n
d
w
i
d
t
h

[
M
b
p
s
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 9. UDP : Bandwidth (focusing on around 3000 bytes)

 0

 5

 10

 15

 20

 25

 0 512 1024 1536 2048 2560 3072

P
a
c
k
e
t

l
o
s
s

r
a
t
e

[
%
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 10. UDP : Packet loss rate

 10

 20

 30

 40

 50

 60

 70

 80

 0 512 1024 1536 2048 2560 3072

C
P
U

u
s
a
g
e

[
%
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 11. UDP : CPU usage of the receiver VM

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 512 1024 1536 2048 2560 3072

B
a
n
d
w
i
d
t
h

[
M
b
p
s
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 12. TCP : Bandwidth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 512 1024 1536 2048 2560 3072

C
P
U

u
s
a
g
e

[
%
]

Data Chunk Size [bytes]

Optimal
Proposed

GRE
VXLAN

Fig. 13. TCP : CPU usage of the receiver VM

V. DISCUSSION

Performance impact on actual datacenter networks
Benson et al.[8] studied about characteristics of practical

datacenters traffics and their results showed that about 40% of
packets were over 1400 bytes. Suppose that all these packets
are MTU-sized packets, our model can reduce about 30%
packets comparing with the tunneling model.
MTU size adjustment / Jumbo frames

It is possible to reduce the MTU size of the VM in
order to prevent the IP fragmentation. However, this MTU
adjustment increases the operational cost of the datacenter
networks if tens of thousands of VMs are running. Instead,
we can also use jumbo frame mechanism that enables whole
frame encapsulation without the IP fragmentation, but every
network equipments must support same extended MTU-size.
Existing tunneling protocols

NVGRE avoids the fragmentation by returning ICMP mes-
sages (type=3, code=4), however, this does not work when the
VM filters them. STT uses hardware offloading to improve
the performance. Since such offloading mechanisms have
compatibility problems, some datacenter operators disable the
mechanism for stability. Besides, STT packets can be treated
as invalid by security appliances because of fake-TCP header.
Broadcast frame handling

In our model, broadcast frames need to be treated by the
OpenFlow controller to deliver them to specified VMs. The
controller can create copies of the frame and modify their
destination MAC addresses from broadcast to individual ones
because it knows the physical location of the target VMs.
VM Migration

When a VM is migrated to another host, virtual switch
settings also need to be updated. The OpenFlow controller
deletes the old flow entries of related switches trigger-
ing OFPT_PORT_STATUS with OFPPR_DELETE message.
Likewise, new flow entries can be set into the switches when
the status message with OFPPR_ADD is received.

VI. RELATED WORK

Matias et al.[9] proposed L2 network virtualization us-
ing OpenFlow and L2PNV (Layer 2 Prefix-based Network
Virtualization)[10]. In their model, L2 subnetworks can be
created by prefix-based MAC addresses, however, OpenFlow
switches have to be modified to support MAC subnetting
mechanism. Besides, MAC address of physical servers need
to be reassigned for the model.

Scissors[11] can reduce header redundancies by replacing
the header information to a Flow-ID using OpenFlow. Flow-
ID is used for end-to-end routing instead of the header, and
the controller coordinates hardware switches on the path.
This approach can be applicable to encapsulated flows using
tunneling protocols and reduce outer header information. But
scissors require a special hardware for the switches to handle
Flow-ID and header trimming processing.

HostVLAN[12] realized MAC address based network vir-
tualization by mapping MAC addresses and Logical Network
IDs (LNID). HostVLAN identifies the LNID from the source

address of the received frame by searching the mapping table
and then forwards it to the destination VM through a tenant fil-
tering module. Like our model, HostVLAN targets L2 network
and addresses the limitation of the number of tenant networks.
However, MAC addresses of VMs are not hidden from the
physical switches in HostVLAN model, and existing virtual
switches have to be modified to support filtering functions.

VII. CONCLUSION

This paper proposed a pure software approach for yet
another edge-overlay model for L2 datacenter networks, and
this model leverages OpenFlow instead of L2-in-L3 tunneling.
In practice, two approaches, the frame header rewriting and the
host-based VID usage were proposed. The frame rewriting
ensures the address space isolation of each virtual network
and reduces the number of MAC addresses physical switches
have to learn. The alternative VID usage enables unlimited
scalability of the number of virtual networks that share the
same physical network resources.

A performance evaluation and discussions about several
aspects of the proposed model were also conducted in this
paper. The results showed that the our model indicated better
performance and less CPU usage with a certain packet size
and superior compatibility with existing L2 networks.

Further experiments are necessary to evaluate load per-
formance of the model under high bandwidth network and
multiple VMs’ traffics. In addition, our model is planned to
be extended to support IP/MPLS-based networks and inter-
datacenter networks in future work.

REFERENCES

[1] M. Mahalingam, D. Dutt, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, ”VXLAN: A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks”, Internet draft, 2013.

[2] M. Sridharan, A. Greenberg, N. Venkataramiah, Y. Wang, K. Duda,
I. Ganga, G. Lin, M. Pearson, P. Thaler, and C. Tumuluri, ”NVGRE:
Network Virtualization using Generic Routing Encapsulation”, Internet
draft, 2013.

[3] B. Davie, Ed. and J. Gross, ”A Stateless Transport Tunneling Protocol
for Network Virtualization (STT)”, Internet draft, 2013.

[4] N. McKeown, T. Andershnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, J. Turneron, and H. Balakris, ”OpenFlow: Enabling Innovation
in Campus Networks”, ACM Computer Communication Review, Vol.
38, Issue 2, pp. 69-74, April 2008.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, ”Generic Routing
Encapsulation (GRE)”, RFC 2784, 2000.

[6] Open vSwitch, http://openvswitch.org/.
[7] OpenStack, http://www.openstack.org/.
[8] T. Benson, A. Akella, and D. A. Maltz, ”Network Traffic Characteristics

of Data Centers in the Wild”, Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, pp.267–280, 2010.

[9] J. Matias, B. Tornero, A. Mendiola, E. Jacob, and N. Toledo, ”Imple-
menting Layer 2 Network Virtualization using OpenFlow: Challenges
and Solutions”, 2012 European Workshop on Software Defined Net-
working (EWSDN), pp.30–35, 2012.

[10] J. Matias, E. Jacob, N. Toledo, and J. Astorga, ”Towards Neutrality in
Access Networks: A NANDO Deployment with OpenFlow”, Interna-
tional Conference on Access Networks (ACCESS), pp.7–12, 2011.

[11] K. Kannan and S. Banerjee, ”Scissors: Dealing with Header Redundan-
cies in Data Centers through SDN”, 8th International Conference on
Network and Service Management (CNSM), pp.295–301, 2012.

[12] K. Onoue, N. Matsuoka, and J. Tanaka, ”Host-based Logical Isolation
Technology for Scalable Cloud Networks”, IPSJ Transactions on Ad-
vanced Computing Systems, Vol.4, No.4, pp.180–190, 2011.

