
Differential Synchronization Mechanism
for a Real-Time Collaborative Web Page Editing System WFE-S

Tadachika Ozono, Robin M. E. Swezey, Shun
Shiramatsu, Toramatsu Shintani

Department of Computer Science and Engineering
Graduate School of Nagoya Institute of Technology

Nagoya, Japan
e-mail: {ozono, robin, siramatsu, tora}@toralab.org

Takushi Goda Yudai Kato Ryota Inoue
Department of Computer Science
Nagoya Institute of Technology

Nagoya, Japan
e-mail: {godata, inouer, kyudai}@toralab.org

Abstract—We propose a differential synchronization mecha-
nism for Real-Time Collaborative Editing. We are developing
WFE, a system for Real-Time Collaborative Editing for ex-
isting Web pages. We need to improve the response time to
reduce conflicts among multiple users. We develop a DOM tree
based differential updating mechanism to minimize update
information for real-time editing. We implement the method
on Google App Engine. We present comparison experiments
that show our method can achieve practical this.

Keywords-component; real time collaborative editting; web
application; web push mechanism; differential synchronization

I. INTRODUCTION
We propose a differential synchronization mechanism for

Real-Time Collaborative Editing (RTCE) for existing Web
pages. Research on collaborative editing using the Web is
trending, and this field is growing importantly [1,2]. Our past
and present research aims to enable several users to perform
simultaneous modifications on existing Web pages in their
browsers, while modified contents are reflected to other us-
ers in real-time.

There are various researches ongoing about differential
synchronization in Web services [3], and our research as well
focuses on realizing effective replacement of HTML infor-
mation deltas in a Web browser. In this paper, we present our
synchronous editing system making use only of information
deltas as well as its implementation. In WFE, there is a
chance for inconsistency to temporarily occur in the last ver-
sion of the HTML file viewed by each user. In this paper, we
show how we addressed the challenges encountered with
WFE, namely our implementation for guaranteeing better
consistency.

The paper is organized as follows. In the first section, we
will introduce the challenges encountered when implement-
ing a RTCE system for Web pages, which we tackle with our
implementation. In Section II, we show limitations in the
preceding research. In Section III and VI, we propose a
DOM tree based differential synchronization mechanism and
its implementation. Section V gives details on how to run the
system. System evaluation is performed in Section VI. We
then discuss and conclude this research in Sections VII.

II. THE WFE SYSTEM FOR A REAL-TIME
COLLABORATIVE WEB PAGE EDITING

We introduce the basic architecture, operations and chal-
lenges of WFE, a synchronous editing system for Web pages.
This system constitutes the base of our research. By selecting
text on a Web page open in a browser, users can edit the
HTML content of the file [4,5]. This is done using the sys-
tem’s interface. There are several advantages to such a sys-
tem. First, since the editing can be performed in the browser,
there is no need to preview the results elsewhere, making
editing fairly easy. Then, because the system provides an
interface for editing, there is no need for knowledge of
HTML or knowledge of its existence. Finally, because there
is no need to upload data to the server, this represents an
advantage in terms of burden on the user.

A. Architecture and Behavior of WFE
Figure 1 outlines the basic architecture of WFE. As

shown, it is mainly composed of two elements. The first is a
CGI server script that provides a editable Web page and
manages the associated HTML file. The second is a Javas-
cript module that provides with the actual editing interface

Figure 1. Workflow of WFE

(3) Data
Exchange

HTTP
Request

(1) Send

View

(2)Edit

 U
ser

CGI Script

HTML
Source

JavaScript

HTML
Source

Read
Write

Client

Server

and communicates edits to the server. The system is made
possible by this communication between the CGI script on
the server side and the Javascript incorporated in the editable
HTML. There is also a necessity for the server that provides
such an editable page to incorporate the required Javascript
for editing.

However, there is no function for doing this in WFE au-
tomatically, and this increases burdening of the end user. We
explain the behavior of WFE and detail the 5 steps required
to operate it:

(1) Respond to a client HTTP request by returning an

HTML file containing the Javascript for editing.
(2) On the client side, perform editing of the HTML file by

using the UI provided by this Javascript.
(3) Send the edition output (as an HTML file) from client

to server.
(4) On the server, use the payload sent in (3) to change the

contents of the original HTML file sent in (1).
(5) Repeat steps 2 to 4.

This constitutes the basic workflow of Web page editing

in WFE. Since WFE is made for synchronous editing of one
single file, there is a need for one or more consistency
maintenance mechanisms. However, when conflicts occur
between changes after editing, this consistency is maintained
by overwriting with the latter of the edits. This is problem-
atic because earlier edits in such conflicts get erased and lost.
Also, to avoid such conflicts it is desirable to notify other
users when one of them has made a change. To this end, cli-
ents performing synchronous edition use a long polling
mechanism to accomplish this in a matter of seconds, thus
solving this issue to a certain extent.

B. Guaranteeing Consistency
We introduce the challenges faced in WFE that constitute

the subject of this paper. When conducting real-time syn-
chronous editing in WFE, there is a chance for inconsistency
to temporarily occur in the last version of the HTML file
viewed by each user. We outline a scenario in which this
type of inconsistency can occur. First, in the initial state,
clients defined as A and B are able to modify one same file.
In this state, A first performs a modification and sends its
change to the server. In the scenario assumed by WFE, after
this, the server updates the HTML file stored before the edit
was made by A. Then, using B’s long polling, it reflects the
edits on the HTML being edited by B. However, we must
consider the case in which B has sent edits to the server be-
fore its HTML could be updated by polling. In this case, the
contents modified by A are not present in the payload sent by
B to the server. Because of this, when the edits sent by A
reach the server and the HTML file is overwritten, the latter
edits by B which do not contain A’s then overwrite the file
and the contents edited by A are thus lost. We detail this sce-
nario in Figure 2. Moreover, when this type of scenario takes
place, from B’s viewpoint there was no knowledge of A’s
modification. From the server as well, the only available
information is that B’s change occurred right after A’s,
making its version of the HTML file the final one, as if no

problem ever occurred. Therefore, when A reacts to B’s
change by modifying the contents once again, as a result
from every point of view there will be no consistency
problem in appearance. However, when A is forced to per-
form the same edits two times, it can hardly be said that the
system is easy to use.

III. DIFFERENTIAL SYNCHRONIZATION MECHANISM
In this section, we will detail how we addressed the chal-

lenges encountered with WFE, namely our implementation
for guaranteeing better consistency. We present a study of
improvement methods for the obstacles introduced in Section
II.B. There are mainly two approaches to the question. The
first one is to ensure that the last HTML data is always the
one used when making a change. The second is to ensure
that even if the HTML edited was not the last version, the
performed edits are consistent. The first approach thus con-
sists in avoiding conflict as a whole, while the second
acknowledges conflicts but solves them whenever possible.
In the latter approach, one of the means available to solve the
problem is to improve the composition of the HTML payload
in order to perform better consistency maintenance. In this
work, to implement this, we made it so that the edits sent by
the client after editing are the modified contents and their
position in the area of the page. As for implementing the first
approach, we considered porting the system to Google App
Engine to make use of push technology, and we give details
of this implementation in Section IV.

In order to guarantee consistency when editing, our
method in this work consists in using differential synchroni-
zation to avoid conflicts between edits. Even when conduct-
ing synchronous editing with multiple users, if the edits don’t
occur in the same areas of the pages it becomes possible to

Polling

Client A Client B Server

Edit A

Edit B

No Update

No Update

Edit B
Edit B

Polling

Polling

Polling
Edit B

Edit A

Edit A is
overwritten by

Edit B

Figure 2. Inconsistent Situtation

reflect both of them during synchronization. Our system up-
dates the HTML by using the position of DOM elements and
by this seeks to improve performance when maintaining con-
sistency. Several challenges are addressed in this paper when
using this form of differential information to achieve real-
time synchronization of the Web page between clients: 1) the
method to acquire the deltas during edition, 2) how to man-
age these parts, and 3) how to reflect them. The following
sections detail the respective solutions proposed.

A. Acquisition of Differential Information
When editing a Web page in WFE, the system will first

detect the modified elements’ DOM among its HTML tags.
Then, by overwriting the inner HTML of these elements, the
HTML file is actually modified. In this work, to implement
incremental updates, HTML of the target DOM elements as
well as their XPath constitute the information deltas that the
system acquires when a user edits the page. XPath is a syntax
language used to specify the location of specific parts in an
XML source [6]. By using XPath to locate edited parts of the
Web page in WFE, other clients can get knowledge of where
edition occurred. To send changes to the server after editing,
in this research we will use these information deltas instead
of the whole HTML source. Figure 2 shows differential in-
formation that makes use of XPath.

B. Management of Differential Information
The differential information sent by the client to the

server in the form of edits is accumulated on the server in an
information delta storage module. When a client access takes
place, this differential data gets appropriately dispatched if
needed. Also, since in this method the differential data piles
up with the number of edits, processing efficiency is lowered
and the incremental update mechanism can fail. Thus there is
a need to create a snapshot of HTML data at a proper timing,
containing all the differential data up to a certain point, and
update the HTML itself.

C. Application of Differential Information
There are two cases to consider when reflecting the dif-

ferential information. The first is when a new client accesses
the Web page, the second is when there was an edit opera-
tion from a client already accessing the page. In the first case,
when a new client accesses the Web page, HTML data of the
Web page is read, but without any of the undergone edits
applied to it yet. Therefore, all information deltas from the
editing operations up until this moment are read at once, and
sent to the client. Last state of the HTML data can be ob-
tained by applying all differential data in chronological order
from oldest to newest. The latest HTML data thus acquired is
also sent to the server as a snapshot. We now describe the
application of differential information when editing opera-
tions are being performed. When multiple clients are access-
ing the same Web page, if one has edited the page, the edit
must be reflected on other clients as well. In this case, all the
differential data is not required, only the data from the
specific edit performed at this time. Therefore, when an edit
occurs, the differential data is written to the differential
datastore, but nothing more is read out from it the infor-

mation delta is transmitted directly to every client. Figure 3.
outline the flow of HTML data and differential data in each
case.

IV. MPLEMENTATION OF PUSH TECHNOLOGY FOR
DIFFERENTIAL INFORMATION

We call GAE-WFE the Google App Engine (GAE) reim-
plementation of WFE. In this section, we describe the chang-
es to the existing WFE that were required when porting its
architecture and behavior to GAE. Differences between
GAE-WFE and WFE are the following. Since in both only
the server-side environment changes, there is no great modi-
fication to the overall architecture. However, when using
Google’s infrastructure instead of a dedicated server, there is
no possibility to use a CGI script to create, change or remove
static files, among other limitations including CPU resources.
In addition, in GAE-WFE, a new mechanism to carry out the
edit detection is implemented using push technology with the
Google App Engine API, instead of the long polling used so
far.

A. Storage of HTML Data
The original WFE managed Web pages by using a serv-

er-side Perl script to access, write to and create HTML files
on the server’s file system. However, since Google App En-
gine prohibits use of static files, a new mechanism to manage
HTML data and differential data was needed. In the new
GAE-WFE, we make use of the data store provided by GAE
to manage storage and Web page update operations. The data
store is a storage system provided by GAE to applications by
means of an interface, GQL, that resembles SQL. Figure 4
shows an overview of the management mechanism of HTML
data.

Figure 3. Incremental Updates with XPath

Replace

XPath

XPath
from root

Modified Part of DOM Tree
after Editing

DOM of Edit Part

Polling

C
l

i
e

n
t

A

Client B

Other client’s DOM tree

XPath
+DOM

B. Registration of Target Web Pages for Edition
We first describe how target Web pages that will be ed-

ited are registered to the system. A JavaScript bookmarklet is
used to perform this task, which undergoes the following
steps. First, the user opens in a browser the Web page he
seeks to edit, and launches the bookmarklet. The bookmar-
klet accesses GAE-WFE and reads a registration script. This
script then uses the page’s URL as a key to consult the GAE-
WFE data store for existence of the page. The server then
returns a response indicating existence or not of the page’s
HTML data in the data store, with an ID if it exists. In the
case the HTML data existed, the client uses the ID to access
this HTML data, otherwise sends the HTML data of the page
opened.

C. Access to HTML Data
When the client receives the ID of the HTML data and

sends a request for it, the server responds by undergoing the
following steps. First, it reads the URL to determine the file
type according to the extension at the end of its path. By do-
ing so, it can read the appropriate data from the data store
accordingly. As a result, it is used in the content type header
of the data to be sent back to the client.

D. Edition of HTML Data
When editing data, as mentioned above, the processing

on the client side is different from existing ones: the differen-
tial data is passed to the client side and edition is performed
there. In this section, we describe the workflow when a snap-
shot is sent to the server. HTML data from the edit received
on the server side is processed in the following steps:

(1) The server receives the ID of the Web page under edi-

tion, as well as HTML contents of the edit.
(2) Remove DOM elements added for performing editing

with JavaScript that were not in the original HTML data.
(3) Overwrite the HTML data contained in the data store

with the received edit.

With this process, the client editing that used to replace
HTML data on the server has been re-implemented with re-
spect to GAE.

E. Push Delivery Mechanism
In the Google App Engine version of WFE, the push de-

livery mechanism is implemented by using the Comet-based
Channel API provided by GAE. The Channel API create a
sustainable connection between the application and Google
servers, so that messages can be sent to the JavaScript on the
clients, therefore making it possible to create a real-time
connection not depending on polling. To implement push
delivery, the following steps are necessary:

(1) Opening a socket of channel API for push delivery.
(2) Carrying out push delivery from the server to the cli-

ent.
(3) Processing of the information thus received from the

server.

Each operation is incorporated in the workflow of GAE-
WFE. More specifically, in our implementation, (1) is con-
ducted when requesting a Web page from the server, (2) is
conducted after the server receives edits from the client that
are collected in the data store, and (3) is conducted when the
socket receives a messages from the client.

V. IMPLEMENTATION OF SYNCHRONOUS EDITING
In the previous sections, we have detailed an implemen-

tation to improve the consistency performance of a Web syn-
chronous editing system using push delivery. Although the
present section does not relate directly to the system’s capa-
bilities, we present the implementation of a system-level
necessary editor user management system, as well as solu-
tions to address challenges encountered in the original WFE.
There are several additions from the original WFE to the
extended version on which the GAE version of WFE is
based. Namely, embedding of links to other pages, edition of

Diff.
Data Server

Diff.
Data-
store

C
lient

Diff.
Data

Concurrently Ac-
cessing Client

Concurrently Ac-

cessing Client

Concurrently Ac-
cessing Client

Concurrently Ac-

cessing Client

Diff.
Data HTML，Diff.

Data
URL

HTML Data

HTML，Diff. Data
GQL Query

HTML Data

Data
Store

Client

Server

Figure 4. Handling Differential Data

Figure 5. Edit Detection using Differential Information

the title and background, as well as login restrictions for edit-
ing. In the following we describe the changes necessary in
this work on the GAE version. The GAE version uses the
Channel API of GAE[7] for push. There are mainly three
changes implemented:

(1) Adding various editing functions
(2) Editing restrictions by password mechanism
(3) Changing the script loading workflow

(1) Supported table and list editing, users can add and re-
move table rows, table columns, and list items. (2) Imple-
mented a simple authentication mechanism. (3) Optimized
the JavaScript loading strategy to speed up.

VI. EVALUATION EXPERIMENTS
Finally, we conducted experiments to evaluate this new

implementation of WFE. The measured performance is real-
time reactivity. In this research, it is measured with the fol-
lowing metric: when several users are editing the same Web
page, if one client performs a change, the time taken to prop-
agate the changes to the HTML data in the browsers of other
clients tends to be lower for real-time reactivity to be higher.

A. Experiment Environment
We base our experimental protocol on AJAX-related test-

ing methods [8]. The experiment environment is as follows.
First, we assume that one client edits the page roughly once
in every 30 seconds. This mean that if 1 edit was observed in
30s, there was 1 concurrent edit; if 1 edit was observed in
15s, there were 2 concurrent edits; if 1 edit was observed in
2s, there were 15 concurrent edits, and so forth. We also con-
sider the target use of the system to be by small groups on
the order of laboratory size, thus we expect it to withstand
the concurrent editing of about 30 users. In other terms, the
objective is for the server to be able of returning a response
within a certain period of time given 1 edit request per se-
cond. Another objective is for the server to be able to deliver
a response within the bounds of 1000ms after a request so
that it can be considered of acceptable real-time reactivity
and usable by multiple users synchronously. In addition, to
examine the change in performance after improving our sys-
tem, we conducted a similar experiment where the units used
to propagate edits to other clients were whole pages instead
of incremental blocks of differential information.

The experiment was carried out in the following way.
Perform edits on the HTML data in random locations in a
random time interval within the bounds of an access interval
determined according to the number of clients. Here, record
the start time just before sending the edit to the server. When
the server receives the edit, push it to all the clients, and let
them apply the edit. Then, record the end time as the time
immediately after applying the edit. At this time, the re-
sponse is measured by subtracting start time from end time.
This process is repeated several times and the average re-
sponse time is recorded.

B. Experimental Results
Table 1 and Figure 6 show the results of this experiment.

According to the results, it is possible to satisfy the 1000ms
boundary limitation when having up to 9 concurrent connec-
tions, but beyond that it becomes increasingly difficult. Ad-
ditionally, the increase in response time is sudden between 9
and 12 concurrent connections but does not change signifi-
cantly thereafter. The believed reason for this increase not to
be a straight slope is the influence of random intervals over
the number of simultaneous editors. Finally, when compar-
ing the incremental update system with the whole-page up-
date approach, we observe that the response time is reduced
drastically.

C. Discussion
First, we consider the experimental protocol. In this ex-

periment, since it would be difficult to assess the real-time
reactivity of the system with a fixed average in response time
when several users are performing simultaneous edits, we

Concurrent
Connections

Avg. Response Time
Incremental Updates

Avg. Response Time
Whole Page Updates

3 796 1,861
6 705 7,435
9 715 8,385

12 2,551 9,955
15 2,082 10,063
18 3,253 10,148
21 3,348 10,123
24 5,066 11,719
27 2,192 10,667
30 3,673 11,168

Figure 6. Response Time by Number of Concurrent Users

TABLE I. RESPONSE TIME BY NUMBER OF CONCURRENT USERS

assumed a variation in the spacing of edit events. However,
by looking at the results, when the number of users is in-
creased it becomes difficult to predict the change in response
time. Thus, we believe more control over the possible varia-
tions in the edit intervals is desirable.

The experiments were conducted in a group where every
member was given the rigorous instructions to perform a
random edit every 30 seconds. While the boundary limitation
of 1000ms was satisfied only up to the order of 10 users, we
witnessed significant improvement in real-time reactivity
when comparing to the whole-page update approach. Before
conducting the experiment, we expected the response time to
soar with the number of concurrent connections, yet since
this is not the case we believe there is opportunity for further
investigation on the matter.

VII. CONCLUSION
In this research, we have implemented a synchronous

Web page editing system, WFE-S. The system makes use of
incremental updates using the DOM tree and XPath to im-
prove the efficiency of synchronous communication. We
then confirmed by experiments that this improved the reac-
tivity for updates. Though challenges still remain, this allows
for maintaining consistency when performing synchronous
editing among multiple users. By using this approach, the
communication overhead could also be reduced, thus im-
proving scalability. Our system enables several users to per-
form synchronous editing without knowledge of server man-
agement, making it possible to support collaborative work on
existing Web pages.

REFERENCES
[1] Matthias Heinrich, Franz Lehmann, Thomas Springer, Martin Gaedke,

"Exploiting single-user web applications for shared editing: a generic
transformation approach", Proceedings of the 21st international
conference on World Wide Web, pp. 1057-1066, 2012.

[2] Max Goldman, Greg Little, Robert C. Miller, “Real-time
collaborative coding in a web IDE”, UIST ’11 Proceedings of the 24th
annual ACM symposium on User interface software and technology,
2011.

[3] Neil Fraser,”Differential synchronization”, DocEng ‘09, 2009.
[4] Y.Fukagaya,T.Ozono,T.Ito and T.Shintani,”MiSpider: A Continuous

Agent on Web Pages,” WWW2005, pp.1008-1009, 2005.
[5] Nishi. K, et.al, “Implementing an Online Writable Web Page System

and Its Applications”, The transactions of the Institute of Electrical
Engineers of Japan. C, A publication of Electronics, Information and
System Society 125(4), pp. 660-665, 2005.

[6] Steve DeRose, “XPath 1.0, XML Path Language (XPath) Version 1.0,
James Clark”, http://www.w3.org/TR/xpath, 1999.

[7] Google, “ChannelAPI Overview (Python)”,
https://developers.google.com/appengine/docs/python/channel/overvi
ew, 2012/04/16.

[8] Engin Bozdag, Ali Meshah, Arie Van Deursen, “Performance testing
of data delivery techniques for AJAX application”, Journal Web
Enginnering, Vol.8, Issue 4, 2009.

