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Abstract—In this paper, we study a real-time estimation
method of QoE of Multi-View Video and Audio (MVV-A) IP
transmission. The method utilizes application-level QoS param-
eters of video which can be measured in real time. At first,
we perform an experiment with various types of average load,
playout buffering time, and additional delay to the network. In
the experiment, we employ two contents and two user interfaces
for viewpoint change. We assess QoE multidimensionally and
then carry out linear regression analysis in order to obtain
regression lines for estimating QoE. We use the QoE metrics
as the dependent variables and employ the application-level QoS
parameters as the independent variables. From the comparison
of measured values and estimated ones, we notice that real-time
estimation of QoE is feasible in MVV-A IP transmission.
Index Terms—multi-view video and audio, QoE estimation,

linear regression analysis, multidimensional assessment

I. INTRODUCTION

In the conventional television and in the current Internet
streaming services, the users cannot freely choose the view
(e.g., the viewpoint, angle, and direction) which they want to
watch. Instead, they are forced to look at the same view given
by the sender, even if they would prefer to watch another
view of the same content, program, or event. In order to
avoid this inconvenience, MVV (Multi-View Video) [1] has
been developed.
In MVV, the users can choose one video from multiple

video streams of the same content taken by multiple cameras
from different positions. MVV systems can be applied to wide
areas such as entertainment, sports, sightseeing, and education
among others. MVV can be a base system of FTV (Free-
viewpoint TV) [2], in which the users can select the viewpoint
freely without the limitation of cameras’ positions.
As the conventional television enhances its field from broad-

casting to IPTV [3], MVV IP transmission attracts people’s
attention. One of the main issues in MVV transmission is the
viewpoint change delay, which is the time from the moment
the client sends a request for viewpoint change until the instant
a new viewpoint is output at the client. In addition, when
the server sends multiple video streams simultaneously in
order to reduce the viewpoint change delay, the total bitrate
increases as the number of viewpoints increases. Furthermore,
synchronization among multiple video streams is also an
important research issue.

The ultimate goal of the network services is to provide high
QoE (Quality of Experience), which represents the overall
acceptability of an application or service, as perceived sub-
jectively by the end-users [4]. In order to enhance QoE, it
is important to monitor the QoE perceived by the users and
manage the network services on the basis of the QoE.
There have been many studies regarding MVV systems.

However, most of the studies focus on the coding techniques
such as MVC (Multi-view Video Coding) and assess the
effectiveness with the throughput and PSNR (Peak Signal to
Noise Ratio), which measures spatial quality of video. Thus,
there is few studies which assess the effect of network delay
and its jitter on QoE.
In [5], Kurutepe et al. present a client-driven multi-view

video streaming system by transmitting a small number of
views selected according to his/her head position. In addition,
lower quality versions of some other views are also prefetched
for concealment in case the current user’s viewpoint differs
from the predicted viewpoint. They evaluate the proposed
system in terms of PSNR and the prediction error of the head
position.
Cheung et al. have addressed the problem of designing a

frame structure for interactive multiview streaming [6]. They
propose an algorithm to encode the video stream for interactive
view switching with low transmission cost by means of an
optimal selection of I-, P-, and “merge” frames. They assess
the efficiency in terms of the transmission cost.
ITU-T Rec. G.1080 [7] defines QoE requirements for IPTV

services. However, this recommendation does not refer to the
QoE in MVV systems. Thus, it is not clear what are dominant
factors in affecting QoE of MVV IP transmission and how to
assess them. In addition, it is also unknown what can enhance
the QoE.
When showing the object to the users through the MVV

system, we expect them to be interested in changing the
viewpoint according to the object’s movement. In [8] and [9],
the authors perform QoE assessment of MVV-A, which is
MVV accompanied by audio, with the ability of viewpoint
change by a subjective experiment. They then analyze the
effect of load traffic, packet delay, playout buffering time, and
user interfaces on the QoE in a multidimensional way.
In QoE management, real-time assessment (monitoring)

of QoE plays an important role. However, note that real-



time measurement of QoE is practically impossible, since the
network operator cannot ask the users to report their perceptual
quality in real time. This leads to an increasing demand for
methods of estimating QoE by using automatically measurable
lower-level QoS parameters such as packet loss ratio and delay
jitter.
In [10], Tasaka and Ito propose a QoE estimation method

from the application-level QoS parameters which represent
temporal quality of audio and video streams. In [11], Tasaka
and Watanabe propose an estimation method which employ
spatial quality of video in addition to temporal quality of
audio and video. However, these studies consider stored media
transmission of single view video and audio, and then the
characteristics of MVV-A are not considered. Furthermore, the
studies deal with just a single QoE measure, i.e., a scalar value.
In this paper, we study an estimation method of multi-

dimensional QoE for MVV-A IP transmission by means of
application-level QoS parameters which can be measured in
real time. In MVV-A, as we discussed earlier, the viewpoint
change delay is one of the main issues. Thus, we introduce
the viewpoint change response as a factor of multidimensional
QoE. We conduct a subjective experiment to obtain measured
values of multidimensional QoE and application-level QoS.
We calculate the regression lines to predict QoE by means of
linear regression analysis. We then confirm the feasibility of
real-time monitoring of QoE.
The rest of the paper is structured as follows. Section II

introduces a real-time estimation method of QoE. Section III
outlines methods of the experiment we performed. Section IV
describes methodology of QoE assessment. We present results
of the QoE estimation in Section V, and Section VI concludes
this paper.

II. REAL-TIME ESTIMATION OF QOE

In this paper, we utilize multiple regression lines that predict
QoE measure values from application-level QoS parameter
values. The reason why application-level QoS parameters have
been selected as the independent variables for the estimation
is that the application-level QoS can represent the temporal
structures of audio and video1.
The information unit for transfer between the application

layers is referred to as the MU (Media Unit). A video MU
is usually defined as a video frame and an audio MU as a
constant number of audio samples.
As a first step of the study on QoE estimation in MVV-A,

we employ the MU loss ratio and the average MU delay as
the application-level QoS parameters for QoE estimation. The
parameters can be assessed in real time and reflect the temporal
structures of audio and video. The MU loss ratio is the ratio of
the number of MUs not output at the recipient to the number
of MUs transmitted by the sender. The lost MUs include
discarded MUs owing to playout buffering control for media
synchronization. The average MU delay means the average
time in seconds from the moment an MU is generated until

1Note that QoS parameters at the end-to-end and lower levels do not
reflect the media types treated because of the principle of the layered network
architecture.

TABLE I
APPLICATION-LEVEL QOS PARAMETERS.

application-level QoS notation notation
parameter for audio for video

average MU delay [ms] Da Dv

MU loss ratio [%] La Lv

Fig. 1. Experimental system.

the instant the MU is output. The notations of the parameters
are shown in Table I. It is our future study to estimate QoE
with other application-level QoS parameters.

III. EXPERIMENTAL METHOD

A. Experimental system

Figure 1 shows the experimental system. MS is the server
of the MVV-A application, and MR is the client. Four cameras
and a microphone are connected to the server. Both router 1
and router 2 are Riverstone’s RS3000. NN, which is a PC, is
laid out between the routers.
The server captures the video of each camera. At the same

time, the audio is captured by the microphone. The server
sends the audio and video of a selected viewpoint to the client
as two separate UDP packet flows. The client receives these
packets and outputs the audio and video decoded from them.
The client can choose one viewpoint from the four cameras
by sending a request with a UDP packet.
The specifications of the audio and video are shown in

Table II. We employed a simple scheme of playout buffering
control at the client to absorb network delay jitter and set the
buffering time to 60 ms, 100 ms, and 140 ms. If all the packets
of an MU are not correctly received in time for output, the
MU is not output.
NN delays packets going through routers 1 and 2 by using

NIST Net [12]. By adding this delay, we can examine the
effect of network delay on the QoE in the MVV-A system.
The delay in the computer NN was set to one of the three
constant values: 0 ms, 100 ms or 300 ms.
On the other hand, LS is the server of the load traffic, and

LR is the client. LS generates UDP packets of 1472 bytes
each with exponentially distributed interval and sends them to
LR. The average bit rate was set to 7.2 Mb/s, 7.4 Mb/s, and
7.6 Mb/s.



TABLE II
SPECIFICATIONS OF AUDIO AND VIDEO.

audio video

coding method G.711 µ-law H.264
picture size [pixels] - 704 × 480
picture pattern - I
encoding bit rate [kb/s] 64 2000
average MU rate [MU/s] 25 25
duration [s] 20

(a) Dog

(b) Train

Fig. 2. Camera arrangements.

B. Contents and viewpoint change interfaces

In this assessment, we employ two types of contents and
two viewpoint change interfaces as in [9].
Figure 2 shows the positions of the cameras and the micro-

phone connected to MS for two contents that were employed.
We refer to the content in Fig. 2(a) and that in Fig. 2(b) as
“Dog” and “Train”, respectively.
As the object in Dog, we employ a dog doll which moves

with battery. When the switch of the doll is turned on, the
doll walks a few steps forward and barks with moving its
tail while walking backwards. Later, the doll starts to walk
forward again, but in a different direction; it moves in the
counterclockwise direction.
In Train, we use a toy train which moves with battery. When

the train is turned on, it moves continuously on the rail. The
arrows inside the two circles in the center of Fig. 2(b) show
the direction of movement of the train.
We used two different user interfaces. Each interface is

shown as a small window on the display. The user can move
this window to a desired position and can change the viewpoint
by using the mouse. With the first one, the user can change
the viewpoint by selecting the camera number, as shown in
Fig. 3(a). The second one lets the user change the viewpoint
by using the camera’s direction, according to the camera that
is currently being watched, as shown in Fig. 3(b). In this paper,
we refer to the first interface as “Interface 1” and to the second
one as “Interface 2”.
Prior to this experiment, the assessors received instructions

when watching the contents. In Dog, the assessors were
instructed to follow the dog doll’s face. In Train, the instruction
was to follow the train. We gave these instructions to the
assessors so that we can measure the level of fulfillment
of each interface with which the assessors accomplish the

(a) Interface 1: with

camera numbers

(b) Interface 2: with camera directions

Fig. 3. User interfaces for viewpoint change.

TABLE III
ADJECTIVE PAIRS.

ID adjective pair

AV1 the video is smooth - the video is interrupted
AV2 the audio is smooth - the audio is interrupted
I1 the viewpoint change response is fast

- the viewpoint change response is slow
UI1 the interface is useful - the interface is not useful
MVV1 the system is reliable - the system is not reliable
MVV2 the system is convenient - the system is inconvenient
MVV3 I want to use the system

- I do not want to use the system
MVV4 the system fulfills my expectations

- the system does not fulfill my expectations
CO1 I can follow the content’s movement

- I cannot follow the content’s movement
UF1 I feel relaxed - I feel impatient
UF2 I am not irritated - I am irritated
O1 excellent - bad

instruction.

IV. QOE ASSESSMENT METHOD

We employed 17 male students as assessors. Their age
ranges from twenty through thirty.
We refer to an object for evaluation as a stimulus, which

is an audio-video stream output at the receiver in each ex-
perimental run. For each combination of the content and the
user interface, the assessor evaluates 30 stimuli including three
dummies in a random order.
In this paper, we employ the SD (Semantic Differential)

method [13] for subjective QoE assessment. This method was
proposed by Osgood as a method of measuring meaning.
In the SD method, how to select pairs of polar terms used for

the assessment is important. In order to select the polar terms,
we performed preliminary tests analyzing different criteria
regarding the audio-video streams (AV), the interactivity (I),
the user interface (UI), the MVV-A system (MVV), the content
(CO), user’s feelings (UF), and the overall satisfaction (O).
When we could not find any appropriate adjective in order
to evaluate a particular criterion, we adopted a verb instead.
After the tests, we chose the criteria shown in Table III.
Note that the experiment was performed with the Japanese

language. This paper has translated the used Japanese terms
into English. Therefore, the meanings of adjectives or verbs
written in English here may slightly differ from those of
Japanese ones.
For each criterion, a subjective score is measured by the

rating scale method [14]. In the method, an assessor classifies



the stimuli into a certain number of categories; here, each
criterion is evaluated to be one of five grades. The best grade
(score 5) represents the positive adjective (the left-hand side
one in each pair), while the worst grade (score 1) means the
negative adjective. The middle grade (score 3) is neutral.
When assessing the subjectivity quantitatively, it is desirable

to use at least an interval scale. In order to obtain an interval
scale from the result of the rating scale method, we first
measure the frequency of each category with which the object
for evaluation is placed in the category. With the law of
categorical judgment [14], we can translate the frequency
obtained by the rating scale method into an interval scale.
However, since the law of categorical judgment is based on
several assumptions, we have to confirm the goodness of
fit for the obtained scale. For a test of goodness of fit, we
conduct Mosteller’s test [15]. Once the goodness of fit has
been confirmed, we use the interval scale as the QoE metric,
which is therefore called the psychological scale [16].

V. ESTIMATION RESULTS OF QOE

We calculated the interval scale for each criterion. Then,
we carried out the Mosteller’s test. As a result, we have found
that the test with a significance level of 0.01 can reject the
hypothesis that the observed value equals the calculated one
in some criteria. Thus, we checked stimuli which give large
errors of Mosteller’s test and removed them in order not to
reject the hypothesis. We then use the interval scale obtained
by this operation as the psychological scale.
Since we can select an arbitrary origin in an interval

scale, for each criterion, we set the minimum value of the
psychological scale to the origin.
In the experiment, the MU loss ratio of audio is less than

1 % for all the experimental conditions, and then most of
assessors hardly notice the degradation of audio. Thus, in
this paper, we estimate QoE from the application-level QoS
parameters for video.

A. Calculation of regression lines

In this paper, we calculated the regression lines for smooth-
ness of the video (AV1), viewpoint change response (I1), and
overall satisfaction (O1) among the criteria because they show
the major characteristics of MVV-A.
In each regression line, U means the estimated value of

the psychological scale, and its superscript shows the pair
of content type and viewpoint change interface. For example,
dog1 represents that the user sees Dog with Interface 1, and
train2 means that he/she watches Train with Interface 2. In
addition, the subscript of U implies the criterion. Also, let R∗2

denote the contribution rate adjusted for degrees of freedom.
1) Viewpoint change response: We present the regression

line of viewpoint change response for each pair of content
type and viewpoint change interface with the MU loss ratio
of video Lv[%] and the average MU delay for video Dv[ms]
in Eqs. (1) through (4).

Udog1
I1 = 3.874 − 2.446 × 10−3 × Dv

− 7.323 × 10−2 × Lv (R∗2 = 0.838) (1)
Udog2

I1 = 3.810 − 2.073 × 10−3 × Dv

− 6.624 × 10−2 × Lv (R∗2 = 0.903) (2)
U train1

I1 = 3.511 − 1.239 × 10−3 × Dv

− 6.033 × 10−2 × Lv (R∗2 = 0.828) (3)
U train2

I1 = 3.720 − 1.397 × 10−3 × Dv

− 8.224 × 10−2 × Lv (R∗2 = 0.894) (4)

From the equations, for both contents, the contribution rate
with Interface 2 is higher than that with Interface 1. This is
because Interface 2 is more intuitive than Interface 1, and
then the deterioration of application-level QoS can affect QoE
directly.
In addition, the regression lines for Dog have larger constant

terms than those for Train. Thus, the psychological scale value
for Dog tends to be higher than that for Train. This is because
Dog moves slower than Train, and then the user does not so
sensitive for viewpoint change response with Dog as that with
Train.
2) Smoothness of video: The smoothness of video is mainly

affected by the MU loss of video. Thus, we calculated the
regression lines with the MU loss ratio of video. We present
the regression lines for each pair of content and user interface
in Eqs. (5) through (8).

Udog1
AV 1 =3.248− 9.593 × 10−2 × Lv (R∗2 = 0.849) (5)

Udog2
AV 1 =3.286− 8.650 × 10−2 × Lv (R∗2 = 0.896) (6)

U train1
AV 1 =3.155− 7.220 × 10−2 × Lv (R∗2 = 0.828) (7)

U train2
AV 1 =3.351− 9.267 × 10−2 × Lv (R∗2 = 0.935) (8)

We also find in these equations that the estimation accuracy
depends on the content type and the user interface as we have
found in the equations for the viewpoint change response.
3) Overall satisfaction: We calculated the regression lines

of overall satisfaction for each pair of content and viewpoint
change interface with the MU loss ratio of video and the
average MU delay of video. However, for Train, the term of
average MU delay is not significant with the significant level
0.05 because the train moves faster, and then the smoothness
is more important for the assessors. We then calculated the
regression lines for Train with only the MU loss ratio of video.
Eqs. (9) through (12) show the regression lines.

Udog1
O1 =3.398 − 1.231 × 10−3 × Dv

−8.796 × 10−2 × Lv (R∗2 = 0.851) (9)

Udog2
O1 =3.468 − 1.243 × 10−3 × Dv

−7.683 × 10−2 × Lv (R∗2 = 0.894) (10)

U train1
O1 =3.013 − 6.766 × 10−2 × Lv (R∗2 = 0.871) (11)

U train2
O1 =3.299 − 9.141 × 10−2 × Lv (R∗2 = 0.908) (12)
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Fig. 4. Viewpoint change response for Dog with Interface 2.
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Fig. 5. Viewpoint change response for Train with Interface 2.

We again notice that the contribution rate of each equation
is high. Thus, the equations can estimate the psychological
scale with high accuracy.

B. Assessment of accuracy

Figure 4 plots the estimated values obtained by Eq. (2) along
with the measured ones for viewpoint change response (I1) in
the case of Dog with Interface 2. Figure 5 shows the estimated
values obtained by Eq. (4) and measured ones in the case of
Train with Interface 2.
For the smoothness of video (AV1), we show the estimated

values obtained by Eq. (6) and measured ones for Dog with
Interface 2 in Fig. 6. The estimated values obtained by Eq. (8)
and measured ones for Train with Interface 2 is shown in
Fig. 7.
Figure 8 plots the estimated values obtained by Eq. (10)

along with the measured ones for overall satisfaction (O1) in
the case of Dog with Interface 2. Figure 9 shows the estimated
values obtained by Eq. (12) and measured ones in the case of
Train with Interface 2.
The abscissa in Figs. 4 through 9 presents the combination

of additional delay in NN [ms], the average load [Mb/s],
and the playout buffering time [ms]. These figures plot the

Dog - Interface 2 -  Smoothness of video
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Fig. 6. Smoothness of video for Dog with Interface 2.
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Fig. 7. Smoothness of video for Train with Interface 2.

measured and estimated values of psychological scale for each
combination of the three parameters. Note that the measured
values deleted by the Mosteller’s test are not shown in these
figures. In the figures, the upper boundaries of Category 1 to
Category 4 are plotted as straight broken lines parallel to the
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Fig. 8. Overall satisfaction for Dog with Interface 2.
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Fig. 9. Overall satisfaction for Train with Interface 2.

TABLE IV
CORRELATION COEFFICIENTS BETWEEN MEASURED VALUE AND

ESTIMATED ONE.

content interface overall viewpoint smoothness
quality change of video

dog 1 0.930 0.922 0.925
2 0.950 0.954 0.949

train 1 0.936 0.917 0.914
2 0.955 0.950 0.968

abscissa. Note that the lower bound of Category 1 is −∞, and
the upper bound of Category 5 is ∞.
Furthermore, Table IV displays correlation coefficients be-

tween estimates and measured values.
We see in Figs. 4 and 5 that the psychological scale

values for viewpoint change response for both contents can be
estimated by means of the linear multiple regression analysis
with the MU loss ratio and the average MU delay. However,
we notice that the error between the estimated value and the
measured one becomes large when the playout buffering time
is 140 ms.
By comparing Figs. 4 and 5, we find that the psychological

scale value for Train is smaller than that for Dog in the case of
small buffering time under heavy load condition. In addition,
the estimation error becomes large in the case.
In Figs. 6 and 7, we find that the psychological scale

values for the smoothness of video can be estimated with
high accuracy with the MU loss ratio. As in the case of the
viewpoint change delay, the estimation error becomes large
when the playout buffering time is large; the independent
variables employed in this paper may be insufficient in the
case.
We notice in Figs. 6 and 7 that the psychological scale value

for the smoothness of video increases as the playout buffering
time increases. Thus, the playout buffering can improve the
smoothness, and the estimation can represent the enhancement.
In Fig. 8, we find that the psychological scale value of over-

all satisfaction for Dog can be estimated with high accuracy
with the MU loss ratio and the average MU delay. For Train
in Fig. 9, the regression line with the MU loss ratio can also
estimate the psychological scale value.

In addition, we notice in Table IV that the equations can
estimate with almost the same high accuracy in both contents.
From the above discussion, the feasibility of real-time QoE
estimation of MVV-A IP transmission is clarified.

VI. CONCLUSIONS

In this paper, we show the feasibility of QoE estimation for
multi-view video and audio (MVV-A) IP transmission with
the application-level QoS parameters which can be assessed
in real time. Among the multidimensionally assessed QoE, we
treated overall satisfaction, smoothness of video, and view-
point change response. We then calculated regression lines by
the linear regression analysis. As a result, it is clarified that the
QoE estimation with the application-level QoS parameters for
video is feasible. In addition, the estimation accuracy depends
on the content, user interface, and the playout buffering time.
Future work includes the evaluation of accuracy with other

data set obtained by new experiment. In addition, estimation
of the other QoE metrics is also future study.
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