
A Web Agent Based on Exploratory Event Mining in Social Media

Norifumi Hirata, Hiroyuki Sano, Robin M. E. Swezey, Shun Shiramatsu, Tadachika Ozono, Toramatsu Shintani
Dept. of Computer Science and Engineering

Graduate School of Engineering, Nagoya Institute of Technology
Nagoya, Aichi, Japan

{nori, hsano, robin, siramatu, ozono, tora}@toralab.org

Abstract—We introduce an exploratory event mining system
in social media. A system deals with user’s interests by making
use of interaction between user input and system output. The
system presents related events in the form of graph structures
called “event graphs”. Event graphs based on users’ interests
are produced by iterating over event presentation and user
selection. The system’s user interface helps users obtain a better
understanding of the content and background of news events.
Our system has two kinds of agents. One is a news agent to
detect related news articles and the other is a microblog agent
to detect related microblog posts on the Web. A microblog
agent detects related microblog posts using news articles that
contain news URL references, and using a similarity between
news titles and tweets.

Keywords-event mining; news article; microblogging;

I. INTRODUCTION

This paper proposes a Web agent system based on ex-
ploratory event mining. Exploratory event mining is based
on tracking events with a user interface for making ex-
ploratory searches. The exploratory interaction process[1] is
information visualization and trial-and-error tactics.

Our goal is to support better user understanding of news
events. We focus on two points to achieve this goal. The first
is user’s interest. User’s interest is different each other. The
system deals with the problem by exploratory interaction
process. The second is other users’ opinions. A user can
take an event from other users’ opinions

In order to identify an event that a user is interested
in, a user gives a system a URL of browsing news page.
Then a user can get related events and microblog posts. It
is helpful to improve understanding of an event. Our system
has two kinds of agents. One is a news agent to detect
related news articles and the other is a microblog agent to
detect related microblog posts. A news agent detects related
news and similar events for user interaction. A microblog
agent collects microblog posts on the Web from Twitter. A
microblog agent detects related tweets using news articles
that contain news URL references. Furthermore, a microblog
agent detects using a similarity between news titles and
tweets.

We previously proposed a system[2] to provide better
understanding of news events on the Web by tracking events
with a user interface for making exploratory searches. This

paper proposes a method to add microblog posts related to
an event from social media Twitter.

The remainder of this paper is organized as follows. In
Section 2 we show an example of event graphs models to
deal with user’s interaction. Section 3 explains our system’s
flow and a method to extract news articles and tweets. In
Section 4 we discuss results of related events and tweets.
Finally, we conclude the paper with a summary of key points
regarding the system.

II. EXPLORATORY EVENT MINING AND MICROBLOG

A. An Event and Event Graph

In this paper, we define an “event” as a set of related
articles and tweets. In the Topic Detection and Tracking
(TDT)[3], [4] project, an event is a unique occurrence at
a point in time. We consider that user’s interesting events
depend on each other. Related event presentation with no
interaction is not sufficient. Using user’s interaction can deal
with user’s preferences.

Event relations are presented as a graph structure in which
a graph node is an event and a graph edge is an important
word common to the event. Figure 1 shows an example event
graph of the system obtaining an article. Graph nodes (e.g.,
ei−j) are events and graph edges (e.g. wk) are important
words. When the system receives a new article, it presents
related events; e1−1, e1−2, and e1−3. Users select the most
interesting event (e1−1) from the presented events. Events
related to the selected event (e1−1) are presented such as
e2−1, e2−2, e2−3, and e2−4. The w1, w2, and w3 on the
edges are words important for extracting each event. By
repeating event presentation and user selection, a user can
receive unique event graphs. Exploratory event mining is to
build an event graph by interaction between user input and
system output.

Figure 2 shows structures and relations of events, news
articles, and microblog posts. Important words relate events.
An event relates to some news articles and microblog posts.
When a user selects an event, a user can obtain related
articles, microblog posts, and similar events using important
words.

Figure 1. Exploratory event mining and an event graph

Figure 2. Structure and relation of events, news articles, and microblogs

B. Related Microblog Posts

A system can collect related microblog posts using URL
of news articles related to an event. When a microblog post
refers to URL of a news article, the post is related to the
news articles. Some work[5] uses URL links to analyze news
and blogs. To collect related posts, other work[6] use hash
tags and keyword retrieval. It is well a known method to
collect microblog posts about some genres.

It is hard to collect microblog posts related to a news
article using only hash tags. Soon after an event occurs,
a hash tag to represent the event does not exist. And then
microblogging users may make a lot of hash tags for a same
event. In some cases, a usage of a hash tag changes. To
obtain appropriate hash tags and keywords for each event is
not easy. Our system evaluates a similarity between an event
and a microblog post. Our system retrieves microblog posts

Figure 3. The structure of our event mining system

using keyword conbination based on the similarity.

III. EXPLORATORY EVENT MINING FROM NEWS
ARTICLES AND MICROBLOGS

A. System Structure

Figure 3 shows the structure of our event mining system.
When a user is interested in a news article, a user can
obtain related events, news articles and microblog posts.
First, a user inputs a news article to the system. Second,
a news agent extracts important words and retrieves related
news articles. From related articles the news agent extracts
events. Third, a microblog agent extracts tweets related to
the events. Finally, the system presents related events. The
system outputs events related to the initially input article.
A user selects an interesting event from the output events
graph. After this, the system input is a selected event. Event
graphs are built by iterating over event extraction and user
selection.

A news agent crawls and collects news articles from
some news sites. A microblog agent collects tweets from
the Twitter Streaming API1. When a time of an input event
is close to a time of system usage, a microblog agent uses
the Twitter Search API2.

B. Event Extraction using Important Words and Time

After a user inputs a news article, the first step is to extract
important words from it. An important word is a feature
word that represents an event. A requirement of an important
word is specific parts of speech and high-evaluation. Specific
parts of speech are noun and verb. Since words in Japanese
sentences are not separated by spaces, the system use a
Japanese language morphological analysis program called
MeCab [7] for evaluating key speech elements.

1https://dev.twitter.com/docs/streaming-api
2https://dev.twitter.com/docs/using-search

Evaluation for important words is the sum of the term
frequency - inverse document frequency (tf·idf) values of
each word w in an event e as shown below:

tf · idfe(w) =
∑

a∈Aeinput

tf · idfa(w) (1)

where Aeinput is a set of news articles related to an input
event einput, and tf · idfa(w) is the term frequency and
inverse document frequency value in each article a. When a
system input is a news article, an element of Aeinput is only
an input news article. A news agent selects highly evaluated
words as important words.

The second step is article retrieval by each important
word. To retrieve related news articles, a news agent uses
a simple keyword matching and time restriction because a
simple method costs few processing time. A news agent
selects articles published around the same time because
related events occur within similar time.

The final step is related event extraction from retrieved
articles. A news agent finds a news article aseed that is
the most similar to the input event einput. t(a) means a
published time of a news article a. t(einput) means an
average of t(a) related to a same event. A news agent uses
cosine similarity and a time window θta.

sima(einput, a) ={
cos(~einput,~a), if |t(einput)− t(a)| < θta

0, otherwise
(2)

cos(~einput,~a) =
~einput · ~a

| ~einput||~a|
(3)

~a is a tf·idf vector of a news article and ~e is a tf·idf vector
of an event.

The most similar article aseed is a seed of a cluster.

aseed = max
a∈Aw

sima(einput, a) (4)

Aw is a result for article retrieval by important word w.
A news agent adds a news article a to the cluster if the

article’s similarity exceeds a threshold θa. A similarity is
cosine similarity between aseed and a ∈ Aw. When a news
agent performs for all retrieved articles, the system assumes
the cluster as an event.

C. Related Microblog Extraction
When a microblog post refers to URL of a news article,

the post is related to the news articles. When a microblog
post does not refer to the URL, the system evaluates a
similarity between a news article and a microblog post.
In this paper, a microblog post is a tweet. The similarity
between an article and a tweet is calculated as follows:

simm(a,m) =
1, if |words(m) ∩ url(a)| > 0
f(a,m), else if|t(m)− t(a)| < θtm

0, otherwise
(5)

Figure 4. A relation betweet input event e and tweet m

f(a,m) =

∑
w∈features(a)∩words(m) tf ·idfa(w)∑

w∈features(a) tf ·idfa(w)
(6)

When a tweet m refers to the URL of news article a,
a similarity simm(a,m) is 1. words(m) is words in m
and url(a) is a URL of a. When a time distance between
a tweet and a news article is within a threshold θtm, a
similarity simm(a,m) is f(a,m). t(m) is a posted time
of m. Time distance is one of important elements because
a time and a tweet of a content are closely[9]. In the other
case, a similarity simm(a,m) is 0. f(a,m) is a rate of news
specific words features(a) in tweet text. features(a) is a
set of words w that tf ·idfa(w) values exceed a threshold.
A similarity between an event e and a tweet m is similar to
simm(a,m). simm(e,)

A similarity between an event and a tweet is the maximum
value as shown below:

simseed(aseed,m) =
maxa∈Ae {sima(aseed, a) · simm(a,m)} (7)

aseed is a seed of a news article cluster. Ae is a set of news
articles related to event e that is extracted from aseed. If
a similarity simm(aseed,m) exceeds a threshold θm, the
system assumes that the tweet m relates to aseed. Figure
4 shows a relation between input event e and tweet m.
If a news agent fails to extract a related news article, a
microblog agent also fails to extract a related tweet. Thus, a
microblog agent calculates simseed using sima and simm.
When the tweet m is extracted from a news article that has
a low similarity sima, a condition of a similarity simseed

to exceed a threshold θm is hard.
The system cannot evaluate all tweets in the world. Thus

the system retrieves tweets using search queries from news
articles. The condition that simm(e, m) exceeds θm is
below:

S(a) =
{

Sub

∣∣∣∣ Sub ⊆ features(a),

sima(aseed, a) ·
∑

wsub∈Sub tf ·idfa(wsub)∑
w∈features(a) tf ·idfa(w)

≥ θm

}
(8)

input: aseed is a seed article for News
News is a set of related news articles
Posts is a set of tweets

output: a set of related tweets

01: procedure RetrievePosts(aseed, News, Posts)
02: begin
03: M ← {}; // a set of related tweets
04: Query ← {}; // a set of queries
05: foreach news in News do
06: // GetQuery: get S(news)
07: Query ← Query ∪GetQuery(aseed, news, θm);
08: end do
09: // url(News): a set of news URL
10: M ← Retrieve(Posts, url(News));
11: M ←M ∪Retrieve(Posts,Query, θtm);
12: return M ;
13: end.

Figure 5. An algorithm of related tweets extraction using retrieval

Where Sub is a subset of features(a). tf ·idfa(w) is a tf·idf
value in a news article a. A format of a search query is a
disjunctive normal form.

In summary, an algorithm of related tweets extraction
is shown in Figure 5. In GetQuery(aseed, news, θm) at
line 7, the system calculates a query string according to
equation (8). GetQeury does not need tweet data. In
Retrieval(Post, Query, θtm) at line 11, the system re-
trieves related tweets from Twitter Search API or collected
tweets.

D. Labeling of Event

A label of an event is a short text to represent an event.
A label is a title selected from news titles because a news
title is summary by a newspaper writer. To understand an
event content, a news title is easier than a set of words such
as tag cloud[8].

We consider that a title that has words of each class is
helpful to understand an event. For a user that is unfamiliar
with an event, words of some classes such as an actor
and a location help to understand. A selected title has
oriented information. Proper noun represents location and
actor, and verb represents action. Location, actor, and action
are important elements to represent an event. The system
classifies title words into the five classes that is C ={Actor,
Location, Action, Other proper noun, General noun}.
MeCab can classify Japanese words. An event label should
have the each element. Evaluation for a title as an event

Figure 8. The average number of the words by each class

label is a weighted sum of tf · idfe(w) as shown below:

eval(title, e) =
∑
c∈C

∑
w∈{w|class(w)=c}∩Wtitle

tf · idfe(w)∑
w∈{w|class(w)=c} tf · idfe(w)

(9)
where Wtitle is a set of words in a title and class(w) is a
class of w.

IV. EVALUATION AND EXAMPLES

A. Example of Event Mining System Usage

Figure 6 and Figure 7 show an example of our system
usage. The input article is about Bangkok International
Airport resuming its flight schedule after anti-government
protesters had ended a blockade of the airport. Rectangle
(1) in Figure 6 is a input article. Words in Rectangle (1) are
extracted the input article. Rectangle (2) is an extracted event
from the important word “Bangkok”. Figure 7 is an event
graph after an event selection. The system presents events
related to the selected event. Exploratory event mining is
based on repeating event presentation and user selection.

A user can read related news articles and tweets when a
user click a “+” button. Words on edges are important words
that are extracted from a selected event.

B. Experiment for Event Label

We compared our method and a baseline method for event
labeling. In our method, words are classified to 5 classes. In a
baseline method, words are not classified. evalbase(title, e)
is evaluation for a title as an event label in a baseline method.
evalbase is a sum of tf · idfe(w) that w appears in title and
class(w) is an element of the classes C.

evalbase(title, e) =
∑

w∈{w|class(w)∈C}∩Wtitle

tf · idfe(w)

(10)
We used 8 events that has 20.6 news articles on average

and compared the selected titles. Figure 8 shows the average

Figure 6. An event graph before an event selection

Figure 7. An event graph after an event selection

Table I
THE AVERAGE WORDS AND THE STANDARD DEVIATION IN EVENT

LABELS

our method baseline
The average number

of words in titles 3.00 2.90
The average of standard

deviation by classes 1.62 2.10

number of words by each class. The average number of
words about location in a title increased from 1.0 to 1.9.
Table I shows the average words and the standard deviation
in labels. Our method can select a title that has a low
standard deviation value. The result shows that a label using
our method has a higher probability that contains words of
each class. A title that contains a lot of classes is helpful to
understand an event at first sight.

C. Experiment for Extracted Microblog Posts in an Event

We compared the result of extracted microblog posts using
method A and B. Method A is a method using news titles.
Method B is a method that replace a title with a title and a
first sentence at features(a) of equation (8). Characteristic

words tend to appear in an opening sentence of a new
article[10]. Tweets are extracted from the Streaming API
(sample). We set that a time windowθta and θtm were
24 hours, a threshold about news articles θa was 0.5, a
threshold about tweets θm was 0.2. A microblog agent
extracted related tweets using the 10 seed news articles. The
10 events had 2.2 news articles on average. The 10 events
were small-scale events. A small-scale event does not have
sufficient related opinions. When an event is small scale,
related opinions are necessary.

An average precision is shown as:

precision(Aseed) =
1

|Aseed|
∑

a∈Aseed

|related(a) ∩ extracted(a)|
|extracted(a)|

(11)

Where Aseed is a set of 10 seed articles. extracted(a) is a
result of microblog extraction. related(a) is a set of tweets
related to aseed. Table II shows exsamples of related tweets.
In this case, aseed is a news article about Osaka Metropolis
plan. Type mA tweets are counted in |related(a)|. Type mB

and mC tweets are not counted.
Table III shows results of microblog extraction. The

Table II
EXSAMPLES OF MICROBLOG POSTS RELATED TO A NEWS ARTICLE

a part of tweet text
evaluation of
relationship

mA

Sakai city is not up for
the Osaka metropolis plan. relate

mB

need replacement of fossil fuel:
requisition of a regulation to

Osaka city not relate

mC

contents of conversation: tax
payment, annual pension, Osaka

Metropolis plan... hard to evaluate

Table III
RESULTS OF MICROBLOG EXTRACTION

Method precision

the number of
related tweets:

P

a∈A |related(a)

∩extracted(a)|

the number of
extracted tweets:

P

a∈A |extracted(a)|
A 90.1 124 139
B 86.4 127 147

A(72H) 83.6 168 201

results using Method A and B are similar. The precision
difference between Method A and Method B is 3.7 point.The
results show that a microblog agent obtains sufficient tweets
using only titles.

Method A(72H) is based on a Method A. The time
window θtm in a Method A(72H) is 72 hours. A time
window θtm affects a result of microblog extraction from
a news article a. The precision using Method A is 89.2 and
the precision using Method A(72H) is 83.6.The number of
related tweets increased from 124 to 168. A microblog agent
can obtains more tweets using a wide time window θtm.
However, a precision tends to decrease.

V. CONCLUSION

We described an exploratory event mining system in social
media. Our goal is to support better user understanding of
news events. Our system focuses on user’s interests and other
users’ opinions. Our system deals with user’s interests by
making use of interaction between user input and system
output. Microblog posts about an event help users obtain
a better understanding. We confirmed that a user obtainded
microblog posts using our proposed similarity.

In our related work[11], we classified microblog posts
according to regions. Many priorities of presentation can
deal with each user’s preference. In extraction of news
articles and microblog posts, thresholds (θa and θm) are
important for the performance of the system. Higher thresh-
olds make a higher precision and a lower recall. Additional
work is required for a priority to present event and related
information.

ACKNOWLEDGMENT

This work was supported in part by SCOPE (Strategic
Information and Communications R&D Promotion Pro-
gramme) from Japan’s Ministry of Internal Affairs and
Communications.

REFERENCES

[1] G. Marchionini, “Exploratory Search, From Finding to Under-
standing”, in Communication of the ACM, Vol. 49, No. 4, pp.
41-46, 2006.

[2] N. Hirata, S. Shiramatsu, T. Ozono and T. Shintani, “Gen-
erating an event arrangement for understanding news articles
on the web”, in Proc. of the 23rd. International Conference
on Industrial Engineering and Other Applications of Applied
Intelligence Systems, vol.6097, pp. 525–534, 2010.

[3] J. Allan, J. Carbonell, G. Doddington, J. Yamron and Y. Yang,
“Topic detection and tracking pilot study final report”, in Proc.
of the DARPA broadcast news transcription and understanding
workshop, pp. 194–218, 1998.

[4] D. Trieschnigg and W. Kraaij, “Tno hierarchical topic detection
report at tdt 2004”, in Topic Detection and Tracking 2004
Workshop, 2004.

[5] M. Gamon, S, Basu, D. Belenko D. Fisher, M. Hurst and A.
C. Knig, “BLEWS: Using Blogs to Provide Context for News
Articles”, Proc. of the 2nd AAAI Conference on Weblogs and
Social Media, 2008.

[6] B. Sharifi, M. A. Hutton and J. Kalita, “Summarizing mi-
croblogs automatically”, Human Language Technologies: The
2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pp. 685–688,
2010.

[7] MeCab: Yet Another Part-of-Speech and Morphological Ana-
lyzer, http://mecab.sourceforge.net

[8] A. W. Rivadeneira, Gruen, D. M. Gruen, M. J. Muller and D.
R. Millen, “Getting our head in the clouds: toward evaluation
studies of tagclouds”, Proc. of the SIGCHI conference on
Human factors in computing systems, pp. 995–998, 2007.

[9] K. Lerman and R. Ghosh, “Information Contagion: an Em-
pirical Study of the Spread of News on Digg and Twitter
Social Networks”, The 4th International AAAI Conference on
Weblogs and Social Media, pp.90–97 2010.

[10] Kyodo News, “Handbook for Editors & Writers 12th edition”,
2010.

[11] R. Swezey, S. Shiramatsu, T. Ozono and T. Shintani, “Intelli-
gent Page Recommender Agents: Real-Time Content, Delivery
for Articles and Pages Related to Similar Topics”, In Proc.
of the 24th International Conference on Industrial, Engineer-
ing and Other Applications of Applied Intelligent Systems,
vol.6704, pp.173–182, 2011.

