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ABSTRACT
In this paper, a novel approach for integrating acoustic modeling and
mel-cepstral analysis is proposed. The aim of HMM-based speech
synthesis is to model speech waveforms with a statistical model.
However, the conventional techniques divide the modeling process
into two steps: the frame by frame feature extraction step and the
acoustic modeling step. Although it is reasonably effective, the de-
terioration of speech quality is caused by the divide of the objective
function. In this paper, we propose an approach to modeling them as
an integrative model and show the possibility of improving synthe-
sized speech.

Index Terms— integrative model, HMM-based speech synthe-
sis, acoustic modeling, mel-cepstal analysis, trajectory HMM

1. INTRODUCTION

HMM-based speech synthesis was proposed to enable machines to
speak naturally like humans [1]. In this method, spectral and F0 fea-
tures are extracted and modeled with a statistical technique. Recent
large systems are often constructed with combinations of some mod-
ules that use statistical models. A famous example is language and
acoustic models for speech recognition systems. Recently, the inte-
gration of these statistical models is an important research subject. In
text-to-speech (TTS) systems, an approach integrating text analysis
and speech synthesis modules was proposed [2]. It can optimize lin-
guistic and acoustic models simultaneously. As the essential aim of
TTS is to synthesize speech from given texts, the integration of these
statistical models is a desirable future of TTS systems. In HMM-
based speech synthesis, some heuristic methods have been used to
extract spectral features from speech waveforms previously. A sta-
tistical method that consists of mel-cepstral analysis was proposed
and is widely used [3]. In this method, mel-cepstral coefficients, i.e.,
frequency transformed cepstral coefficients, are regarded as statisti-
cal model parameters and estimated with a parametric method.

In the standard HMM, observation vector sequences are quasi-
stationary, and each stationary part can be represented by a state of
the HMM. The statistics of each state do not change dynamically,
and intra-state time-dependency cannot be represented. Therefore, a
technique that augments the dimensionality of an acoustic static fea-
ture vector by appending its dynamic feature vectors is widely used.
A trajectory model, named a “trajectory HMM” [4], was derived
by reformulating the HMM. The standard HMM with static and dy-
namic features allows inconsistent statistics between the model pa-
rameters for static and dynamic features. By imposing the explicit
relationship between them, the standard HMM is naturally translated
into a trajectory model. The trajectory HMM can overcome the lim-
itations in the standard HMM framework without any additional pa-
rameters.

In the mel-cepstral analysis and the acoustic modeling, two sta-
tistical models are estimated independently. Since the aim of these

two techniques is to model speech with a statistical model, in this
paper, we propose integrating the feature extraction and the acoustic
modeling by using a probabilistic representation of extracted fea-
tures. This approach can model speech waveforms directly without
having any intermediate representation, and it can be regarded as a
generative model of speech waveforms.

In this model, the spectral extraction process and the spectral
modeling process are simultaneously optimized for the given speech
waveforms. This framework is similar to the vocal tract transfer
function (VTTF) estimation of a speech signal based on a factor
analyzed (FA) trajectory HMM [5]. Mel-cepstral coefficients were
regarded as factors, and by using the time-varying factor loading
matrix, the harmonic components were represented with the FA
method. In another approach, the mel-cepstral analysis was inte-
grated into the Gaussian mixture model (GMM) for modeling a
quasi-stationary Gaussian process [6]. It can represent mel-cepstral
coefficients stochastically with mixture weights of GMM.

The rest of this paper is organized as follows. Section 2 sum-
marizes HMM-based speech synthesis, including the mel-cepstral
analysis and the trajectory HMM. In Section 3, the integration algo-
rithm of the mel-cepstral analysis and the acoustic modeling is de-
rived. Experimental results are presented in Section 4. Concluding
remarks and future plans are presented in the final section.

2. HMM-BASED SPEECH SYNTHESIS

In HMM-based TTS training, spectral envelope, fundamental fre-
quency, and duration are modeled simultaneously by using the cor-
responding HMMs. Mel-cepstral coefficients c are widely used as
spectral features. They are regarded as statistical model parameters
and estimated from a given input signal, x, in the maximum likeli-
hood (ML) sense:

ĉ = argmax
c

P (x|c) (1)

Extracted mel-cepstral coefficients are used for training HMMs with
dynamic (“delta” and “delta-delta”) feature constraints. A speech
waveform is finally synthesized from the generated spectral and ex-
citation parameters via the source-filter based production model. Re-
cently, the trajectory HMM was derived by reformulating the HMM.
The model parameters Λ are trained in the ML sense by using the
static features:

Λ̂ = argmax
Λ

P (c|Λ) (2)

2.1. MEL-CEPSTRAL ANALYSIS

The synthesis filter H (z) is represented by mel-cepstral coefficients
c = [c (0) , · · · , c (M)]> 1 defined as frequency-transformed cep-
stral coefficients:

1In section 2.1, x and c correspond to not an utterance but a frame. The
frame index t is abbreviated.



H (z) = exp

M
X

m=0

c (m) z̃−m (3)

z̃−1 =
z−1 − α

1 − αz−1
, |α| < 1 (4)

where α is a frequency warping parameter. If α = 0, mel-cepstral
coefficients are equivalent to cepstral coefficients.

For a given input signal, x = [x (0) , · · · , x (N − 1)]>, the
mel-cepstral coefficients are determined by minimizing a spectral
evaluation function with respect to c [7],
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and IN (ω) is the modified periodogram of weakly stationary pro-
cess x (n) with a time window w (n) of length N :
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Mel-cepstral coefficients are determined easily by using an iterative
algorithm (e.g., the Newton-Raphson method) because E (x, c) is
convex with respect to c.

When x (n) is assumed to be a zero-mean Gaussian process, the
likelihood can be approximated by
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and, accordingly, minimization of E (x, c) corresponds to the max-
imization of P (x|c).

2.2. TRAJECTORY HMM

Let a spectral feature vector sequence be o =
ˆ

o>
1 , · · · , o>

T

˜>
,

where ot =
ˆ

c>
t , ∆c>

t , ∆2c>
t

˜>
includes not only static but also

dynamic features. Mel-cepstral coefficients ct are a M + 1 dimen-
sional vector, and T is the number of frames. In the conventional
model, the probability density of o is shown as P (o|q,Λ), where
q = (q1, q2, · · · , qT ) is a state sequence. However, the conven-
tional model is mathematically improper in the sense of statistical
modeling. In this model, the static and dynamic features are mod-
eled as independent statistical variables. When it is used as a gener-
ative model, it allows inconsistent static and dynamic features. By
imposing an explicit relationship between static and dynamic fea-
tures, which is given by o = Wc, where W is a 3 (M + 1) T ×
(M + 1) T window matrix as shown in Fig. 1, the conventional
HMM is reformed as the trajectory HMM as:

P (c|Λ) =
X

∀q

P (c|q,Λ) P (q|Λ) (9)

P (c|q,Λ) = N (c|c̄q, P q) =
1

Z
P (o|q,Λ) (10)

P (q|Λ) = P (q1|Λ)
t

Y

t=2

P (qt|qt−1,Λ) (11)

Fig. 1. Example of the relationship between the static feature vector
sequence c and the speech parameter vector sequence o in a matrix
form

where Z is a normalization term. In Eq. (10), c̄q and P q are the
(M + 1) T × 1 mean vector and the (M + 1) T × (M + 1) T tem-
poral utterance covariance matrix given by q, respectively. They are
given by

Rq c̄q = rq (12)

Rq = W >Σ−1
q W = P −1

q (13)

rq = W >Σ−1
q µq (14)

µq =
h

µ>
q1

, · · · , µ>
qT

i>
(15)

µi =
h

µ>
i , ∆µ>

i , ∆2µ>
i

i>
, i = 1, · · · , N (16)

Σq = diag
h

Σ>
q1 , · · · ,Σ>

qT

i>
(17)

Σi = diag
h

Σ>
i , ∆Σ>

i , ∆2Σ>
i

i>
, i = 1, · · · , N (18)

where N is the total number of state output PDFs, and µi and
Σi are the 3 (M + 1) T × 1 mean vector and the 3 (M + 1) T ×
3 (M + 1) T covariance matrix associated with the i-th state, re-
spectively. The elements of W are given as regression window
coefficients to calculate delta and delta-delta features as:
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L
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+

X
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(d)
−

w(d) (τ) ct+τ , d = 1, 2 (19)
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w
(d)
t =

h

0, . . . , 0
| {z }

t−L
(d)
− −1

, w(d)(−L
(d)
− ), . . . , w(d) (0) ,

. . . , w(d)(L
(d)
+ ), 0, . . . , 0

| {z }

T−
“

t+L
(d)
+

”

i>
, d = 0, 1, 2 (22)

where L
(0)
− = L

(0)
+ = 0, w(0) = 1, and ⊗ denotes the Kronecker

product for matrices.
Note that c is modeled by Gaussian distributions whose dimen-

sionality is (M + 1) T , and the covariance matrices P q are gen-
erally full. As a result, the trajectory HMM can overcome the de-
ficiencies of the HMM. It is also noted that the parameterization of
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Fig. 2. Basic idea of the proposed approach

the trajectory HMM is completely the same as that of the HMM with
the same model topology.

3. INTEGRATION ALGORITHM OF ACOUSTIC
MODELING AND MEL-CEPSTRAL ANALYSIS

Figure 2 shows the difference between the conventional and the pro-
posed approaches. In the proposed approach, we integrate the statis-
tical mel-cepstral model P (x|c) and the statistical acoustic model
P (c|Λ) as:

Λ̂ = argmax
Λ

P (x|Λ)

= argmax
Λ

Z

P (x, c|Λ) dc

= argmax
Λ

Z

P (x|c) P (c|Λ) dc (23)

In the proposed method, the mel-cepstral coefficients are represented
as a random variable, and the dynamic feature vectors cannot be cal-
culated from static features. Therefore, a modeling technique includ-
ing the extraction of dynamic features, like trajectory HMM, should
be introduced. As far as the conventional method, the standard mel-
cepstral analysis can be assumed as extracting 1-best mel-cepstral
coefficients.

To train the proposed model, a lower bound of log marginal like-
lihood F is maximized instead of the true likelihood. The lower
bound F is defined by using Jensen’s inequality:

L (x|Λ) = log P (x|Λ)

= log
X

∀q

Z

P (x|c) P (c, q|Λ) dc

= log
X

∀q

Z

Q (c, q)
P (x|c) P (c, q|Λ)

Q (c, q)
dc

= log
X

∀q

Z

Q (c) Q (q)
P (x|c) P (c, q|Λ)

Q (c) Q (q)
dc

≥
X

∀q

Z

Q (c) Q (q) log
P (x|c) P (c, q|Λ)

Q (c) Q (q)
dc

= F (24)

To overcome the difficulty of optimization, we assume that c and
q are independent and that posterior distribution Q (c) and Q (q)
approximate the true posterior distributions. The optimal posterior
distributions can be obtained by maximizing the original objective

function F with the variational method as:

Q (c) =
1

Zc
P (x|c) exp

X

∀q

Q (q) log P (c|q,Λ) (25)

Q (q) =
1

Zq
P (q|Λ) exp

Z

Q (c) log P (c|q,Λ) dc (26)

where Zc and Zq are the normalization terms of Q (c) and Q (q),
respectively. These optimizations can be effectively performed by
iterative calculations as the Expectation and Maximization (EM) al-
gorithm, which increases the value of objective function F at each
iteration until convergence.

3.1. Posterior Probabilities of Mel-cepstral coefficients

It is difficult to integrate Q (c) with respect to c, so we approximate
Q (c) as a Gaussian probability distribution. By using a Laplace
approximation, Q (c) is represented as:

Q (c) ' N
`

c|c̃, A−1´

(27)
c̃ = argmax

c
Q (c) (28)

A =
N

2
H |c=c̃ +

X

∀q

Q (q) P −1
q (29)

where

H = − 2

N

∂2

∂c∂c> log P (x|c) (30)

= diag

„

h

H>
1 , H>

2 , · · · , H>
T

i>
«

(31)

H t is the Hessian matrix of the spectral evaluation function at time
t:

H t =
∂2

∂ct∂c>
t

E (xt, ct) = − 2

N

∂2

∂ct∂c>
t

log P (xt|ct) (32)

In the standard mel-cepstral analysis, mel-cepstral coefficients for
each frame can be estimated frame by frame independently. How-
ever, in the proposed method, mel-cepstral coefficients for all utter-
ances should be estimated simultaneously. Thus, a large computa-
tion cost is required for this Newton-Raphson method.

3.2. Posterior Probabilities of State Sequences

The expectation with respect to c in Eq. (26) is given by
Z

Q (c) log P (c|q,Λ) dc

= logN (c̃|c̄q, P q) − 1

2
tr

`

RqA−1´

(33)

where the matrix Rq is a positive definite (4L (M + 1) + 1)-
diagonal band symmetric matrix. Thus, Rq can be decomposed into
its Cholesky factorization:

Rq = U>
q Uq (34)

where Uq is an upper-triangular (2L (M + 1)+1)-diagonal matrix.
Elements of Uq are calculated in a recursive manner and depend
only on substates from time 1 to t + 2L.

`

RqA−1´(t,t)
=

“

U>
q UqA−1

”(t,t)

=
“

UqA−1U>
q

”(t,t)

=

t+2L
X

i=t

t+2L
X

j=t

U
(t,i)
q

`

A−1´(i,j)
U

(t,j)
q (35)



 58

 60

 62

 64

 66

 68

 70

 72

 74

 76

 close  open

A
v
e

ra
g

e
 l
o

g
 l
ik

e
lih

o
o

d HMM

trajectory HMM

proposed

Fig. 3. Log likelihood per frame for closed and opened data sets

Thus, the delayed decision Viterbi algorithm [4] can be applied to
the proposed method.

3.3. Update Model Parameters

Model parameters m and φ are defined by concatenating the mean
vectors and covariance matrices of all unique Gaussian components
in the model set as:

m =
h

µ>
1 , µ>

2 , · · · , µ>
N

i>
(36)

φ =
h

Σ>
1 ,Σ>

2 , · · · ,Σ>
N

i>
(37)

where µn and Σn are the mean vector and covariance matrix of the
n-th unique Gaussian component in the model set, and N is the total
number of Gaussian components in the model set, respectively.

By setting the partial derivative of F with respect to m to 0, a set
of linear equations for determining m maximizing F are obtained
as:

X

∀q

Q (q) S>
q WP qW >SqΦ−1m =

X

∀q

Q (q) S>
q W c̃ (38)

where
µq = Sqm (39)

Φ−1 = diag(φ) (40)
Σ−1

q = diag(Sqφ) (41)

SqΦ−1 = Σ−1
q Sq (42)

In the above equations, Sq is a 3 (M + 1) T × 3 (M + 1) T matrix
whose elements are 0 or 1 determined by the Gaussian component
sequence q.

For maximizing F with respect to φ, a gradient method is ap-
plied by using its partial derivative

∂F
∂φ

=
X

∀q

Q (q)

"

1

2
S>

q diag−1
n

WP qW > − WA−1W >

−W c̃c̃>W > + 2µq c̃>W >

+W c̄q c̄>
q W > − 2µq c̄>

q W >
o

#

(43)

because Eq. (43) is not a quadratic function of φ.

4. EXPERIMENTS

4.1. Experimental Conditions

To evaluate the effectiveness of the proposed method, objective
comparison tests of likelihood and subjective comparison test of
Mean opinion Score (MOS) were conducted. For training, 50 sen-
tences of the phonetically balanced 503 sentences from the ATR
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Fig. 4. Mean opinion scores for synthesized speech obtained by stan-
dard HMM, trajectory HMM and proposed model.

Japanese speech database (Set B) uttered by a male speaker M001 in
Nitech, were used. Fifty other sentences were used for evaluating.
The speech data was recorded at 48 kHz and windowed at a frame
rate of 5-ms by using a 25-ms Hamming window. The windowed
waveforms were used as the input data in the proposed method,
and 35 mel-cepstral coefficients, which include the zero coefficient
estimated with the standard mel-cepstral analysis technique were
used in the conventional method. The dimension of the hidden mel-
cepstral coefficients of the proposed method was set to the same as
that of the conventional method. The frequency warping parameter
α was set to 0.55. Each state output probability distribution was
modeled by a single Gaussian distribution with a diagonal covari-
ance matrix. In the subjective test, 10 subjects were asked to rate
the naturalness of the synthesized speech voices on a MOS with a
scale from 1 (poor) to 5 (good). Fifteen randomly selected sentences
were presented to each subject. The experiments were carried out in
a sound-proof room.

4.2. Experimental Results
After estimating the standard HMMs, the proposed models were re-
estimated by using the standard HMMs as their initial models in ac-
cordance with the training procedure described in Section 3. Fig-
ure 3 shows the average log likelihood per frame for a training data
set (close) and test data set (open) to compare the proposed mod-
els with the standard HMMs. The proposed models outperformed
the baseline standard HMMs for both data sets. This result for the
test data set especially indicates the possibility of improving syn-
thesized speech. Figure 4 shows the subjective listening results. In
Figure 4, the MOS of the proposed technique was higher than that
of the standard HMMs and equivalent to or higher than that of the
trajectory HMMs. These results mean that the proposed technique
can represent speech waveforms better by modeling them directly,
even though baseline and proposed models have the same number of
parameters.

5. CONCLUSION

In this paper, we defined a novel kind of acoustic model for model-
ing speech waveforms directly by integrating the mel-cepstral anal-
ysis and the acoustic modeling. In experiments, the objective and
subjective evaluation scores of proposed models were equivalent to
or higher than the baseline models. These results indicate the possi-
bility of improving the quality of synthesized speech. Experiments
on larger data sets will be future work.
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